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Abstract

A crucial assumption in most statistical learning theory is that samples are inde-
pendently and identically distributed (i.i.d.). However, for many real applications,
the i.i.d. assumption does not hold. We consider learning problems in which ex-
amples are dependent and their dependency relation is characterized by a graph.
To establish algorithm-dependent generalization theory for learning with non-i.i.d.
data, we first prove novel McDiarmid-type concentration inequalities for Lipschitz
functions of graph-dependent random variables. We show that concentration re-
lies on the forest complexity of the graph, which characterizes the strength of the
dependency. We demonstrate that for many types of dependent data, the forest
complexity is small and thus implies good concentration. Based on our new in-
equalities we are able to build stability bounds for learning from graph-dependent
data.

1 Introduction

Generalization theory is at the foundation of machine learning. It quantifies how accurate a model
would predict on the test data which the learning algorithm is not able to access during training.
It usually relies on a crucial assumption: The data are independently and identically distributed
(i.i.d.). The i.i.d. assumption allows one to use many powerful tools from probability to prove
strong generalization error bounds. However, in real applications, the data are often non-i.i.d. i.e.,
the data collected can be dependent. There have been extensive discussions on why and how the
data are dependent. We refer the readers to [1, 2].

Establishing generalization theory for dependent data has received a lot of attention [3, 4, 5, 6, 7].
A major line of research in this direction models the data dependency by various types of mixing
such as α-mixing [8], β-mixing [9], ϕ-mixing [10], η-mixing [11], etc. Mixing models have been
used in statistical learning theory to establish generalization error bounds based on Rademacher
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complexity [4, 6, 12] or algorithmic stability [3, 12, 13] via concentration results [14] or independent
blocking technique [15]. In these models, the mixing coefficients measure the extent to which
the data are dependent to each other. Similar to the mixing models, learning under Dobrushin’s
condition [16] is also investigated via concentration results [17, 18, 19] using Dobrushin’s interaction
matrix [20]. Although the results under the various mixing conditions and Dobrushin’s condition
are fruitful, they are faced with difficulties in application: It is sometimes difficult to determine the
quantitative dependency among data points. On the other hand, determining whether two data are
dependent or not is often much easier. In this paper, we focus on such qualitative dependency of
data. We use simple graphs as a natural tool to describe the dependency among data, and establish
generalization theory for such graph-dependent data.

A basic building block of generalization theory is concentration inequality. Different settings and
different assumptions require different concentration tools. The less we assume, the more powerful
tools we need. In order to establish generalization theory for dependent data, standard concentration
for i.i.d. data no longer applies. One must develop concentration inequalities for dependent data,
which is a very challenging task.

In his seminal work [21], Janson proved an elegant concentration inequality for graph-dependent
data. The inequality is a beautiful extension of Hoeffding inequality. It bounds the probability that
the summation of graph-dependent random variables deviates from its expected value, in terms of
the fractional coloring number of the dependency graph. Janson’s inquality has been extended to
any functions that can be decomposed into the summation of some functions of independent random
variables [22]. This extension enables to establish generalization error bounds for graph-dependent
data via fractional Rademacher complexity.

In [5], PAC-Bayes bounds for classification with non-i.i.d. data are obtained based on fractional col-
orings of graphs. The results also hold for specific learning settings such as ranking and learning
from stationary β-mixing distributions. In [23], Ralaivola and Amini established new concentra-
tion inequalities for fractionally sub-additive and fractionally self-bounding functions of dependent
variables. Their results are based on the fractional chromatic numbes and the entropy method. In
[24], Wang et al. used hypergraphs to model dependent random variables that are generated by in-
dependent ones. Leveraging the notion of fractional matching, they also establish concentration
inequalities of Hoeffding- or Bernstein-type.

Though fundamental and elegant, the above generalization bounds are algorithm-independent. They
considered the complexity of the hypothesis space and data distribution, but does not involve the
learning algorithm. To derive better generalization bounds, there are growing interests in developing
algorithm-dependent generalization theories. This line of research heavily relies on the algorithmic
stability. A key advantage of stability bounds is that they are tailored to specific learning algorithms,
exploiting their particular properties.

How can we establish algorithmic stability theory for graph-dependent data? Note that under the
assumption of i.i.d. data, Hoeffding-type concentration inequality, which bounds the deviation of
sample average from expectation, is not strong enough to prove stability-based generalization. On
the contrary, McDiarmids inequality characterizes the concentration of general Lipschitz functions
of i.i.d. random variables, hence serving as the key tool for proving the stability theory. Therefore,
to build algorithmic stability theory for non-i.i.d. samples, one has to develop McDiarmid-type
concentration for graph-dependent random variables.

In this paper, we prove the first McDiarmid-type concentration inequality for graph-dependent ran-
dom variables in terms of a new notion called forest complexity, which measures the strength of the
dependency. It turns out that for various dependency graphs, it is easy to estimate the forest com-
plexity. The proposed concentration inequality enables us to prove stability-based generalization
bounds for graph-dependent data. Our results provide basic tools for understanding learning with
overparameterized models.

The rest of the paper is organized as follows. In section 2, we briefly introduce the notations and
related results. In section 3, we establish McDiarmid-type inequalities for acyclic dependency
graphs, and extend the concentration results to the general dependency graphs. In section 4, we
apply our concentration results to the learning theory and establish generalization error bounds for
learning graph-dependent data via algorithmic stability, we also provide an application of learning
m-dependent data. Section 5 concludes the paper and points out the future research directions.
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2 Preliminaries

In this section, we present the notations and the basic McDiarmid’s inequality for i.i.d. random
variables.

