
A Additional Implementation Details

A.1 Parallel Workers

Since there are many sources of randomness in model training and weak learning, including SGD
batches, drop-path, cut-out, and variable initialization, Petridish can benefit from multiple runs.
Furthermore, if one worker finds a cost-efficient model of a medium size, other workers may want
the option to warm-start from this checkpoint. Petridish workers warm-start from models on the
lower convex hull of the scatter plot of model validation error versus model complexity, because any
mixture of other models are either more complex or less accurate.

As there are multiple models on the convex hull, the workers need also choose one at each iteration.
To do so, we loop over the models on the hull from the most accurate to the least, and choose a model
m with a probability 1

n(m)+1 , where n(m) is the number of times that m is already chosen. This
probability is chosen because if a model has been sampled n times, then the next child is the best
among the n+ 1 children with probability 1

n+1 . We favor the accurate models, because it is typically
more difficult to improve accurate models. In practice, Petridish sample fewer than 100 models,
so performances of different sampling algorithms are often indistinguishable, and we settle on this
simple algorithm.

A.2 Select Models for Final Training

The search can be interrupted at anytime, and the best models are the models on the performance
convex hull at the time of interruption. For evaluating Petridish on CIFAR-10 (Krizhevsky, 2009), we
perform final training on models that are on the search-time convex hull and have near 60 million
multi-adds on CIFAR-10 during search with N = 3 and F = 16. We focus on these models can be
translated to the ILSVRC mobile setting easily with a fixed procedure of setting N = 6 and F = 44.

A.3 Computation Resources

The search are performed on docker containers that have access to four GPUs. The final training of
CIFAR (Krizhevsky, 2009) and PTB (Marcus et al., 1993) models each uses one GPUs. The final
training of transferred models on ILSVRC each uses four GPUs. The GPUs can be V100, P100, or
GTX1080.

B Ablation Studies

B.1 Evaluation Criteria

On CIFAR-10 (Krizhevsky, 2009), we often find that standard deviation of final training and search
results to be high in comparison to the difference among different search algorithms. In contrast, the
test-error on ILSVRC is more stable, and so that one can more clearly differentiate the performances
of models from different search algorithms. Hence, we use ILSVRC transfer results to compare
search algorithms whenever the results are available. We use CIFAR-10 final training results to
compare search algorithms, if otherwise.

B.2 Search Space: Direct versus Proxy

This section provides an ablation study on a common theme of recent neural architecture search
works, where the search is conducted on a proxy space of small and shallow models, with results
transferred to larger models later. In particular, since Petridish uses iterative growth, it need not
consider the complexity of a super graph containing all possible models. Thus, Petridish can be
applied directly to the final model setting on CIFAR-10, where N = 6 and F = 32. However, this
implies each model takes about eight times the computation, and may introduce extra difficulty in
convergence. Table 4 shows the transfer results of the two approaches to ILSVRC. We see that this
popular proxy search heuristic indeed leads to more accurate models.
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Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

Petridish cell direct (F=40) 4.4 583 15.3 26.9
Petridish cell proxy (F=44) 4.8 598 5 26.3

Table 4: Search space comparison between the direct space of N = 6 and F = 32 and the proxy
space of N = 3 and F = 16 by evaluating their best mobile setting models on ILSVRC.

Table 5: ILSVRC2012 transfer results. Ablation study on the choice of weighted-sum (WS), concat-
projection at the end (CP-end), or the Petridish default merge operation in finalized weak learners.
The searches were directly on the search space where N = 6 and F = 32.

