
Appendix: Proofs

Proof of Theorem 1. To state the proof of the theorem, we need to define more notations. For a
generic set A ⊂ [0, 1]p, with slight abuse of notations, let Nn(A) =

∑
i 1(xi ∈ A) be the number of

samples with input features in A, and

µn(A) =

∑
xi∈A yi

Nn(A)

be the average response of those samples. For any feature Xk and z ∈ (0, 1), let ∆I(A, (k, z)) be
the impurity decrease when splitting A into A ∩ {Xk ≤ z} and A ∩ {z < Xk}, and ∆I(A, k) =
sup0≤z≤1 ∆I(A, (k, z)).

The proof of the theorem proceeds in three parts. First, we prove a lemma which gives a tail bound for
∆I(A, k). Second, we use the lemma and union bound to derive the upper bound for the expectation
of G0(T ). Finally, we use a separate argument based on Gaussian comparison inequalities to obtain
the lower bound.

Lemma 1. For any axis-aligned hyper-rectangle A ⊂ [0, 1]p, k /∈ S and δ > 0, we have

PX,ε(∆I(A, k) ≥ δ
∣∣Nn(A)) ≤ 4Nn(A)e

− δNn(A)

4(M+1)2 .

Proof of Lemma 1. We suppose without loss of generality that x1, . . . ,xNn(A) ∈ A. For any z ∈
[0, 1], we let

Aleft = A ∩ {0 ≤ Xk ≤ z}, Aright = A ∩ {z < Xk ≤ 1},
and introduce the shorthands

pleft =
Nn(Aleft)

Nn(A)
, pright =

Nn(Aright)

Nn(A)
, µleft = µn(Aleft), µright = µn(Aright).

Then

∆I(A, (k, z)) =
1

Nn(A)

∑
xi∈A

(yi − µn(A))2 − 1

Nn(A)

∑
xi∈A

(yi − µn(Aleft))2 1(xik ≤ z)

− 1

Nn(A)

∑
xi∈A

(yi − µn(Aright))2 1(xik > z)

=
1

Nn(A)

∑
xi∈A

y2i − µn(A)2 − pleft(
1

Nn(A)pleft

∑
xi∈A

y2i 1(xik ≤ z)− (µleft)2)

− pright(
1

Nn(A)pright

∑
xi∈A

y2i 1(xik > z)− (µright)2)

= pleft(µleft)2 + pright(µright)2 − µn(A)2

= (pleft(µleft)2 + pright(µright)2)(pleft + pright)− (pleftµleft + prightµright)2

= pleftpright(µleft − µright)2

≤ 2pleftpright[(µleft − µ)2 + (µright − µ)2]

≤ 2pleft(µleft − µ)2 + 2pright(µright − µ)2,

where
µ = E[Y |X ∈ A] = E[φ(X)|X ∈ A].

Now suppose without loss of generality that x1k < x2k < · · · < xnk (otherwise we can reorder the
samples by Xk). Since k /∈ S, Xk is independent of XS and therefore independent of Y . Thus the
distribution of (y1, . . . , yn) does not change after the reordering, i.e.,

yi
i.i.d∼ (φ(X)|X ∈ A) + ε.

Note that

sup
z

pleft(µleft − µ)2 ≤ sup
1≤m≤Nn(A)

m

Nn(A)

(
1

m

m∑
i=1

yi − µ

)2

.
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Note that Y is sub-Gaussian with parameter M + 1. Therefore, for each 1 ≤ m ≤ Nn(A), by
Hoeffding bound,

P

 m

Nn(A)

(
1

m

m∑
i=1

yi − µ

)2

≥ δ
∣∣∣∣Nn(A)

 ≤ 2e−(M+1)2δNn(A)2/m ≤ 2e
− δNn(A)

(M+1)2 .

Therefore

P
(

sup
z
pleft(µleft − µ)2 ≥ δ

∣∣∣∣Nn(A)

)
≤ 2Nn(A)e

− δNn(A)

(M+1)2 .

By symmetry, the same bound holds for pright(µright − µ)2. Therefore

P(∆I(A, k) ≥ δ
∣∣Nn(A))

≤P
(

sup
z
pleft(µleft − µ)2 ≥ δ/2

∣∣Nn(A)

)
+ P

(
sup
z
pright(µright − µ)2 ≥ δ/2

∣∣Nn(A)

)
≤4Nn(A)e

− δNn(A)

4(M+1)2 ,

and the lemma is proved.