Throughout this paper, let n be a positive integer with [n] standing for the set {1, 2, . . . , n}. Let Ωi

be a Polish space for any i ∈ [n], Ω =
∏

i∈[n] Ωi be the product space, R be the set of real numbers,
R+ be the set of non-negative real numbers, N+ be the set of non-negative integers.

Concentration inequalities are fundamental tools in statistical learning theory. They are essentially
tail probability bounds indicating how much a function of random variables deviates from some
value that is usually the expectation. Among the most powerful ones is the McDiarmid’s inequality
which establishes a sharp, even tight in some cases, bound on the concentration, when the function
satisfies c-Lipschitz condition (bounded differences condition), namely, does not depend too much
on any individual variable.
Definition 2.1 (c-Lipschitz). Given a vector c = (c1, . . . , cn) ∈ Rn

+, a function f : Ω → R is said
to be c-Lipschitz if for any x = (x1, . . . , xn),x

′ = (x′
1, . . . , x

′
n) ∈ Ω, it satisfies

|f(x)− f(x′)| ≤
n∑

i=1

ci1{xi ̸=x′
i},

where ci is called the i-th Lipschitz coefficient of f .
Theorem 2.2 (McDiarmid’s inequality [25]). Suppose f : Ω → R is c-Lipschitz, and X =
(X1, . . . , Xn) is a vector of independent random variables with each Xi taking values in Ωi. Then
for any t > 0, the tail probability satisfies

Pr (f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2

∥c∥22

)
. (1)

Notice that the McDiarmid’s inequality works for independent random variables. Janson’s
Hoeffding-type inequality [21] for graph-dependent random variables is a special case of
McDiarmid-type inequality when the function is a summation. Specifically, when f(X) =

∑n
i=1 Xi

with each Xi ranging over an interval of length ci,

Pr

(
n∑

i=1

Xi −E

[
n∑

i=1

Xi

]
≥ t

)
≤ exp

(
− 2t2

χ∗(G)∥c∥22

)
, (2)

where c = (c1, . . . , cn) and χ∗(G) is the fractional coloring number of a dependency graph G of
random variables X.

3 McDiarmid Concentration for Graph-dependent Random Variables

In this section we present our first set of main results, the McDiarmid-type concentration inequalities
(i.e., concentration of Lipschitz functions) for graph-dependent random variables. The results in this
section will serve as the tools for developing learning theory for dependent data.

We start from the simplest case that the dependency graph is acyclic, i.e., trees or forests. We
prove McDiarmid-type concentration bounds for trees and forests with very simple forms. These
inequalities are then extended to general graphs. To this end, we introduce the notion of forest
complexity, which characterizes to what extent a general graph can be best approximated by a forest.
We prove McDiarmid-type concentration inequality for general graph-dependent random variables
in terms of the forest complexity. Finally we demonstrate that for many important classes of graphs,
forest complexity is easy to estimate.

Below we first define the notion of dependency graphs, which is a widely used model in probability,
statistics, and combinatorics, see [26, 27, 28, 29, 30] for examples.
Definition 3.1 (Dependency Graphs). An undirected graph G is called a dependency graph of a
random vector X = (X1, . . . , Xn) if

1. V (G) = [n]

2. if I, J ⊂ [n] are non-adjacent in G, then {Xi}i∈I and {Xj}j∈J are independent.
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3.1 McDiarmid Concentration for Acyclic Graph-dependent Variables

Our first result is for the case that the dependency graph is a tree.

Theorem 3.2. Suppose that f : Ω → R is a c-Lipschitz function and G is a dependency graph of a
random vector X that takes values in Ω. If G is a tree, then for any t > 0, the following inequality
holds:

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2∑

⟨i,j⟩∈E(G)(ci + cj)2 + c2min

)
, (3)

where cmin is the minimum entry in c.

The proof of this theorem relies on decomposing f(X)−E[f(X)] into the summation
∑n

i=1 Vi with
Vi := E[f(X)|X1, . . . Xi]− E[f(X)|X1, . . . Xi−1]. We show that each Vi ranges in an interval of
length at most ci + cj , where j is the parent of i in the tree (in the proof, we make the tree rooted by
choosing the vertex with the minimum Lipschitz coefficient as the root). The theorem is then proved
by applying the Chernoff-Cramér technique to

∑n
i=1 Vi. For details, please refer to Subsection A.1

in the supplementary materials.

Like McDiarmid’s inequality, Theorem 3.2 also claims a deviation probability bound that decays
exponentially. The decay rate is determined by two interplaying factors. One is the Lipschitz co-
efficient that is inherent to the function. The other is the pattern of the dependency, namely, which
random variables are dependent and connected by an edge.

We then generalize the above result to the case where dependency graph G is a forest.

Theorem 3.3. Suppose that f : Ω → R is a c-Lipschitz function and G is a dependency graph of a
random vector X that takes values in Ω. If G is a forest consisting of trees {Ti}i∈[k], then for any
t > 0, the following inequality holds:

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2∑

⟨i,j⟩∈E(G)(ci + cj)2 +
∑k

i=1 c
2
min,i

)
, (4)

where cmin,i = min{cj : j ∈ V (Ti)}.

