
A Combining the Additive and Functional Threat Models340

Here we provide a proof of Theorem 1.341

Threat model Let x be a grayscale image with n � 2 pixels, i.e. x 2 [0, 1]n = Xn. Let tadd be342

an additive threat model where the `1 distance between input and adversarial example is bounded343

by ✏1, i.e. k(�1, . . . , �n)k1  ✏1. Let tfunc be a functional threat model where f(x) = c x for some344

c 2 [1� ✏2, 1+ ✏2] and let ✏2 > ✏1 > 0. The additive threat model allows individually changing each345

pixel’s value by up to ✏1; the functional threat model allows darkening or lightening the entire image346

by up to a proportion of ✏2. Both of these are arguably imperceptible perturbations for small enough347

✏1 and ✏2. We also consider tcombined = tadd � tfunc:348

tcombined(S) ,
(
(c x1 + �1, . . . , c xn + �n)

�����

(x1, . . . , xn) 2 S
|�i|  ✏1
c 2 [1� ✏2, 1 + ✏2]

)
(3)

This combined threat model allows darkening or lightening the image, followed by changing each349

pixel value individually by a small amount.350

Theorem 1 (restated). Let S 2 P(Xn) be a set of inputs such that S contains an image that is not351

too dark; that is, 9x 2 S for which 9xi s.t. xi > ✏1/✏2. Then352

tcombined(S)) tadd(S) [tfunc(S) or equivalently 9 ex s.t.
ex 2 tcombined(S)
ex /2 tadd(S) [tfunc(S)

Proof. The above two statements are equivalent, so we focus on the formulation on the right. We353

calculate ex and show that it satisfies the given criteria. Let x 2 S such that 9xi s.t. xi > ✏1/✏2.354

Without loss of generality, assume that in particular x2 > ✏1/✏2. Then let355

ex = ((1� ✏2) x1 + ✏1, (1� ✏2) x2, . . . , (1� ✏2) xn)

First, we show that ex 2 tcombined(S). Using the definition of tcombined in (3), we set c = 1 � ✏2,356

�1 = ✏1, and �2 = · · · = �n = 0, which generates ex. These values clearly satisfy the constraints in357

(3).358

Second, we prove that ex /2 tadd(S) by contradiction. Say that ex 2 tadd(S). Then 9 �1, �2, . . . , �n359

such that exi = xi + �i and k�ik  ✏1. Consider �2, which must satisfy ex2 = (1� ✏2) x2 = x2 + �2,360

or alternatively �2 = x2 � (1� ✏2) x2 = ✏2 x2. However, x2 > ✏1/✏2 implies that �2 > ✏1, which is361

a contradiction since the constraints on tadd specify that |�2|  ✏1. Thus, ex /2 tadd(S).362

Third, we prove that ex /2 tfunc(S), again by contradiction. Say that ex 2 tfunc(S). Then 9 c 2363

[1� ✏2, 1 + ✏2] such that exi = c xi for all i. Considering i = 1, 2, we have the following system of364

equations:365

ex1 = cx1 = (1� ✏2) x1 + ✏1
ex2 = cx2 = (1� ✏2) x2

From the second equation, we have c = 1 � ✏2. However, using this in the first equation gives366

(1� ✏2) x1 = (1� ✏2) x1 + ✏1, which implies 0 = ✏1. This is a contradiction since ✏1 > 0, showing367

that ex /2 tfunc(S). ⌅368

B Experimental Setup369

We implement ReColorAdv using the mister_ed library [9] and PyTorch [16]. Adversarial examples370

are generated by 100 iterations of PGD using the Adam optimizer [10] with learning rate 0.001.371

After all iterations have completed, we choose the result of the iteration with the lowest loss as the372

adversarial example.373

11

When combining attacks, we apply multiple attacks sequentially to the input example and optimize374

over the parameters of all attacks simultaneously, similarly to Jordan et al. [9].375

