
A Related Works467

Hawkes Process Hawkes process has long been used to model event sequences (Hawkes, 1971),468

such as earthquake aftershock sequences (Ogata, 1999), financial transactions (Bauwens and Hautsch,469

2009), and events on social networks (Fox et al., 2016; Farajtabar et al., 2017). Its variant, mixture470

of Hawkes processes model, has also been proved effective in many area (Yang and Zha, 2013; Li471

and Zha, 2013; Xu and Zha, 2017). In most cases, the learning methodology is variational inference472

or maximum likelihood estimation (Rasmussen, 2013; Zhou et al., 2013; Zhao et al., 2015). Other473

possible methods includes least-squares-based method (Eichler et al., 2017), Wiener-Hopf-based474

methods (Bacry et al., 2012), and cumulants-based methods (Achab et al., 2017).475

Instead of predefine an impact function here, some non-parametric methods use discretization or476

kernel-estimation when learning models (Reynaud-Bouret et al., 2010; Zhou et al., 2013; Hansen477

et al., 2015). Those methods usually target small datasets, and do not need a good scalability.478

Recently, some attempts have been made to further enhance the flexibility of Hawkes processes.479

The time-dependent Hawkes process (TiDeH) in Kobayashi and Lambiotte (2016) and the neural480

network-based Hawkes process in Mei and Eisner (2017) learn very flexible Hawkes processes with481

complicated intensity functions. Those methods usually target very long and multi-dimensional482

sequences, instead of short sequences.483

Existing works targeting short sequences is usually in specific cases (Xu et al., 2017a,b), such as the484

data is censored. However, there is no work targeting general short sequences as we do here.485

There are lines of research that involves both point processes and graphs. One is using point process to486

find the latent graph (Blundell et al., 2012; Linderman and Adams, 2014; Tran et al., 2015). Another487

one is considering the interaction of the nodes as point process and use it to construct a dynamic488

graph, instead of the event happens on nodes as we consider here (Farajtabar et al., 2016; Zarezade489

et al., 2017; Trivedi et al., 2018). These works have vary different aims from our work.490

Meta Learning Meta learning has been studied since last century (Bengio et al., 1990; Chalmers,491

1991). Some works focus on learning the hyperparameters, such as learning rates or initial conditions492

(Maclaurin et al., 2015). Some works aim to learn a metric so that a simple K nearest neighbors can493

perform well under such a metric (Koch et al., 2015; Vinyals et al., 2016; Sung et al., 2018; Snell494

et al., 2017). Some works design specific deep neural networks so that the information of different495

tasks are memorized and thus the model can easily generalize to new tasks (Santoro et al., 2016;496

Munkhdalai and Yu, 2017; Ravi and Larochelle, 2016).497

Model-Agnostic Meta Learning (MAML) method (Finn et al., 2017) opens another line of research,498

i.e., it designs an optimization scheme so that the model can fast adapt to new tasks. Reptile (Nichol499

and Schulman, 2018), a variant of MAML, is proposed to simplify the computation of MAML. None500

of those works, however, considers the relational information between tasks like our method, which501

is critical in modeling short sequences.502

One interesting line of follow-up works of MAML is connecting MAML with Bayesian inference503

(Finn et al., 2018; Ravi and Beatson, 2018; Grant et al., 2018). Since HARMLESS combines a504

Bayesian model with MAML, it has the potential to be rewritten into a pure Bayesian model that has505

better quantification of uncertainty. We left this for future work.506

B Definition of Operator D507

As we mentioned earlier,508

min
✓

X

Ti2�

FTi(e✓i) =
X

Ti2�

FTi(✓ � ⌘D(FTi , ✓))

is the loss function for MAML, FOMAML, and Reptile algorithm with different definition of the509

operator D.510

For simplicity, here we define the operator of one gradient step. The cases of few gradient steps can511

be defined analogously.512

For MAML, D(FTi , ✓) is defined as r✓(FTi(✓)).513
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For First Order MAML (FOMAML), D(FTi , ✓) is also defined as r✓(FTi(✓)). The difference is514

that the output of the operator just a value, not a function of ✓, i.e., when we solve the gradient of515

FTi(✓ � ⌘D(FTi , ✓)), the gradient does not back-propagate into D(FTi , ✓).516

For Reptile, the algorithm of reptile is as follows Nichol and Schulman (2018).517

Algorithm 1 Reptile
while not converged do

Sample task T with loss FT ;
W  SGD(FT , ✓, k), where k is the number of SGD steps;
Do the update ✓  ✓ � ⌘(✓ �W );

end while

From the algorithm we can see, operator D is defined as D(FT , ✓) = SGD(FT , ✓, 1). Similar as518