Theorem 3.3 can be proved in a similar way as Theorem 3.2. The detailed proof is presented in
Subsection A.2 of the supplementary materials.

We point out that Theorem 3.3 is a strict generalization of the McDiarmid’s inequality for i.i.d.
random variables. If all the random variables are independent, i.e., there is no edge in the dependency
graph, then it is clear that Eq. (4) degenerates exactly to Eq. (1).

Theorem 3.3 also clearly demonstrates how dependency between random variables affects concen-
tration. The decay rate of the probability that f(X) deviates from its expectation is approximately
reversely proportional to the number of edges in the dependency graph.

3.2 McDiarmid Concentration for General Graphs

In this subsection, we consider general graphs. Our basic idea for handling general graphs is to use
a forest to approximate the graph. Specifically, we partition the variables into groups so that the
dependency graph of these groups is a forest. We try to find the optimal forest approximation, which
leads to the notion of forest complexity. We then prove McDiarmid-type concentration inequality
for general graph-dependent random variables in terms of its forest complexity, which yields a very
simple form.

We first define the concept of forest approximation.

Definition 3.4 (Forest Approximation). Given a graph G, a forest F , and a mapping ϕ : V (G) →
V (F ), if ϕ(u) = ϕ(v) or ⟨ϕ(u), ϕ(v)⟩ ∈ E(F ) for any ⟨u, v⟩ ∈ E(G), we say that (ϕ, F ) is a forest
approximation of G. Let Φ(G) denote the set of forest approximations of G.

Intuitively, a forest approximation is transforming a graph into a forest by merging vertices and
removing the incurred self-loops and multi-edges. In this way, we rule out the redundant variables
that heavily depend on others and thus contribute little to concentration.
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Based on forest approximation, we define the notion of forest complexity of a graph, which intu-
itively measures how much the graph looks like a forest.

Definition 3.5 (Forest Complexity). Given a graph G and any forest approximation (ϕ, F ) ∈ Φ(G)
with F consisting of trees {Ti}i∈[k], let

λ(ϕ,F ) =
∑

⟨u,v⟩∈E(F )

(
|ϕ−1(u)|+ |ϕ−1(v)|

)2
+

k∑
i=1

min
u∈V (Ti)

|ϕ−1(u)|2.

We call
Λ(G) = min

(ϕ,F )∈Φ(G)
λ(ϕ,F )

the forest complexity of the graph G.

Now we are ready to state our McDiarmid-type concentration inequality for general graph-dependent
random variables.

Theorem 3.6. Suppose that f : Ω → R is a c-Lipschitz function and G is a dependency graph of a
random vector X that takes values in Ω. For any t > 0, the following inequality holds:

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2

Λ(G)∥c∥2∞

)
.

With the tool of forest approximation, we reduce the concentration problem defined on graphs to that
defined on forests. Basically, we use a new variable to represent each set of the original variables that
are merged together by the forest approximation. The function can be equivalently transformed into
a function of the new variables whose dependency graph is the forest. The proof is done by applying
Theorem 3.3 to the new function. For details, please refer to Subsection A.3 in the supplementary
materials.

Like the above theorems, Theorem 3.6 also establishes an exponentially decaying probability of
deviation. The decay rate is totally determined by the Lipschitz coefficient of the function and the
forest complexity of the variables’ dependency graph. Intuitively, the more the dependency graph
looks like a forest, the faster the deviation probability decays. This uncovers how the dependencies
among random variables influence concentration.

3.3 Illustrations and Examples

This subsection consists of two parts. In the first part we review a widely-studied random process
that generates dependent data whose dependency graph can be naturally constructed. In the second
part, we deal with some dependency graphs to show that in many cases, the forest complexity is
small and easy to estimate.

Consider a data generating procedure modeled by the spatial Poisson point process, which is a Pois-
son point process on R2 (See [31, 32] for discussions of using this process to model data collection
in various machine learning applications.) The number of points in each finite region follows a
Poisson distribution, and the number of points in disjoint regions are independent. Given a finite set
I = {Ii}ni=1 of regions in R2, let Xi be the number of points in region Ii, 1 ≤ i ≤ n. Then the
graph G ([n], {⟨i, j⟩ : Ii ∩ Ij ̸= ∅}) is a dependency graph of the random variables {Xi}ni=1.

We present three examples to demonstrate that estimating the forest complexity Λ(G) is usually
easy. All the examples can naturally appear in the above process.

Example 3.7 (G is a tree). In this case, the identity map between G and itself is a forest approxima-
tion of G. Then Λ(G) ≤ |E(G)|(1 + 1)2 + 1 = 4n− 3 = O(n). We get an upper bound of Λ(G)
that is linear in the number of variables, which is almost tight compared with Hoeffding’s inequality
or Janson’s result (see (2) with χ∗(G) = 2).

Example 3.8 (G is a cycle Cn). If n is even, a forest approximation is illustrated in Figure 1,
where the cycle is approximated by a path F of length n

2 . The approximation ϕ maps any vertex
of G to the vertex of F having the same shape, so each gray belt stands for a preimage set of ϕ.
We will keep this convention in the rest of this section. By the illustrated forest approximation,
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Λ(G) ≤ 2× (1 + 2)2 + (n2 − 2)(2 + 2)2 + 1 = 8n− 13 = O(n). When n is odd, according to the
forest approximation shown in Figure 2, Λ(G) ≤ (1+2)2+(n−1

2 −1)(2+2)2+1 = 8n−14 = O(n).
Since χ∗(G) is 2 or 3, our bound is again very tight compared with Jansons result.