In all adversarial training experiments on CIFAR-10, we begin with a trained ResNet32 [8] and then376

train it further on batches which are half original training data and half adversarial examples. We377

adversarially train with a batch size of 500 for 50 epochs. We preprocess images after adversarial378

perturbation, but before classification, by standardizing them based on the mean and standard379

deviation of each channel for all images in the dataset. The CIFAR-10 dataset can be obtained from380

https://www.cs.toronto.edu/~kriz/cifar.html.381

In CIELUV color space (see section 4.1), we define382

(c1, c2, c3) =

✓
L

100
,
U + 100

200
,
V + 100

200

◆
(4)

so that (c1, c2, c3) 2 [0, 1]3.383

For the experiments described in section 5.3, we use LPIPS v0.1 with AlexNet.384

B.1 Regularization Parameters385

The objective function and constraints described in section 4 include a number of constants that can386

be used to regularize the outputs of the ReColorAdv attack. Changing these constants alters the387

strength of the attack and the perceptual similarity of a generated adversarial example to the input.388

First, ✏1, ✏2, and ✏3 control the maximum amount by which a color in x can be changed to produce389

ex. For RGB color space, we set ✏1 = ✏2 = ✏3 = 0.1; that is, each channel of a color can change by390

up to ⇠ 25/255. This is greater than the usual ✏ = 8/255 allowed for adversarial examples, but we391

find that the uniform perturbation used by the functional threat model allows each pixel to change392

by a greater amount while remaining almost indistinguishable. For the CIELUV color space, we let393

✏1 = ✏2 = ✏3 = 0.06. This corresponds to a maximum change of 6 in L and a maximum change of 3394

in U and V , since we find that changes in luma are usually less noticeable than changes in chroma.395

The ✏i values for RGB and CIELUV color spaces result in similar total amounts of perturbation, but396

the CIELUV color space allows the perturbation to be greater in areas where it is less noticeable.397

Second, we can control the resolution of the grid G over which the perturbation function f(·) is398

parameterized. Let R1 ⇥ R2 ⇥ R3 be the resolution of G. Lowering the resolution in a particular399

dimension acts as a regularizer because it allows less variation in how colors are transformed along400

that dimension. For RGB color space, we use R1 = R2 = R3 = 25. However, for CIELUV color401

space, we use R1 = 16 and R2 = R3 = 32. With a high R1 value, we find that the attack sometimes402

recolors different values of a particular hue very differently. For instance, the attack might make the403

light parts of a white car green and the dark parts purple. Lowering R1 forces the attack to alter these404

colors more similarly.405

Finally, � controls the importance of the smoothness optimization term Lsmooth. We always set406

� = 0.05.407

C Learning Rate Experiments408

We consistently use Adam with a learning rate of 0.001 throughout the main paper to craft adversarial409

examples. However, we also experimented with a learning rate of 0.01. The results of these410

experiments are shown below, similar to table 1. All numbers reported are accuracy over the CIFAR-411

10 test set. Each column corresponds to an attack and each row corresponds to a model trained against412

a particular attack. C(-RGB) is ReColorAdv using CIELUV (RGB) color space, D is delta attack,413

and S is StAdv attack. TRADES is the method of Zhang et al. [26]. For classifiers marked (B&W),414

the images are converted to black-and-white before classification. The learning rate used in an attack415

is marked above that attack or to the right when the attack is used in adversarial training. There are a416

couple interesting conclusions that can be drawn from this experiment:417

• The higher learning rate (0.01) is stronger against TRADES and undefended networks. A418

ReColorAdv + StAdv + delta (C+S+D) attack with learning rate 0.01 against a TRADES-419

trained classifier reduces its accuracy to just 6.0%, compared with 10.1% at learning rate420