FOMAML, computing the gradient also does not back-propagate into D(FTi , ✓).519

C Derivation of Variational EM520

Preparation After adding latent variable z, the joint distribution is521

p(T , Y , z, z!, z , ⇡) = p(T |z)p(Y |z!, z )p(z|⇡)p(z |⇡)p(z!|⇡)p(⇡).

where522

p(T |z) =
NY

i=1

KY

k=1

(Li(✓k � ⌘D(Li, ✓k)))zi,k ,

p(Y |z!, z ) =
NY

i=1

NY

j=1

(zT
i!jBzi j)

Yij (1� zT
i!jBzi j)

1�Yij

p(z|⇡) =
NY

i=1

KY

k=1

⇡
zi,k

i,k ,

p(z!|⇡) =
NY

i=1

NY

j=1

KY

k=1

⇡
zi!j,k

i,k ,

p(z |⇡) =
NY

i=1

NY

j=1

KY

k=1

⇡
zi j,k

j,k ,

p(⇡) =
NY

i=1

Dirichlet(⇡i|↵) =
NY

i=1

C(↵)
KY

k=1

⇡↵�1
i,k .

Note that in this section we represent zi, zi!j , zi j as one-hot vector, while in the main paper we523

use scalar zi = k representing the identities.524

The posterior distribution is defined as525

p(z, z!, z , ⇡|T , Y ,↵, ✓, B).

We aim to find a distribution q(z, z!, z , ⇡) 2 Q, such that the Kullback-Leibler (KL) divergence526

between the above posterior distribution and q(z, z!, z , ⇡) is minimized. This can be achieved by527

maximize the Evidence Lower BOund (ELBO),528

B(q) = Eq[log p(z, z!, z , ⇡, T , Y )]� Eq[log q(z, z!, z , ⇡)].

Variational family We adopt the mean-field variational family, i.e.,529

q(z, z!, z , ⇡) = q1(⇡)
Y

i

q2(zi)
Y

j

q3(zi!j)q4(zi j).
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We pick q1(⇡i) as PDF of Dirichlet(�), q2(zi) as PDF of Categorical(�i), q3(zi!j) as PDF of530

Categorical(�ij), q4(zi j) as PDF of Categorical( ij).531

Update for q1 Again, our goal is to maximize532

B(q) = Eq[log p(z, z!, z , ⇡, T , Y )]� Eq[log q(z, z!, z , ⇡)].

Now we focus on q1, and treat q2, q3 and q4 as given. We want to maximize533

F⇡(q1) = Eq[log p(z, z!, z , ⇡, T , Y )]� Eq[log q(z, z!, z , ⇡)]

= Eq[log p(T |z) + log p(Y |z , z!) + log p(z|⇡) + log p(z |⇡) + log p(z!|⇡) + log p(⇡)]

� Eq1 [log q1(⇡)] + const
= Eq[log p(z|⇡) + log p(z |⇡) + log p(z!|⇡) + log p(⇡)]� Eq1 [log q1(⇡)] + const

=

Z
q1(⇡) (Eq2 [log p(z|⇡) + log p(z |⇡) + log p(z!|⇡) + log p(⇡)]� log q1(⇡)) d⇡ + const.

Take the derivative,534

�F⇡(q1)

�q1
= Eq2 [log p(z|⇡) + log p(z |⇡) + log p(z!|⇡) + log p(⇡)]� log q1(⇡)� 1 = 0.

Substitute the expressions of the distributions, after some derivation we get the update for � as535

�i,k  ↵k + �i,k +
NX

j=1

�ij,k +
NX

j=1

 ij,k. (15)

Update for q2 Similarly, we have536

Fz(q2) = Eq[log p(T |z) + log p(z|⇡)]� Eq2 [log q2(z)] + const

=

Z
q2(z) (Eq1 [log p(T |✓, z) + log p(z|⇡)]� log q2(z)) dz + const.

Take the derivative,537

�Fz(q2)

�q2
= log p(T |✓, z) + Eq1 [log p(z|⇡)]� log q2(z)� 1 = 0.