.......

G

ϕ−−→
.....

F

Figure 1: A forest approximation of C6

......

G

ϕ−−→
....

F

Figure 2: A forest approximation of C5

Example 3.9 (G is a grid). Suppose G is a two-dimensional (m×m)-grid. Then n = m2. Consid-
ering the forest approximation illustrated in Figure 3, Λ(G) ≤ 2[32 + 52 + . . .+ (2m− 1)2] + 1 =
2m(2m+1)(2m−1)−3

3 = O(m3) = O(n
3
2 )

..................

G

....
ϕ

.

..F .......

Figure 3: A forest approximation of the (4× 4)-gird

4 Generalization Theory for Learning from Graph-Dependent Data

This section establishes stability generalization error bounds for learning from graph-dependent
data, using the concentration inequalities derived in the last section.

Consider the supervised learning setting: Let S = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y)n be a training
sample of size n, where X is the input space and Y is the output space. Let D be the underlying
distribution of data on X × Y . Assume that all the training data points (xi, yi)’s have the same
marginal distribution D and that G is a dependency graph of S.

Throughout this section, fix a non-negative loss function ℓ : Y × Y → R. For any hypothesis
f : X → Y , the empirical error on sample S is

R̂(f) =
1

n

n∑
i=1

ℓ(yi, f(xi)).

For learning from dependent data, the generalization error can be defined in various ways. We adopt
the following widely-used one [33, 34, 35, 36]

R(f) = E(x,y)∼D[ℓ(y, f(x))], (5)
which assumes that the test set is independent of the training set.

4.1 Bounding Generalization Error via Algorithmic Stability

Algorithmic stability has been used in the study of classification and regression to derive generaliza-
tion bounds [37, 38, 39, 40, 41, 42]. A key advantage of stability bounds is that they are designed for
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specific learning algorithms, exploiting particular properties of the algorithms. Introduced 17 years
ago, uniform stability [43] is now among the most widely used notions of algorithmic stability.

Given a training sample S of size n and i ∈ [n], remove the i-th element from S, resulting in a sample
of size n − 1, which is denoted by S\i = ((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1) . . . , (xn, yn)).
For a learning algorithm A, define fA

S : X → Y to be the the hypothesis that A has learned from
the sample S.
Definition 4.1 (Uniform Stability [43]). Given integer n > 0, the learning algorithm A is called
βn-uniformly stable with respect to the loss function ℓ, if for any i ∈ [n], S ∈ (X × Y)n, and
(x, y) ∈ X × Y , it holds that

|ℓ(y, fA
S (x))− ℓ(y, fA

S\i(x))| ≤ βn.

Intuitively, the stability of a leaning algorithm means that any small perturbation of training samples
has little effect on the result of learning.

Now, we begin our analysis with studying the distribution of ΦA(S) = R(fA
S )−R̂(fA

S ), namely, the
difference between the empirical and the generalization errors. The mapping ΦA : (X × Y)n → R
will play a critical role in estimating R(fA

S ) via stability. We first show that the deviation of ΦA(S)
from its expectation can be bounded with high probability (Lemma 4.2), and then upper bound the
expected value of ΦA(S) in Lemma 4.3.
Lemma 4.2. Given a sample S of size n with dependency graph G, assume that the learning algo-
rithm A is βn-uniformly stable. Suppose the loss function ℓ is bounded by M . Then for any t > 0,
it holds that

Pr(ΦA(S)−E[ΦA(S)] ≥ t) ≤ exp

(
− 2n2t2

Λ(G)(4nβn +M)2

)
.

Lemma 4.2 is proved in two steps. First, we treat ΦA(·) as an n-ary function and show that its
Lipschitz coefficients are all bounded by 4βn +M/n. Second, regarding S as a random vector, we
apply Theorem 3.6 to ΦA(S). For detail, see Subsection B.1 of the supplementary materials.
Lemma 4.3. Given a sample S of size n with dependency graph G, assume that the learning al-
gorithm A is βi-uniformly stable for any i ≤ n. Suppose the maximum degree of G is ∆. Let
βn,∆ = maxi∈[0,∆] βn−i. It holds that

E[ΦA(S)] ≤ 2βn,∆(∆ + 1).

The proof of the lemma is based on iterative perturbations on the training sample S. A perturbation
is essentially removing a data point from or adding a data point to S. The property of uniform
stability of the algorithm guarantees that each perturbation causes a discrepancy up to βn,∆, and in
total 2(∆ + 1) perturbations have to be made in order to eliminate the dependency between a data
point and the others. For detail, please refer to Subsection B.2 of the supplementary materials.

Combining Lemma 4.2 and Lemma 4.3, we immediately have
Theorem 4.4. Given a sample S of size n with dependency graph G, assume that the learning
algorithm A is βi-uniformly stable for any i ≤ n. Suppose the maximum degree G is ∆, and the
loss function ℓ is bounded by M . Let βn,∆ = maxi∈[0,∆] βn−i. For any δ ∈ (0, 1), with probability
at least 1− δ, it holds that

R(fA
S ) ≤ R̂(fA

S ) + 2βn,∆(∆ + 1) +
4nβn +M

n

√
Λ(G) ln(1/δ)

2
.

