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Abstract

In this supplementary material, we provide more calculation details on the deduc-1

tion of the variational lower bound, and demonstrate more experimental results in2

blind image denoising.3

1 Calculation Details on the Variational Lower Bound4

1.1 Model Formation5

Let’s denote y ∈ Rd as the observed noisy image and z ∈ Rd the latent clean image. Different6

from most of the traditional methods, we assumed the noise is distributed as non-i.i.d. Gaussian7

distribution, i.e.,8

yi ∼ N (yi|zi, σ2
i ), i = 1, 2, · · · , d, (1)

where N (·|µ, σ2) represents the Gaussian distribution with mean µ variance σ2.9

The simulated clean image x evidently provides a strong prior to the latent variable z. Accordingly10

we impose the following conjugate Gaussian prior on z:11

zi ∼ N (zi|xi, ε20), i = 1, 2, · · · , d, (2)

where ε0 is a hyper-parameter and can be easily set as a small value.12

Besides, for σ2 = {σ2
1 , σ

2
2 , · · · , σ2

d}, we also introduce a rational conjugate prior as follows:13

σ2
i ∼ IG

(
σ2
i |
p2

2
− 1,

p2ξi
2

)
, i = 1, 2, · · · , d, (3)

where IG(·|α, β) is the inverse gamma distribution with parameter α and β, ξ = G
(
(ŷ − x̂)2; p

)
14

represents the filtering output of the variance map (ŷ − x̂)2 by a Gaussian filter with p× p window,15

ŷ, x̂ ∈ Rh×w are the matrix (image) forms of y, x ∈ Rd, respectively. Note that the mode of above16

IG distribution is ξi, which is a rational approximate evaluation of σ2
i under p× p window.17

Combining Eqs (1)-(3), a full Bayesian model for the problem can be obtained. The goal then turns18

to construct a variational strategy to infer the posterior of latent variables z and σ2 from noisy image19

y, i.e., p(z,σ2|y).20

1.2 Variational Lower Bound21

Instead of calculating the posteriori p(z,σ2|y) directly, we introduced another distribution q(z,σ2|y)22

to approximate it. Based on such approximate distribution, we can decompose the marginal likelihood23

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



of y as follows:24

log p(y; z,σ2) =

∫
q(z,σ2|y) log p(y|z,σ2) dz dσ2

=

∫
q(z,σ2|y) log

[p(y|z,σ2)p(z)p(σ2)

p(z,σ2|y)

]
dz dσ2

=

∫
q(z,σ2|y) log

[p(y|z,σ2)p(z)p(σ2)

q(z,σ2|y)
+
q(z,σ2|y)

p(z,σ2|y)

]]
dz dσ2

=

∫
q(z,σ2|y) log

[p(y|z,σ2)p(z)p(σ2)

q(z,σ2|y)

]
dz dσ2

+

∫
q(z,σ2|y) log

[q(z,σ2|y)

p(z,σ2|y)

]
dz dσ2

= Eq(z,σ2|y)
[

log p(y|z,σ2)p(z)p(σ2)− log q(z,σ2|y)
]

+DKL(q(z,σ2|y)||p(z,σ2|y)). (4)

The secode term is a KL divergence of the approximation q(z,σ2|y) to the true posterior p(z,σ2|y),25

which is non-negative, and thus the first term constitutes a variational lower bound on the marginal26

likelihood of p(y|z,σ2), i.e.,27

log p(y; z,σ2) ≥ L(z,σ2;y)

= Eq(z,σ2|y)
[

log p(y|z,σ2)p(z)p(σ2)− log q(z,σ2|y)
]
. (5)

Similar to the traditional mean-field variation methods, we assumed the independence between28

variable z and σ2, i.e.,29

q(z,σ2|y) = q(z|y)q(σ2|y). (6)

Based on the conjugate priors in Eq. 2 and 3, it is natural to formulate variational posterior forms of30

z and σ2 as follows:31

q(z|y) =

d∏
i

N (zi|µi(y;WD),m2
i (y;WD)), q(σ2|y) =

d∏
i

IG(σ2
i |αi(y;WS), βi(y;WS)), (7)

where µi(y;WD) and m2
i (y;WD)) are designed as the prediction functions for getting posterior32

parameters of latent variable z directly from y. The function is represented as a network, called33

denoising network or D-Net, with parameters WD. Similarly, αi(y;WS) and βi(y;WS)) denote34

the prediction functions for evaluating posterior parameters of σ2 from y, where WS represents the35

parameters of a network, called Sigma network or S-Net, for predicting them. Our aim is then to36

optimize these two network parameters WD and WS so as to get the explicit functions for predicting37

clean image variable z as well as noise knowledge σ2 from any test noisy image y. A rational38

objective function with respect to WD and WS is thus necessary for using gradient decent strategies39

to train both networks.40

For notation convenience, we simply write µi(y;WD), m2
i (y;WD)), αi(y;WS), βi(y;WS)) as µi,41

m2
i , αi, βi in the following calculations.42

Combining Eqs (5), (6) and Eq (7), the lower bound can be rewritten as:43

L(z,σ2;y) = Eq(z,σ2|y)
[
log p(y|z,σ2)