Proof of the upper bound in Theorem 1

Without loss of generality, assume that when we split on feature k, the cut is always performed along
the direction of k at some data point (and that data point falls into the right sub-tree). Suppose that
εi has unit variance for all i. Let C = 2 max{256, 16(M + 1)2}. We also assume, without loss of
generality, that mn ≥ 8dn. Otherwise, since G0(T ) is, by definition, upper bounded by the sample
variance of y, we have

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ Var(Y ) ≤M2 + 1 ≤ 16(M + 1)2
dn log np

mn
.

To simplify notation, we define xn+1 = (0, . . . , 0) and xn+2 = (1, . . . , 1). For any V ⊂ [p],L,R ∈
[n+ 2]|V |, let

A(V,L,R) = {X = (X1, . . . , Xp) : xLi,Vi ≤ XVi < xRi,Vi , 1 ≤ i ≤ |V |, 0 ≤ Xk ≤ 1, k /∈ V }

be the random axis-aligned hyper-rectangle obtained by splitting on features in V , where the left and
right endpoints of the ith feature Vi are determined by xLi,Vi and xRi,Vi . Note that in this definition,
we treat xi as random variables rather than fixed, and A(V,L,R) can be the empty set with non-zero
probability. Let

A(V ) = {A(V,L,R)|L,R ∈ [n+ 2]|V |}
be all axis-aligned hyper-rectangles obtained by splitting on features in V . For any d ≤ dn, let

Ad = ∪|V |=dA(V )

be the collection of all possible subsets of [0, 1]p obtained by splitting on d features.

Fix δ > 96M2dn
mn

. We will first show that

PX,ε
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)
and Nn(A) ≥ mn

)
≤ 5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
.

(15)

Note that for any two events C1 and C2, the inequality P(C1 ∩ C2) ≤ P(C1|C2) always holds.
Therefore, for any hyper-rectangle A, we have

PX,ε
(

∆I(A, k) ≥ mnδ

Nn(A)
and Nn(A) ≥ mn

)
≤PX,ε

(
∆I(A, k) ≥ mnδ

Nn(A)

∣∣∣∣Nn(A) ≥ mn

) (16)
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To simplify notation, we will drop the conditional event Nn(A) ≥ mn in the remainder of the proof
of the upper bound, unless stated otherwise.

Fix V ⊂ [p],L,R ∈ [n+ 2]|V |, and k /∈ S. Conditional on samples in L and R, we would like to
apply Lemma 1 toA(V,L,R) and k. The only problem is that there are now samples on the boundary
ofA(V,L,R), namely those in L andR. Let xL = {xi}i∈L and xR = {xi}i∈R. Conditional on xL,
xR and Nn(A(V,L,R)), and on the random variable X ∈ A(V,L,R), X is uniformly distributed
in A(V,L,R). For a set A, we let A◦ be the interior of A and let Ā be the boundary of A. Since
mn ≥ 8dn,

Nn(A◦(V,L,R))

Nn(A(V,L,R))
≥ mn − 2dn

mn
≥ 3

4
.

By Lemma 1, we have

PX,ε
(

∆I(A◦(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

∣∣∣∣xL,xR, Nn(A(V,L,R))

)
≤ 4Nn(A◦(V,L,R)) exp

(
− δmnNn(A◦(V,L,R))

12(M + 1)2Nn(A(V,L,R))

)
≤ 4n exp

(
− δmn

16(M + 1)2

) (17)

for large n. Since the right hand side does not depend on xL,xR, Nn(A(V,L,R)), we can take
expectation with respect to them, and obtain

PX,ε
(

∆I(A◦(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

)
≤ 4n exp

(
− δmn

16(M + 1)2

)
(18)

On the other hand, we have the inequality

∆I(A(V,L,R), k) ≤ ∆I(A◦(V,L,R), k) +

∑
i∈L,R(yi − µn(A(V,L,R)))2

Nn(A(V,L,R))

≤ ∆I(A◦(V,L,R), k) +

∑
i∈L,R 2(y2i + µn(A(V,L,R))2)

Nn(A(V,L,R))
.