Remark 4.5. It is well known that for many learning algorithms βn = O(1/n) [43]. Thus, we
often have βn,∆(∆+ 1) ≤ βn−∆(∆+ 1) = O( ∆

n−∆ ), which vanishes asymptotically if ∆ = o(n).

The term O
(√

Λ(G)/n
)

also vanishes asymptotically if Λ(G) = o(n2). As a result, in case of
weak dependence such as the examples in Subsection 3.3, the generalization error is almost upper-
bounded by the empirical error. We also observe that if the training data are i.i.d., Theorem 4.4
degenerates to the standard stability bound in [43], by applying ∆ = 0, βn,∆ = βn, Λ(G) = n.
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4.2 Application: Learning from m-dependent data

We present a practical application in machine learning. Suppose there are linearly aligned locations,
for example, real estates along a street. Let yi be the observation at location i, e.g., the house price,
and xi stand for the random variable modeling geographical effect at location i. Suppose that x’s are
mutually independent and each yi is geographically influenced by a neighborhood of size at most
2q+1. One hope to learn the model of y from a sample {((xi−q, . . . , xi, . . . , xi+q), yi)}i∈[n], where
n is the size of the sample. This model accounts for the impact of local locations on house prices.
Similar scenarios are frequently considered in spatial econometrics, see [44] for more examples.

This application is a special case of m-dependence, which is an important statistical model intro-
duced by Hoeffding in [45]. m-dependence has been studied extensively in probability, statistics,
and combinatorics [46, 47, 48].

Definition 4.6 (m-dependence [45]). For some m,n ∈ N+, a sequence of random variables
{Xi}ni=1 is called m-dependent if for any i ∈ [n−m−1], {Xj}ij=1 is independent of {Xj}nj=i+m+1.

The upper part of Figure 4 illustrates a dependency graph of 2-dependent sequence {Xi}ni=1.

As illustrated in Figure 4, we divide an m-dependent sequence into blocks of size m, and sequen-
tially map the blocks to vertices of a path of length

⌈
n
m

⌉
. This forest approximation leads to

Λ(G) ≤
(⌈ n

m

⌉
− 1
)
(m+m)2 +m2 ≤ 4mn = O(mn)

..G ......

....
ϕ

.

..F ...

Figure 4: A forest approximation of a 2-dependent sequence. The approximation ϕ maps any vertex
of G to the vertex of F having the same shape, so each gray belt stands for a pre-image set of ϕ.

Combining Theorem 4.4 and the estimated forest complexity, we have

Corollary 4.7. Given an m-dependent sequence S of length n as training sample, assume that the
learning algorithm A is βi-uniformly stable for any i ≤ n. Suppose the loss function ℓ is bounded
by M . For any δ ∈ (0, 1), with probability at least 1− δ, it holds that

R(fA
S ) ≤ R̂(fA

S ) + 2βn,2m(2m+ 1) + (4nβn +M)

√
2m ln(1/δ)

n
.

Choose any uniformly stable learning algorithm A in [43] with βn = O(1/n), such as regularization
algorithms in RKHS. Apply it to the above mentioned house price prediction problem. Then for

any fixed q, with high probability, Corollary 4.7 leads to R(fA
S ) ≤ R̂(fA

S ) + O

(√
ln(1/δ)

n

)
for

sufficiently large n, matching the stability bound of the i.i.d. case in [43].

5 Conclusion and Future Work

In this paper, we establish McDiarmid-type concentration inequalities for general functions of graph-
dependent random variables. We apply our concentration results to obtain a stability-based gener-
alization error bound for learning from graph-dependent samples. There are several possible exten-
sions of this work.
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• We provide upper bounds of the forest complexity for several classes of graphs. It is an
interesting algorithmic problem to efficiently estimate the forest complexity. One heuristic
method to do this on a connected graph is via graph diameter, by merging vertices of the
same distances to a peripheral vertex, resulting in a path as long as the diameter. Can the
problem be solved approximately?

• If more information of the dependency structure is known, e.g., a dependency hyper-
graph [24], can we obtain better McDiarmid-type inequalities and tighter generalization
bounds?

• In [3, 12, 6], generalization error is defined different from that in this paper. The relation-
ship between these two definitions has been discussed in [3, 12]. It is a natural question
whether our results can be adapted to that definition.

• There are some newly introduced dependency graph models such as thresholded depen-
dency graphs [49] and weighted dependency graphs [50, 51]. Can the problem in this
paper be solved under these new models?
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A Omitted Proofs in Section 3

A.1 Proof of Theorem 3.2

Given a random vector X = (X1, . . . , Xn) taking values in a product space Ω =
∏

i∈[n] Ωi. For
any set S ⊆ [n], we denote XS = {Xi}i∈S , and ΩS =

∏
i∈S Ωi for convenience. The proof of

Theorem 3.2 will rest on Lemma A.1, which intuitively means that the small deviation of

E[f(X)|X1 = x1, . . . , Xi−1 = xi−1, Xi = xi]

with respect to xi for all i leads to a high concentration of f(X) around its expectation. Our task is
thus reduced to show that when x1, . . . , xi−1 is fixed,