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

WS macro(F=48) 5.9 756 29.5 32.5
CP-end macro (F=36) 5.4 680 29.5 29.1
Petridish macro (F=32) 4.9 593 27.2 29.4
WS cell (F=48) 3.3 477 22.8 32.7
CP-end cell (F=44) 4.7 630 22.8 27.2
Petridish cell (F=40) 4.4 583 15.3 26.9

B.3 opmerge: Weighted Sum versus Concatenation-Projection

After selecting the shortcuts in Sec. 4, we concatenate them and project the result with 1x1 conv so
that the result can be added to the output layer xout. Here we empirically justify this design choice
through consideration of two alternatives. We first consider applying the switch only to the final
reported model. In other words, instead of using concatenation-projection as the merge operation
during search we switch all weak learner weighted-sums to concatenation-projections in the final
model, which are trained from scratch to report results. We call this variant CP-end. Another variant
where we never switch to concatenation-projection is called WS. Since concatenation-projection
incurs additional computation to the model, we increase the channel size of WS variants so that the
two variants have similar test-time multiply-adds for fair comparisons. The default Petridish option
is switching the weak learner weighted-sums to concatenation-projections each time weak learners
are finalized with Alg. 2. We compare WS, CP-end and Petridish on the transfer results on ILSVRC
in Table 5, and observe that Petridish achieves similar or better prediction error using less test-time
computation and training-time search.

B.4 Is Weak Learning Necessary?

An interesting consideration is whether to stop the influence of the weak learners to the models during
the weak learning. On the one hand, we eventually want to add the weak learners into the model and
allow them to be backpropagated together to improve the model accuracy. On the other hand, the
introduction of untrained weak learners to trained models may negatively affect training. Furthermore,
the models may develop dependency on weak-learner shortcuts that are not selected, which can
also negatively affect future models. To study the effects through an ablation study, we remove
sg and replace sg with a variable scalar multiplication that is initialized to zero in Algorithm 1.
This is equivalent to adding the joint weak learner xc of Eq. 6 directly to the boosted layer xk after
random initialization, and then we train the existing model and the joint weak learner together with
backpropagation. We call this variant Joint, and compare it against the default Petridish. Table 6
showcases the transfer results of Isolated and Joint to ILSVRC. We compare Petridish cell (F=40)
with Joint cell (F=32), two models that have similar computational cost but very different accuracy,
and we observe that Isolated leads to much better model than Joint for cell-search. This suggests that
the randomly initialized joint weak learners should not directly be added to the existing model to be
backpropagated, and the weak learning step is beneficial for the overall search.

B.5 Number of Merged Operations, Imax

As we initialize all possible shortcuts during weak learning, we need decide I , the number of them
to select for forming the weak learner. On one hand, adding complex weak learners can boost
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Table 6: ILSVRC2012 transfer results. Ablation study on the choice of Joint and Isolated for training
the weak learners. The search were directly on the search space of N = 6 and F = 32, different
from the proxy space (N = 3, F = 16) used in the main text.

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)

Petridish Joint cell (F=32) 4.0 546 20.6 32.8
Petridish cell (F=40) 4.4 583 15.3 26.9

Table 7: Test error rates on CIFAR-10 by models found with different weak learner complexities.
Imax Average Lowest Error Rate

2 3.08
3 2.88
4 2.93

performance rapidly. On the other, this may add sub-optimal weak learners that hinder future growth.
We test the choice of I = 2, 3, 4 during search. We run with each choice five times, and take the
average of their most accurate models that take under 60 million multi-adds on the CIFAR model with
N = 3 and F = 16. Models in this range are chosen, because their transferred models to ILSVRC
can have 600 million multi-adds with N = 6 and F = 44, and hence, they are natural candidate
models for ILSVRC mobile setting. Table 7 reports the test error rates on CIFAR10, and we see that
I = 3 yields the best results.

B.6 L1 Regularization Constant λ

We choose the L1 regularization constant λ of Eq. 7 to be 0.001 from the range of
{0.1, 0.001, 0.00001}, with the performances of the found models in Table 8. High λ means that the
L1-regularization is highly valued, so that the shortcut selection is more sparse. However, strong
regularization also prevents weak learners to fit their target loss gradient well. Since we mainly aim to
select the most relevant shortcuts, and not to enforce the strict sparsity, we favor a small regularization
constant.

We also note that (Huang et al., 2017a) has previously applied group Lasso to select filters in a
DenseNet (Huang et al., 2017b). They apply a changing regularization constant λ that gradually
increases throughout the training. It will be interesting future improvement to select weak learners
through dynamically changed regularization during weak learning.