0.001.421

12

https://www.cs.toronto.edu/~kriz/cifar.html

• Adversarial training against an attack at the higher learning rate (0.01) increases robustness422

against that attack but lowers it against other attacks. For instance, consider the network423

defended against C+S+D with learning rate 0.01. This network achieves 15.0% accuracy424

against attacks of the same type, but the accuracy decreases to 7.1% against some other425

attacks. In contrast, adversarial training against attacks at the lower learning rate (0.001)426

leads to more robustness across different attacks.427

428

Attack (learning rate = 0.01)
Defense LR None C-RGB C D S C+S C+D S+D C+S+D

Undefended 92.3 5.1 3.8 0.0 1.5 1.5 0.0 0.0 0.0

C 0.01 87.8 37.4 45.5 4.7 3.2 2.9 1.2 0.2 0.4
D 0.01 88.8 40.4 22.7 32.7 4.2 4.3 15.0 5.0 4.0

S 0.01 89.3 11.5 9.8 0.3 29.0 9.5 0.4 0.4 0.3

C+S 0.01 90.5 27.0 24.3 2.8 31.4 23.0 2.1 2.8 2.1

C+D 0.01 88.3 46.3 32.7 34.4 6.0 5.4 22.6 4.7 4.8
S+D 0.01 88.0 25.3 17.4 28.4 9.3 8.1 22.6 17.0 13.9
C+S+D 0.01 89.0 32.3 23.8 29.8 13.4 11.4 26.1 17.4 15.0

C 0.001 89.2 37.2 46.6 5.1 3.4 3.0 1.1 0.3 0.3

D 0.001 84.7 72.9 57.4 30.8 12.2 11.2 12.6 2.4 1.8

S 0.001 82.7 14.9 11.9 0.5 22.2 6.7 0.1 0.2 0.1

C+S 0.001 82.3 37.5 40.4 5.9 18.5 13.1 1.9 0.9 0.8

C+D 0.001 84.3 70.8 60.0 33.8 9.4 8.7 18.1 1.8 1.9
S+D 0.001 82.0 65.2 49.9 35.0 18.5 14.0 16.5 5.5 4.5

C+S+D 0.001 82.3 65.8 53.0 34.8 16.8 14.7 18.3 5.1 5.0

TRADES 84.2 79.7 69.2 53.5 21.0 17.8 33.8 6.6 6.0

Undefended (B&W) 87.9 4.7 4.8 0.0 1.6 1.5 0.0 0.1 0.0

C (B&W) 0.01 84.7 40.4 41.7 4.5 2.4 2.4 1.0 0.2 0.3
C (B&W) 0.001 85.6 37.8 40.7 4.0 2.5 2.5 0.7 0.3 0.3

Attack (learning rate = 0.001)
Defense LR None C-RGB C D S C+S C+D S+D C+S+D

Undefended 92.3 8.3 5.3 0.0 2.2 1.8 0.0 0.0 0.0

C 0.01 87.8 46.2 48.4 5.9 4.5 4.4 1.6 0.3 0.7
D 0.01 88.8 43.7 25.4 26.4 4.1 3.8 15.7 8.3 7.9
S 0.01 89.3 18.7 13.9 0.4 13.8 8.4 0.8 0.6 0.9
C+S 0.01 90.5 39.1 32.3 4.3 22.7 17.5 2.8 3.5 3.3
C+D 0.01 88.3 49.1 35.6 29.2 5.3 5.4 20.3 8.7 8.3
S+D 0.01 88.0 25.8 17.7 10.7 4.5 4.1 9.3 6.1 5.9
C+S+D 0.01 89.0 33.9 24.9 15.7 7.5 7.1 13.0 8.4 8.5