E[f(X)|X1 = x1, . . . , Xi−1 = xi−1, Xi = xi]−E[f(X)|X1 = x1, . . . , Xi−1 = xi−1, Xi = x′
i]

is small for any xi and x′
i. This will be true due to Lemma A.4, if there is a good coupling, namely,

jointly distributed variables (Y,Z) whose Hamming distance is small and whose marginals are
the distributions of X conditional on {X1 = x1, . . . , Xi−1 = xi−1, Xi = xi} and on {X1 =
x1, . . . , Xi−1 = xi−1, Xi = x′

i}, respectively. Hence, the main part of the proof is to construct such
a coupling (Lemma A.3) whose feasibility relies on the strong independence among X (Lemma
A.2). First of all, recall a lemma in literature.
Lemma A.1 ([25]). If for any j ∈ [n] and y ∈ Ω[j−1], there is bj ≥ 0 such that

sup
ξ∈Ωj

E[f(X)|X[j−1] = y, Xj = ξ]− inf
ξ∈Ωj

E[f(X)|X[j−1] = y, Xj = ξ] ≤ bj (6)

then for any t > 0,

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2∑n

j=1 b
2
j

)
.

By this lemma, it suffice to show that the small deviation of E[f(X)|X1 = x1, . . . , Xi−1 =
xi−1, Xi = xi] with respect to xi for all i is small to prove Theorem 3.2. Before continuing the
proof, we assume that

Well-rooted: G is rooted at the vertex n and cn = cmin.
Well-sorted: For any i, j ∈ V (G), j is a descendent of i only if j < i.

These assumptions will not lose generality, since we can relabel the variables X1, ..., Xn to meet the
requirements.

For any non-root vertex i ∈ V (G), let p(i) be the parent vertex of i. For the rest of the section,
arbitrarily fix i ∈ [n] and define S = [i + 1, n] \ {p(i)}, where [j, k] stands for the set {j, . . . , k}
of integers. Arbitrarily choose a vector x = (x1, . . . , xn) ∈ Ω and an element x′

i ∈ Ωi. Let
x′ = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). We have the following technical lemma, indicating that XS

is independent of Xi if X[i−1] is given.
Lemma A.2. For any vector y ∈ ΩS ,

Pr(XS = y|X[i] = x[i]) = Pr(XS = y|X[i] = x′
[i]).

Proof. Let Ti be the subtree of G that is rooted at i. Our basic idea is to prove the stronger property
that XS is independent of the other parts of X[i] if X[i−1]\V (Ti) is given. Since [i] = V (Ti)

∪
([i−

1] \ V (Ti)), it suffices to show that XV (Ti) is independent of {XS ,X[i−1]\V (Ti)}, which in turn is
reduced to prove the following two claims due to the definition of the dependency graphs.

Claim 1 : N+
G (Ti)

∩
([i− 1] \ V (Ti)) = ∅, where N+

G (Ti) =
∪

k∈V (Ti)
N+

G (k).
Proof of Claim 1: Arbitrarily choose j ∈ [i − 1] \ V (Ti). Suppose for contradiction that
j ∈ NG(k) for some k ∈ V (Ti), namely, j is either a child or the parent of k. Since
j /∈ V (Ti), we must have j = p(k) and k = i, which implies j > i due to the Assumption
Well-rooted. A contradiction is reached, so NG(Ti)

∩
([i − 1] \ V (Ti)) = ∅. Because

N+
G (Ti)

∩
([i− 1] \ V (Ti)) = NG(Ti)

∩
([i− 1] \ V (Ti)), Claim 1 holds.
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Claim 2 : N+
G (Ti)

∩
S = ∅.

Proof of Claim 2: Arbitrarily choose j ∈ S = {i + 1, . . . , n} \ NG(i). One immediately
has j /∈ N+

G (i). Suppose for contradiction that j ∈ N+
G (Ti). Then j ∈ N+

G (k) for some
descendent k of i, which means that either j = i or j is a descendent of i. This in turn
means that j ≤ i due to the Assumption Well-sorted. A contradiction is reached, so Claim
2 holds.

Since G is a dependency graph of X, Claims 1 and 2 indicate that XV (Ti) is independent of
{XS ,X[i−1]\V (Ti)} . Then

Pr(XS = y|Xj = xj , j ∈ [i− 1] \ V (Ti))
= Pr(XS = y|Xj = xj , j ∈ ([i− 1] \ V (Ti))

∪
V (Ti))

= Pr(XS = y|Xj = xj , j ∈ [i])
= Pr(XS = y|X[i] = x[i]).

Likewise, we also have

Pr(XS = y|Xj = x′
j , j ∈ [i− 1] \ V (Ti)) = Pr(XS = y|X[i] = x′

[i])

Since x and x′ differ only in the i-th entry,

Pr(XS = y|Xj = xj , j ∈ [i− 1] \ V (Ti)) = Pr(XS = y|Xj = x′
j , j ∈ [i− 1] \ V (Ti)).

As a result, Pr(XS = y|X[i] = x[i]) = Pr(XS = y|X[i] = x′
[i]), this completes the proof of

Lemma A.2.

Then we construct the jointly-distributed random vectors (Y,Z) ∈ Ω2 with respect to the fixed i,x,
and x′. Specifically, Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn) are defined as below.

1. Y[i] = x[i]

2. For any vector y ∈ Ω[i+1,n],

Pr(Y[i+1,n] = y) = Pr(X[i+1,n] = y|X[i] = x[i])

3. Z[i] = x′
[i],ZS = YS .

4. For any vector z ∈ ΩS and element z ∈ Ωp(i),

Pr(Zp(i) = z|ZS = z) = Pr(Xp(i) = z|X[i] = x′
[i],XS = z)

The next lemma states that (Y,Z) has the desired marginal distribution.