]
−DKL (q(z|y)||p(z))−DKL

(
q(σ2|y)||p(σ2)

)
, (8)
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Next we calculated the three terms in Eq (8) one by one as follows:44

Eq(z,σ2|y)
[
log p(y|z,σ2)

]
=

∫
q(z,σ2|y) log p(y|z,σ2) dz dσ2

=

n∑
i

∫
q(zi, σ

2
i |y) log p(yi|zi, σ2

i ) dzi dσ2
i

=

n∑
i

∫
q(zi|y)q(σ2

i |y)
{
− 1

2
log 2π − 1

2
log σ2

i −
(yi − zi)2

2σ2
i

}
dzi dσ2

i

=
∑
i

{
− 1

2
log 2π − 1

2

∫
q(σ2

i |y) log σ2
i dσ2

i

∫
q(zi|y) dzi

−1

2

∫
q(zi|y)(yi − zi)2 dzi

∫
q(σ2

i |y)
1

σ2
i

dσ2
i

}
=

n∑
i

{
− 1

2
log 2π − 1

2
E
[
log σ2

i

]
− 1

2
E
[
(yi − zi)2

]
E

[
1

σ2
i

]}

=

n∑
i

{
− 1

2
log 2π − 1

2
(log βi − ψ(αi))−

αi

2βi

[
(yi − µi)

2 +m2
i

]}
,

(9)
45

DKL(q(z|y)||p(z)) =

n∑
i

DKL(N (zi|µi,m
2
i )||p(zi|xi, ε20))

=

n∑
i

{
(µi − xi)2

2ε20
+

1

2

[
m2

i

ε20
− log

m2
i

ε20
− 1

]}
, (10)

46

DKL

(
q(σ2|y)||p(σ2)

)
=

n∑
i

DKL

(
IG(σ2

i |αi, βi)||IG
(
σ2
i |
p2

2
− 1,

p2ξi
2

))

=

n∑
i

{(
αi −

p2

2
+ 1

)
ψ(αi) +

[
log Γ

(
p2

2
− 1

)
− log Γ(αi)

]
+

(
p2

2
− 1

)(
log βi − log

p2ξi
2

)
+ αi

(
p2ξi
2βi
− 1

)}
, (11)

Where ψ(·) denotes the digamma function, E[·] represents exception with some stoachastic variables47

that had been neglected for notation clearity.48

We can then easily get the expected objective function (i.e., a negtive lower bound of the marginal49

likelihood on entire training set) for optimizing the network parameters of D-Net and S-Net as follows:50

51

min
WD,WS

−
n∑

j=1

L(zj ,σ
2
j ;yj). (12)

2 More Experimental Results52

2.1 Experiments on Synthetic Non-I.I.D. Gaussin Noise53

In this supplementary material, we dispalyed more denoising results of different methods on the54

testing dataset in Fig. 1-6.55

2.2 Experiments on Real-World Noise56

In Fig. 7, we show more denoising results of differen methods on the SIDD validation dataset.57
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(a) (b) (c) (d) (e) (f )

Figure 1: Image denoising results of different methods on the testing data in Case 1. From left to
right: (a) Noisy Image, (b) Groundtruth, (c) CBM3D, (d) DnCNN-B, (e) FFDNet, (f) VDN

(a) (b) (c) (d) (e) (f )

Figure 2: Image denoising results of different methods on the testing data in Case 1. From left to
right: (a) Noisy Image, (b) Groundtruth, (c) CBM3D, (d) DnCNN-B, (e) FFDNet, (f) VDN

(a) (b) (c) (d) (e) (f )

Figure 3: Image denoising results of different methods on the testing data in Case 2. From left to
right: (a) Noisy Image, (b) Groundtruth, (c) CBM3D, (d) DnCNN-B, (e) FFDNet, (f) VDN

(b)(a) (c) (d) (e) (f )

Figure 4: Image denoising results of different methods on the testing data in Case 2. From left to
right: (a) Noisy Image, (b) Groundtruth, (c) CBM3D, (d) DnCNN-B, (e) FFDNet, (f) VDN
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(a) (b) (c) (f )(e)(d)

Figure 5: Image denoising results of different methods on the testing data in Case 3. From left to
right: (a) Noisy Image, (b) Groundtruth, (c) CBM3D, (d) DnCNN-B, (e) FFDNet, (f) VDN

(a) (b) (c) (d) (e) (f )

Figure 6: Image denoising results of different methods on the testing data in Case 3. From left to
right: (a) Noisy Image, (b) Groundtruth, (c) CBM3D, (d) DnCNN-B, (e) FFDNet, (f) VDN

(a) (b) (c) (d) (e) (f )

Figure 7: Image denoising results of different methods on the SIDD validation set. From left to right:
(a) Noisy image, (b) Simulated "clean" image, (c) WNNM, (d) DnCNN-B, (e) CBDNet, (f) VDN
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