(19)

We have

PX,ε
( ∑

i∈L,R 2y2i

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)
≤P
(∑

i∈L,R 4(f2(xi) + ε2i )

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)
≤P
(∑

i∈L,R 4(f2(xi) + ε2i )

mn
≥ δ

3

)
≤P
(∑

i∈L,R 4M2 + 4ε2i

mn
≥ δ

3

)
≤P
(∑2dn

i=1(ε2i − 1)

mn
≥ δ

16Nn(A◦(V,L,R)
)

)
≤ exp(−δmn

256
),

(20)

for large n, where the fourth inequality holds because δ ≥ 96M2dn/mn, and the last inequality
follows from the well-known tail bound

P
(∣∣∣∣1dχ2

d − 1

∣∣∣∣ ≥ δ0) ≤ 2e−dδ
2
0/8
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for χ2
d random variable and δ0 < 1. To upper bound µn(A(V,L,R)), note that

P

(∑
i∈L,R 2µn(A(V,L,R))2

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)

≤P

(
|µn(A(V,L,R))| ≥

√
δmn

6dn

)

≤P

∣∣∣∣∣∣ 1

Nn(A(V,L,R))

Nn(A(V,L,R))∑
i=1

εi

∣∣∣∣∣∣ ≥
√
δmn

6dn
−M


≤ 2 exp

(
−1

2
mn(

√
δmn

6dn
−M)2

)

≤ 2 exp

(
−δmn

4

)
,

(21)

where the last inequality follows from mn ≥ 8dn and δ ≥ 96M2dn/mn. Combining Equations (18),
(19), (21), we have

PX,ε
(

∆I(A(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

)
≤ 5n exp

(
− δmn

max{16(M + 1)2, 256}

)
(22)

for any V ⊂ [p], |V | = d,L,R ∈ [n+ 2]|V |, and k /∈ S. Note that the set Ad has cardinality

|Ad| =
(
p

d

)
(2(n+ 2))d ≤

(pn
d

)d
for large n. Therefore by union bound,

P
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)

)
≤ 5np|Ad| exp

(
− δmn

max{256, 16(M + 1)2}

)
≤ 5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
.

(23)
Suppose that ∆I(A, k) ≥ mnδ

Nn(A) for all A ∈ ∪d≤dnAd and k /∈ S, then for any T ∈ Tn(mn, dn),

G0(T ) ≤
∑

t:v(t)/∈S

Nn(t)

n

mnδ

Nn(t)
≤ δmn|I(t)|

n
≤ δ,

where the last inequality follows since |I(t)|+ 1 is the total number of leaf nodes in T , and each leaf
node contains at least mn samples. Therefore

PX,ε

(
sup

T∈Tn(mn,dn)
G0(T ) ≥ δ

)
≤

dn∑
d=1

P
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)

)

≤
dn∑
d=1

5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
≤ 10(np)dn+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
(24)
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for any δ > 96M2dn
mn

. Recall that C = 2 max{256, 16(M + 1)2}. Note that Cdn log(np)
mn

≥ 96M2dn
mn

for large n. Integrating over δ, we have

EX,ε

[
sup

T∈Tn(mn,dn)
G0(T )

]

≤ 3dn log(np)

2mn
+ EX,ε

[
sup

T∈Tn(mn,dn)
G0(T )1(δ ≥ 3dn log(np)

2mn
)

]

≤ 3dn log(np)

2mn
+

∫ ∞
3dn log(np)

2mn

PX,ε

(
sup

T∈Tn(mn,dn)
G0(T ) ≥ δ

)
dδ

≤ Cdn log(np)

mn
.

(25)

This completes the proof of the upper bound.

Proof of the lower bound in Theorem 1

For the lower bound, let
dn = max{d : 2d+1mn < n}, (26)

and consider a balanced, binary decision tree T constructed in the following way:

1. At each node on the first dn − 1 levels of the tree, we split on feature X1, at the mid-point
of X1’s side of the rectangle corresponding to the node.

2. At each node on the dnth level, we look at the remaining p − 1 features, and split on the
feature that maximizes the decrease in impurity.

In the following proof, we will lower bound G0(T ) by the sum of impurity reduction on the dnth
level alone. For t = 1, . . . , 2dn−1, let

Rt =

{
t− 1

2dn−1
≤ X1 <

t

2dn−1

}
.

be the hyper-rectangle corresponding to the tth node on the dnth level. Applying Chernoff’s inequality,
we have

P
(∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≥ 1

3 · 2dn−1

)
≤ 2 exp

(
− n

27 · 2dn−1

)
.