Lemma A.3. For any vector y ∈ Ω[i+1,n], we have

1. Pr(Y[i+1,n] = y) = Pr(X[i+1,n] = y|X[i] = x[i]),

2. Pr(Z[i+1,n] = y) = Pr(X[i+1,n] = y|X[i] = x′
[i]).

Proof. (1) holds by the definition of Y. To prove (2), arbitrarily choose y = (yi+1, . . . , yn) ∈
Ω[i+1,n]. Then we have

Pr(Z[i+1,n] = y) = Pr(ZS = yS)Pr(Zp(i) = yp(i)|ZS = yS)
= Pr(YS = yS)Pr(Zp(i) = yp(i)|ZS = yS)
= Pr(XS = yS |X[i] = x[i])Pr(Xp(i) = yp(i)|X[i] = x′

[i],XS = yS)

= Pr(XS = yS |X[i] = x′
[i])Pr(Xp(i) = yp(i)|X[i] = x′

[i],XS = yS)

= Pr(X[i+1,n] = y|X[i] = x′
[i]).

where the fourth equality is due to Lemma A.2.

Lemma A.4. E[f(X)|X[i] = x[i]]−E[f(X)|X[i] = x′
[i]] ≤ ci + cp(i).
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Proof. By the definition of random vectors Y,Z and Lemma A.3,

E[f(X)|X[i] = x[i]]−E[f(X)|X[i] = x′
[i]] = E[f(Y)]−E[f(Z)]

= E[f(Y)− f(Z)]

≤ E
[∑n

j=1 cj1Yj ̸=Zj

]
≤ ci + cp(i).

the first equality is due to the coupling constructed before, and the first inequality is by triangle
inequality and c-Lipschitz properties of f .

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. By Lemma A.1 and Lemma A.4

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2∑

j∈V (G)\{n}(cj + cp(j))2 + c2n

)

= exp

(
− 2t2∑

⟨j,k⟩∈E(G)(cj + ck)2 + c2min

)
the last equality is because the root n has no parent and the Well-rooted assumption.

A.2 Proof of Theorem 3.3

Proof of Theorem 3.3. The proof is similar to that of Theorem 3.2. Without loss of generality, we
assume that each component of the forest G are well-rooted and well-sorted. Then the proofs of
Lemma A.2-A.4 remain valid, since variables in different components are independent. As a result,
the theorem holds due to Lemma A.1.

A.3 Proof of Theorem 3.6

Lemma A.5. Suppose that f : Ω → R is a c-Lipschitz function and G is a dependency graph of a
random vector X that takes values in Ω. For any t > 0 and any (ϕ, F ) ∈ Φ(G) with F consisting
of trees {Ti}i∈[k], the following inequality holds:

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2∑

⟨u,v⟩∈E(F )(c̃u + c̃v)2 +
∑k

i=1 c̃
2
min,i

)
where c̃u =

∑
i∈ϕ−1(u) ci and c̃min,i = minu∈V (Ti) c̃u. Here, ϕ−1(u) is the set of pre-images of u.

Proof. For any u ∈ V (F ), define a random vector Yu = {Xi}i∈ϕ−1(u). Treat each Yu as a
random variable. Define a new random vector Y = (Yu)u∈V (F ), and let g(Y) = f(X). It is
easy to check that g is c̃-Lipschitz, where c̃ = (c̃u)u∈V (F ). The theorem immediately follows from
Theorem 3.3.

Lemma A.5 immediately implies Theorem 3.6 by the definition of forest complexity.

B Omitted Proofs in Section 4

B.1 Proof of Lemma 4.2

The following technical lemma is needed.
Lemma B.1 ([43]). Given a βn-uniformly stable learning algorithm A, for any S,S′ ∈ (X × Y)n

that differ only in one entry, it holds that

|ΦA(S)− ΦA(S
′)| ≤ 4βn +

M

n
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Proof. In the literature, Lemma B.1 was proved for i.i.d. data, actually, the proof remains valid in
our setting. Assume S, S′ differ only in i-th entry, and denote S′ as Si

Si = ((x1, y1), . . . , (xi−1, yi−1), (x
′
i, y

′
i), (xi+1, yi+1) . . . , (xm, ym))

and the marginal distribution of (x′
i, y

′
i) is also D.

Notice that we do not require the data to be i.i.d., samples are dependent with the same marginal
probability distribution D. First, we bound R(fA

S )−R(fA
Si)

|R(fA
S )−R(fA

Si)| (7)

≤|R(fA
S )−R(fA

S\i)|+ |R(fA
S\i)−R(fA

Si)| (8)

=|ED[ℓ(y, fA
S (x))]−ED[ℓ(y, fA

S\i(x))]|+ |ED[ℓ(y, fA
S\i(x))]−ED[ℓ(y, fA

Si(x))]| (9)

=|ED[ℓ(y, fA
S (x))− ℓ(y, fA

S\i(x))]|+ |ED[ℓ(y, fA
S\i(x))− ℓ(y, fA

Si(x))]| (10)
≤2βn (11)

then, we bound R̂(fA
S )− R̂Si(fA

Si)

n|R̂(fA
S )− R̂Si(fA

Si)| (12)