C 0.001 89.2 47.4 50.3 5.9 4.6 4.6 1.7 0.5 0.9
D 0.001 84.7 77.3 61.9 32.8 18.6 17.2 17.3 4.3 4.2

S 0.001 82.7 20.3 15.7 0.8 29.9 10.7 0.2 0.2 0.2

C+S 0.001 82.3 47.2 44.6 7.5 26.2 20.2 3.5 2.2 2.0

C+D 0.001 84.3 74.7 63.5 35.2 14.0 13.4 22.2 4.5 4.2

S+D 0.001 82.0 69.3 53.9 36.5 26.4 21.1 21.7 9.6 8.0

C+S+D 0.001 82.3 70.1 56.4 35.5 25.5 21.4 23.4 10.0 8.5

TRADES 84.2 81.6 72.8 53.7 31.2 27.5 39.3 11.1 10.1

Undefended (B&W) 87.9 7.3 6.1 0.0 1.6 1.6 0.0 0.0 0.0

C (B&W) 0.01 84.7 49.3 44.9 5.4 4.1 3.8 1.6 0.5 0.7
C (B&W) 0.001 85.6 46.7 43.8 5.0 3.5 3.8 1.3 0.4 0.7

429

13

D Non-Additive Threat Models430

Here, we discuss some other non-additive adversarial threat models that have been explored in the431

literature and how our work differs from them.432

Spatial Threat Models Some recent work has focused on spatial threat models, which allow for433

slight perturbations of the locations of features in an input rather than perturbations of the features434

themselves. Xiao et al. [23] propose StAdv, which optimizes the parameters of a smooth flow field435

that moves each pixel of an input image by a small, bounded distance to generate an example that436

fools the classifier. Wong et al. [22] bound the Wasserstein distance between the original input and437

the adversarial example. Engstrom et al. [3] apply an small rotation and translation to an input image438

to generate a misclassification.439

Other Threat Models A few papers have focused on threat models that are neither additive or440

spatial. Zeng et al. [25] perturb the properties of a 3D renderer to render an image of an object which441

is unrecognizable to a classifier or other machine learning algorithm. Hosseini and Poovendran [6]442

propose "Semantic Adversarial Examples," which allow modifications of the input image’s hue and443

saturation. Hosseini et al. [7] also explore inverting images to cause misclassification. These latter444

two papers can be considered as special examples of functional threat models. In the first, each445

pixel’s hue and saturation is shifted by the same amount; that is, each pixel is transformed by the446

function f(h, s, v) = (h+ �h, s+ �s, v). In the second, each pixel is inverted, i.e. each pixel channel447

is transformed by the function f(xi) = 1 � xi. However, the authors do not propose a general448

framework for these types of attacks, as we do. Furthermore, the adversarial examples generated449

by these attacks are often not realistic and not imperceptible. For example, their crafted adversarial450

examples include green skies, purple fields of grass, and inverted street signs—unlike our proposed451

ReColorAdv attack, which results in imperceptible changes.452

E Additional Images453

Figure 7: More adversarial examples like those in figure 2, generated by ReColorAdv against an
Inception-v4 classifier on ImageNet. Top row: original images; middle row: adversarial examples;
bottom row: magnified difference.

14

Original

C

D

C+D

C+S+D

Figure 8: More adversarial examples like those in figure 5, generated with combinations of attacks
against a CIFAR-10 WideResNet trained using TRADES. C is ReColorAdv, D is delta attack, and
S is StAdv attack [23]. The difference from the original is shown to the right of each example.
Combinations of attacks tend to produce less perceptible changes than the attacks do separately.

F Lipschitz Regularization454

In addition to the regularizations defined in section 3.1, we can also enforce that the perturbation455

function f(·) in a functional threat model is Lipschitz for some suitably small :456

Flips , {f : X ! X | 8x1, x2 2 X kf(x1)� f(x2)k  kx1 � x2k} (5)

Flips requires some smoothness in the perturbation function f(·), ensuring that similar features in the457

input are mapped to similar features in the adversarial example. However, one disadvantage of Flips458

is that it includes constant functions f(x) = c, i.e. functions which map every feature to a single459

value, removing salient features from the input. Thus, we ultimately use Fsmooth instead.460

15