Let

B1 =

{∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≤ 1

3 · 2dn−1
for all t

}
be the event that each node on the dnth level contains at least

2

3

n

2dn−1
, but no more than

4

3

n

2dn−1
samples. Then

P(Bc1) ≤
2dn−1∑
t=1

P
(∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≥ 1

3 · 2dn−1

)
≤ 2dn exp

(
− n

27 · 2dn−1

)
, (27)

and conditional on B1,

8

3
mn ≤

2

3

n

2dn−1
≤ Nn(Rt) ≤

4

3

n

2dn−1
≤ 32

3
mn. (28)

We define

Rlt(k) = Rt ∩
{

0 ≤ Xk <
1

2

}
and

Rrt (k) = Rt ∩
{

1

2
≤ Xk < 1

}
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and use Rlt, R
r
t as shorthand when k is fixed. For each t = 0, 1, . . . , 2d − 1, by Equation

∆I(Rt, k) ≥ ∆I(Rt, (k, 1/2)) =
Nn(Rlt)

Nn(Rt)

Nn(Rrt )

Nn(Rt)
(µn(Rlt)− µn(Rrt ))

2

Let
ηk = µn(Rlt)− µn(Rrt )

Conditional on Nn(Rlt) and Nn(Rrt ), η = (η2, . . . , ηp) are jointly Gaussian with zero mean. To
lower bound the impurity decrease at the tth node on the dnth level, we use a Gaussian comparison
argument to obtain a lower bound for supk |ηk|, which requires us to calculate the covariance matrix
of η. For any 2 ≤ k1, k2 ≤ p, let us further define

Rllt (k1, k2) = Rt ∩
{

0 ≤ Xk1 <
1

2

}
∩
{

0 ≤ Xk2 <
1

2

}
;

Rlrt (k1, k2) = Rt ∩
{

0 ≤ Xk1 <
1

2

}
∩
{

1

2
≤ Xk2 < 1

}
;

Rrlt (k1, k2) = Rt ∩
{

1

2
≤ Xk1 < 1

}
∩
{

0 ≤ Xk2 <
1

2

}
;

Rrrt (k1, k2) = Rt ∩
{

1

2
≤ Xk1 < 1

}
∩
{

1

2
≤ Xk2 < 1

}
.

As before, we write Rllt , R
lr
t , R

rl
t and Rrrt as shorthand when k1, k2 are fixed. Conditional on

Nn(Rt), the samples falling into the hyper-rectangle Rt are uniformly distributed in Rt. Therefore
we know from Chernoff’s inequality that

P
(∣∣∣∣Nn(Rllt )

Nn(Rt)
− 1

4

∣∣∣∣ ≥ 1

16

)
≤ 2 exp

(
− Nn(Rt)

48

)
for any k1 and k2, and that the same results hold for Rlrt , R

rl
t and Rllt as well. Let

B2 =

{
max

ω∈{ll,lr,rl,rr}

∣∣∣∣Nn(Rωt (k1, k2))

Nn(Rt)
− 1

4

∣∣∣∣ ≤ 1

16
, for all 1 ≤ t ≤ 2dn−1, 2 ≤ k1 < k2 ≤ p

}
.

Then

P(Bc2) ≤ 2dnp2 exp

(
− Nn(Rt)

48

)
, (29)

and

P(B1 ∩B2) ≥ 1− 2dn+1p2 exp

(
− Nn(Rt)

48

)
≥ 1− 2dn+1p2 exp

(
− mn

18

)
≥ 8

9
(30)

for n large enough (under the condition that mn ≥ 36 log p+ 18 log n). Conditional on the event B2,

Nn(Rlt) ≥ Nn(Rllt ) +Nn(Rlrt ) ≥ 3

16
Nn(Rt) +

3

16
Nn(Rt) ≥

3

8
Nn(Rt),

for any 1 ≤ t ≤ 2dn−1 and 2 ≤ k ≤ p, and the same holds for Nn(Rrt ). Therefore,

Var(ηk) =
1

Nn(Rlt)
+

1

Nn(Rrt )
≥ 3

4Nn(Rt)
(31)

Cov(ηk1 , ηk2) =
1

Nn(Rllt )
+

1

Nn(Rrrt )
− 1

Nn(Rlrt )
− 1

Nn(Rrlt )
≤ 1

4Nn(Rt)
. (32)

Consider η̃2, . . . , η̃p with

Eη̃k = 0,Var(η̃k) =
3

4Nn(Rt)

and
Cov(η̃k1 , η̃k2) =

1

4Nn(Rt)
.
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Then conditional on B1 ∩B2, by Sudakov-Fernique lemma, we have