=

∣∣∣∣∣∣
∑

(xj ,yj)∈S

ℓ(yj , f
A
S (xj))−

∑
(xj ,yj)∈Si

ℓ(yj , f
A
Si(xj))

∣∣∣∣∣∣ (13)

≤
∑
j ̸=i

|ℓ(yj , fA
S (xj))− ℓ(yj , f

A
Si(xj))|+ |ℓ(yi, fA

S (xi))− ℓ(y′i, f
A
Si(x′

i))| (14)

≤
∑
j ̸=i

|ℓ(yj , fA
S (xj))− ℓ(yj , f

A
S\i(xj))|+

∑
j ̸=i

|ℓ(yj , fA
S\i(xj))− ℓ(yj , f

A
Si(xj))|

+ |ℓ(yi, fA
S (xi))− ℓ(y′i, f

A
Si(x′

i))| (15)
≤2nβn +M (16)

combining above bounds, we have

|ΦA(S)− ΦA(S
i)| = |(R(fA

S )− R̂(fA
S ))− (R(fA

Si)− R̂Si(fA
Si))|

≤ |R(fA
S )−R(fA

Si)|+ |R̂(fA
S )− R̂Si(fA

Si)|
≤ 4βn + M

n

combining Lemma B.1 and Theorem 3.6 leads to Lemma 4.2.

B.2 Proof of Lemma 4.3

We introduce a technical lemma before the proof of Lemma 4.3.
Lemma B.2. Given a sample S of size n with dependency graph G, assume that the learning
algorithm A is βi-uniformly stable for any i ≤ n. Suppose the maximum degree of G is ∆. Let
βn,∆ = maxi∈[0,∆] βn−i. It holds that

max
(xi,yi)∈S

ES,(x,y)[ℓ(y, f
A
S (x))− ℓ(yi, f

A
S (xi))] ≤ 2βn,∆(∆ + 1).

Proof. For any i ∈ [n], suppose N+
G (i) = {j1, . . . , jni} with jk−1 > jk. Define S(i,0) = S and for

k ∈ [ni], S(i,k) is obtained from S(i,k−1) by removing the jk-th entry. By uniform stability of A,
for any (x, y) ∈ X × Y and k ∈ [ni],

|ℓ(y, fA
S(i,k−1)(x))− ℓ(y, fA

S(i,k)(x))| ≤ βn,∆

we have the decomposition via telescoping

ℓ(y, fA
S (x)) =

ni∑
k=1

(ℓ(y, fA
S(i,k−1)(x))− ℓ(y, fA

S(i,k)(x)) + ℓ(y, fA
S(i,ni)

(x))
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similarly

ℓ(yi, f
A
S (xi)) =

ni∑
k=1

(ℓ(yi, f
A
S(i,k−1)(xi))− ℓ(yi, f

A
S(i,k)(xi)) + ℓ(yi, f

A
S(i,ni)

(xi))

Thus, we have

ℓ(y, fA
S (x))− ℓ(yi, f

A
S (xi))

=
∑ni

k=1

(
(ℓ(y, fA

S(i,k−1)(x))− ℓ(y, fA
S(i,k)(x)))− (ℓ(yi, f

A
S(i,k)(xi))− ℓ(yi, f

A
S(i,k−1)(xi)))

)
+ℓ(y, fA

S(i,ni)
(x))− ℓ(yi, f

A
S(i,ni)

(xi))
≤

∑ni

k=1 |ℓ(y, fA
S(i,k−1)(x))− ℓ(y, fA

S(i,k)(x))|
+
∑ni

k=1 |ℓ(yi, fA
S(i,k)(xi))− ℓ(yi, f

A
S(i,k−1)(xi))|+ ℓ(y, fA

S(i,ni)
(x))− ℓ(yi, f

A
S(i,ni)

(xi))
≤ 2niβn,∆ + ℓ(y, fA

S(i,ni)
(x))− ℓ(yi, f

A
S(i,ni)

(xi))

As a result,

ES,(x,y)[ℓ(y, f
A
S (x))− ℓ(yi, f

A
S (xi))]

= ES,(x,y)[ℓ(y, f
A
S(i,ni)

(x))− ℓ(yi, f
A
S(i,ni)

(xi))] + 2niβn,∆

≤ ES,(x,y)[ℓ(y, f
A
S(i,ni)

(x))− ℓ(yi, f
A
S(i,ni)

(xi))] + 2βn,∆(∆ + 1)
= ES,(x,y)[ℓ(y, f

A
S(i,ni)

(x))]−ES[ℓ(yi, f
A
S(i,ni)

(xi))] + 2βn,∆(∆ + 1)
= ES(i,ni),(x,y)[ℓ(y, f

A
S(i,ni)

(x))]−ES(i,ni),(xi,yi)
[ℓ(yi, f

A
S(i,ni)

(xi))] + 2βn,∆(∆ + 1)
= 2βn,∆(∆ + 1)

The last equality is because (xi, yi) and (x, y) are independent of S(i,ni) and have the same distri-
bution.

Proof of Lemma 4.3.

ES[ΦA(S)] = ES[E(x,y)[ℓ(y, f
A
S (x))]− 1

n

∑n
i=1 ℓ(yi, f

A
S (xi))]

= 1
n

∑n
i=1 ES,(x,y)[ℓ(y, f

A
S (x))− ℓ(yi, f

A
S (xi))]

≤ 2βn,∆(∆ + 1)
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