After some derivation, we have538

�i,k  Li(✓k � ⌘D(Li, ✓k)) exp

 
fdg(�i,k)� fdg(

X

`

�i,`)

!
, (16)

�i,k  
�i,kP
` �i,`

, (17)

where fdg is the digamma function.539

Update for q3 and q4 The derivation of update for q3 and q4 is very similar to the update for q2, so540

we will not elaborate on that. Readers who are interested might also refer to Airoldi et al. (2008).541

The updates are542

�ij,k  eEq [log ⇡i,k]
KY

`=1

⇣
B

Yij

k` (1�Bk`)
1�Yij

⌘ ij,`

, �ij,k  
�ij,kP
` �ij,`

, (18)

 ij,`  eEq [log ⇡j,`]
KY

k=1

�
(Bk`)

Yij (1�Bk`)
1�Yij

��ij,k
,  ij,k  

 ij,kP
`  ij,`

, (19)

Update for ✓ We update ✓ using gradient ascent. We first pick the terms that is relevant to ✓,543

F✓(✓) = Eq[log p(T |✓, z)] + const

=

Z
q2(z)[log p(T |✓, z)]dz + const

=
NX

i=1

KX

k=1

�i,k logLi(✓k � ⌘D(Li, ✓k)) + const.
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So the gradient ascent update is,544

✓  ✓ + ⌘1r✓

 
NX

i=1

KX

k=1

�i,k logLi(✓k � ⌘D(Li, ✓k))

!
. (20)

Update for ↵ and B From Airoldi et al. (2008), we have the update for ↵ and B as follows545

↵k  ↵k + ⌘↵

 
N
�
fdg(

X

`

↵`)� fdg(↵k)
�

+
NX

i=1

�
fdg(�i,k)� fdg(

X

`

�i,`)
�
!

, (21)

Bk`  

P
ij Yij�ij,k ij,`P

ij �ij,k ij,`
, (22)

D Derivation of Evaluation Metric546

In this section, we give more details on the evaluate metrics. Specifically, we show how to compute547

the NLL of the test set. Given a sequence ⌧i = {⌧ (1)
i , ⌧ (2)

i , · · · , ⌧ (Mi)
i }, we would like to predict the548

timestamp of ⌧ (Mi+1)
i . Here, we use the probability of the arrival at time ⌧ (Mi+1)

i and no arrival in549

[⌧ (Mi)
i , ⌧ (Mi+1)

i ] given history before ⌧ (Mi)
i as evaluation metric.550

Consider a Hawkes process with parameter ✓, the probability density is551

P(✓) = �
�
⌧ (Mi+1)
i ; ✓, ⌧i)

�
exp

⇣
�

Z ⌧
(Mi+1)
i

⌧
(Mi)
i

�(t; ✓, ⌧i) dt
⌘

=
�
µ +

MiX

m=1

�!e�!(⌧
(Mi+1)
i �⌧ (m)

i )
�
exp

⇣
�µ(⌧ (Mi+1)

i � ⌧ (Mi)
i )� �(1� e�!(⌧

(Mi+1)
i �⌧ (Mi)

i ))
⌘

.

In the generative process, for subject i, we first sample zi, then use parameter e✓(i)zi = ✓zi�⌘D(Li, ✓zi).552

The posterior distribution of zi is q2(zi), i.e., Categorical(�i). Therefore we have553

P(zi = k) = �i,k.

So the likelihood of next arrival ⌧ (Mi+1)
i is554

eLi =
KX

k=1

P(zi = k)P(next arrival is ⌧ (Mi+1)
i | Hawkes model with ✓k)

=
KX

k=1

�i,kP(e✓(i)k ).

And then we sum eLi over every subject.555

E Detailed Settings of the Experiments556

Note that we can also adopt a non-informative ↵ instead of updating it in every iteration. After557

some trial experiments, we find setting ↵ = 1K is numerically more stable than updating it in every558

iteration. Therefore we adopt ↵ = 1K in the following experiments.559

Besides, we find that ⌫ causes nearly no effect to the result when varying from 10�10 to 10�1. We560

fix it as 10�2.561

E.1 Synthetic Dataset562

Both the baselines and our proposed methods are fine tuned. We first perform a coarse grid search to563

find hyper-parameters for all methods. The grid search finds learning rate from 1 ⇥ 10�7 to 1 for564

both inner and outer updates. To perform the multi-split procedure, all hyper-parameters are then565

selected in the following range listed in Table 4 and Table 5. For each range, we perform experiment566

on three values: the lower one, the upper one, and the middle one. Method MTL adopt ⌫mtl = 0.1.567
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Table 4: Learning rates of experiments.
K0 1 3 6 10
DMHP lr. 1 ± .1⇥ 10�3 3 ± .1⇥ 10�3 6.5 ± .1⇥ 10�3 7 ± .1⇥ 10�3