Eε[max
k

ηk|B1 ∩B2] ≥ Emax
k

η̃k ≥

√
log p

Nn(Rt)
≥
√

3 log p

32mn
,

and the lower bound

min{Nn(Rlt), Nn(Rrt )} ≥
3

8
Nn(Rt) ≥ mn,

for any k, t. where the last inequality follows from Equation (28). Therefore, conditional on B1 ∩B2

the minimum leaf size is lower bounded by mn. Finally

EX,ε

[
sup

T∈Tn(mn)
G0(T )

]
≥ EX,ε

[
sup

T∈Tn(mn)
G0(T )1B1∩B2

]

≥ EX

[∑
t

Nn(Rt)

n
Eε
[
max
k

∆I(Rt, k)1B1∩B2

]]

≥ EX
∑
t

Nn(Rt)

n
(
3

8
)2(Eε max

k
η2k1B1∩B2

)

≥ 9

64

3 log p

32mn
P(B1 ∩B2)

≥ 1

80

log p

mn

(33)

when n is large enough, and the lower bound is proved. This concludes the whole proof.

Proof of Proposition 1. For simplicity, here we only present the proof for a single tree T . The case
of multiple trees is straightforward. Recall that tleft and tright are the left and right children of the node
t. Based on (4), MDI at the node t is

Nn(t)

|D(T )|
∆I(t) =

1

|D(T )|
∑

i∈D(T )

[yi − µn(t)]21(xi ∈ Rt)

− [yi − µn(tleft)]21(xi ∈ Rtleft)− [yi − µn(tright)]21(xi ∈ Rtright).

(34)

Because 1(xi ∈ Rt) = 1(xi ∈ Rtright) + 1(xi ∈ Rtleft), the above term becomes

1

|D(T )|
∑

i∈D(T )

(
(yi − µn(t))2 − (yi − µn(tleft))2

)
1(xi ∈ Rtleft)

+
(
(yi − µn(t))2 − (yi − µn(tright))2

)
1(xi ∈ Rtright)

=
1

|D(T )|
∑

i∈D(T )

(µn(tleft)− µn(t))(2yi − µn(t)− µn(tleft))1(xi ∈ Rtleft)

+ (µn(tright)− µn(t))(2yi − µn(t)− µn(tright))1(xi ∈ Rtright). (35)

Since
∑
i∈D(T ) yi1(xi ∈ tleft) = Nn(tleft)µn(tleft), we know

∑
i∈D(T )(yi − µn(tleft))1(xi ∈

Rtleft) = 0. Similar equations hold for the right child tright, too. Then (35) reduces to

1

|D(T )|
∑

i∈D(T )

(µn(tleft)− µn(t))(yi − µn(t))1(xi ∈ Rtleft) (36)

+ (µn(tright)− µn(t))(yi − µn(t))1(xi ∈ Rtright) (37)

Because of the definitions of µn(tleft), µn(tright), and µn(t), we know

Nn(tleft)µn(tleft) +Nn(tright)µn(tright) = Nn(t)µn(t). (38)
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That implies
∑
i∈D(T )(µn(tleft) − µn(t))1(xi ∈ Rtleft) + (µn(tright) − µn(t))1(xi ∈ Rtright) = 0.

Using this equation, (37) can be written as

1

|D(T )|
∑

i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright). (39)

In summary, we have shown that:

Nn(t)

|D(T )|
∆I(t) =

1

|D(T )|
∑

i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright).

(40)

Since the MDI of the feature k is the sum of Nn(t)
|D(T )|∆I(t) across all inner nodes such that v(t) = k,

we have∑
t∈I(T )

Nn(t)

|D(T )|
∆I(t)1(v(t) = k)

=
∑

t∈I(T ):v(t)=k

1

|D(T )|
∑

i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright)

=
1

|D(T )|
∑

i∈D(T )

[ ∑
t∈I(T ):v(t)=k

(µn(tleft)− µn(t))1(xi ∈ Rtleft) + (µn(tright)− µn(t))1(xi ∈ Rtright)
]
yi

=
1

|D(T )|
∑

i∈D(T )

fT,k(xi)yi.

That completes the proof.
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Figure 4: The beeswarm plots for different simulation settings.
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Figure 5: MDI against inverse min leaf size. This is coherent with our theoretical analysis as MDI is
proportional to the inverse of minimum leaf size.
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