C Search results on Penn Treebank (PTB)

PTB (Marcus et al., 1993) has become a standard dataset in the NAS community for benchmarking
NAS algorithms for RNNs. We apply Petridish to search for the cell architectures of a recurrent neural
network (RNN) 1. To keep the results as comparable as possible to most recent and well-performing
work we keep the search space the same as used by DARTS (Liu et al., 2019) which in turn is also
used byvery recent work (Li & Talwalkar, 2019). There is a set of five primitives {sigmoid, relu,
tanh, identity, none} that can be chosen amongst to decide connections between nodes in
the cell. We modify the source code provided by Liu et al. (2019) to implement Petridish where
we iteratively grow starting from a cell which contains only a single node relu connected to the
incoming hidden activation and current input, until we have a total of 9 nodes in the cell to match
the size used in DARTS. At each stage of growth we train directly with an embedding size of 850,
25 epochs, 64 batch size and a L1 weight of 10 and select the candidate with the highest L1 weight
value. We then add this candidate to the cell by removing the stop-gradient and stop-forward layers
and replacing with regular connections. Table 9 shows a summary of the results. The rest of the
parameters were kept the same as that used by Liu et al. (2019).

The final genotype obtained from the search procedure is then trained from scratch for 4500 epochs,
learning rate of 10 and batch size 64 to obtain final test perplexity reported below. We repeat the

1Note that for the case of architecture search of RNNs, cell-search and macro-search are equivalent.
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Table 8: Test error rates on CIFAR-10 by models found with different regularization constant λ.
Regularization Constant λ Average Lowest Error Rate

0.1 3.02
0.001 2.88

0.00001 3.13

Table 9: Comparison against state-of-the-art language modeling results on PTB. We report Petridish
results in the format of “best | mean ± standard deviation” from 10 repetitions of the search with
different random seeds. ∗ From Table 2 in (Li & Talwalkar, 2019). † (Li & Talwalkar, 2019) report
being unable to reproduce the DARTS results and this entry represents the results of DARTS (second
order) as obtained via their deterministic implementation. ∗∗ (Li & Talwalkar, 2019) report being
unable to reproduce ENAS results from original source code. ∗∗∗ ENAS results as reproduced via
DARTS source code.

Method # params Search Test Error
(M) (GPU-Days) (perplexity)

Darts (first order) (Liu et al., 2019)∗ 23 1.5 57.6
Darts (second order) (Liu et al., 2019)∗ 23 2 55.7
Darts (second order) (Liu et al., 2019)∗ † 23 2 55.9
ENAS (Pham et al., 2018)∗∗ 24 0.5 56.3
ENAS (Pham et al., 2018)∗∗∗ 24 0.5 58.6
Random search baseline (Li & Talwalkar, 2019)∗ 23 2 59.4
Random search WS (Li & Talwalkar, 2019)∗ 23 1.25 55.5
Petridish 23 1 55.85 | 56.39± 0.38

search procedure 8 times with different random seeds and report the best and average test perplexity
along with the standard deviation across search trials. Table 9 shows the results of running Petridish
on PTB. Petridish obtains comparable results to DARTS, ENAS and Random Search WS.

Note that since random search is essentially state-of-the-art search algorithm on PTB2 we caution
the community to not use PTB as a benchmark for comparing search algorithms for RNNs. The
merits of any particular algorithm are difficult to compare at least on this particular dataset and task
pairing. More research along the lines of Ying et al. (2019) is needed on 1. whether the nature of
the search space for RNNs specific to language modeling is particularly amenable to random search
and or 2. whether it is the specific nature of RNNs by itself such that random search is competitive
on any task which uses RNNs as the hypothesis space. We are presenting the results on PTB for the
sake of completion since it has become one of the default benchmarks but ourselves don’t derive any
particular signal either way in spite of competitive performance.

2As noted by Li & Talwalkar (2019) current human-designed architecture by Yang et al. (2018) still beats the
best NAS results albeit using a mixture-of-experts layer which is not in the search space used by DARTS, ENAS,
and Petridish to keep results comparable.
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