Two Step inner lr. 1 ± .1⇥ 10�5 5 ± .1⇥ 10�5 5 ± .1⇥ 10�5 1 ± .1⇥ 10�4

outer lr. 1 ± .1⇥ 10�3 1 ± .1⇥ 10�2 1.5 ± .1⇥ 10�2 1 ± .1⇥ 10�2

HARMLESS inner lr. 5 ± .1⇥ 10�5 5 ± .1⇥ 10�6 2 ± .1⇥ 10�4 7 ± .1⇥ 10�5

(MAML) outer lr. 6 ± .1⇥ 10�4 2 ± .1⇥ 10�4 6 ± .1⇥ 10�5 4.5 ± .1⇥ 10�6

HARMLESS inner lr. 5 ± .1⇥ 10�4 1 ± .1⇥ 10�5 3 ± .1⇥ 10�5 1.5 ± .1⇥ 10�6

(FOMAML) outer lr. 6 ± .1⇥ 10�4 2 ± .1⇥ 10�4 6 ± .1⇥ 10�5 4.5 ± .1⇥ 10�6

Table 5: Learning rates of baseline experiments.
Method Learning Rate
MLE-Sep 5 ± .1⇥⇥10�5

MLE-Com 1 ± .1⇥ 10�3

MTL 1 ± .1⇥ 10�3

E.2 Real Datasets568

In this section, we introduce the experimental detail of the real datasets. We run our experiment569

with same inner and outer learning rate, denoted by ⌘. For simplicity, we also set ⌘ = ⌘↵ = ⌘✓,570

and search over {10�4, 10�3, 10�2, 10�1
}⌦ {1, 2, 3, 4, 5}, where the element-wise product of two571

sets is defined as A ⌦ B = {ab|a 2 A, b 2 B}. We search K 2 {2, 3, 5} and ⌫mtl in range572

{0.1, 0.01, 0.001}. We perform grid search over the hyper-parameters, and obtain the candidate573

models. Then we perform multi-split procedure.574

Because StackOverflow dataset is very large, it is too expensive to perform grid search. To accom-575

modate this, we first split a validation set and a test set, then performing hyper-parameter search by576

flipping. Each experiment of StackOverflow dataset is run under 5 different settings.577

In Table 6 we report one of the models that is picked by multi-split procedure. We remark that in578

most cases, the procedure picks only one model repeatedly.579

Table 6: Settings of experiments.
data type 911-Calls Linkedin MathOverflow StackOverflow
Baseline 1 ⌘ = 4⇥ 10�4 ⌘ = 1⇥ 10�3 ⌘ = 5⇥ 10�4 ⌘ = 5⇥ 10�4

Baseline 2 ⌘ = 3⇥ 10� ⌘ = 5⇥ 10�3 ⌘ = 1⇥ 10�3 ⌘ = 1⇥ 10�3

MTL ⌘ = 3⇥ 10�5, ⌫mtl = 0.1 ⌘ = 1⇥ 10�2, ⌫mtl = 0.1 ⌘ = 4⇥ 10�4, ⌫mtl = 0.1 ⌘ = 5⇥ 10�4, ⌫mtl = 0.1
DMHP ⌘ = 3⇥ 10�5, K = 2 ⌘ = 1⇥ 10�3, K = 3 ⌘ = 4⇥ 10�3, K = 3 N\A
MAML ⌘ = 3⇥ 10�4, K = 3 ⌘ = 5⇥ 10�1, K = 3 ⌘ = 3⇥ 10�4, K = 3 ⌘ = 1⇥ 10�3, K = 2
FOMAML ⌘ = 3⇥ 10�5, K = 2 ⌘ = 1⇥ 10�2, K = 5 ⌘ = 2⇥ 10�4, K = 2 ⌘ = 4⇥ 10�4, K = 3
Reptile ⌘ = 5⇥ 10�3, K = 2 ⌘ = 2⇥ 10�1, K = 3 ⌘ = 4⇥ 10�2, K = 2 ⌘ = 4⇥ 10�2, K = 2

E.3 Ablation study580

In this section we introduce the experimental detail of the ablation study. Specifically, the tuning581

process of the ablation study is as follows: We start from the same setting as the corresponding real582

experiment in previous section. For example, experiment Remove graph (FOMAML) corresponds to583

HARMLESS (FOMAML). We first use the same learning rate and K as HARMLESS (FOMAML)584

to perform experiment. If the experiment runs well, we adopt the experiment result. If the training585

does not converge, we decrease the learning rate and run again.586
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