
A Proofs

Lemma 11 ([24]). If the input graph is degree-bounded and input size is bounded by a constant,
each node needs to transmit and process only a constant number of bits.

Proof of Theorem 1. We prove the case of L = VVC. The proof for other cases can be done similarly.
Let PGNNs be the set of graph problems that at least one VVC-GNN can solve and Palgo be the set of
graph problems that at least one distributed local algorithm on the VVC(1) model can solve. Theorem
1 says that PGNNs = Palgo. We now prove the following two lemmas.

Lemma 12. For any VVC-GNN, there exists a distributed local algorithm on the VVC(1) model that
solves the same set of graph problems as the VVC-GNN.

Lemma 13. For any distributed local algorithm on the VVC(1) model, there exists a VVC-GNN that
solves the same set of graph problems as the distributed local algorithm.

If these lemmas hold, for any P ∈ PGNNs, there exists a VVC-GNN that solves P . From Lemma 12,
there exists a distributed local algorithm on the VVC(1) model that solves P . Therefore, P ∈ Palgo and
PGNNs ⊆ Palgo. Conversely, Palgo ⊆ PGNNs holds by the same argument. Therefore, Palgo = PGNNs.

Proof of Lemma 12: Let N be an arbitrary VVC-GNN and L be the number of layers of N . The
inference of N itself is a distributed local algorithm on the VVC(1) model that communicates with
neighboring nodes in L rounds. Namely, the message from the node v to its i-th port in the l-th
communication round is a pair (z(l)

v , i), and each node calculates the next message baed on the
received messages and the function f . Finally, each node calculates the output from the obtained
embedding without communication.

Proof of Lemma 13: Let A be an arbitrary distributed local algorithm and L be the number of
communication rounds of A. Let F be a set of possible input features. From Assumption 3, the
cardinality of F is finite. Let m(l)

vi ∈ Rdl be the message that node v receives from i-th port in the
l-th communication round and s

(l)
v ∈ Rdl be the internal state of node v in the l-th communication

round. s(1)v is the input to node v (e.g., the degree of v). Note that we can assume the dimensions of
m

(l)
vi and s

(l)
v to be the constant dl without loss of generality by Lemma 11. Let g(0)j (s

(1)
v ) : F → Rd1

be the function that calculates the message to the j-th port in the first communication round from
the degree information. Let g(l)j (m

(l)
1 ,m

(l)
2 , . . . ,m

(l)
Δ , s(l)) : Rdl(Δ+1) → Rdl+1 be the function

that calculates the message to the j-th port in the (l + 1)-th communication round from the re-
ceived messages and the internal state in the l-th communication round (1 ≤ l ≤ L − 1). Let
g(l)(m

(l)
1 ,m

(l)
2 , . . . ,m

(l)
Δ , s(l)) : Rdl(Δ+1) → Rdl+1 be the function that calculates the internal state

in the (l + 1)-th communication round from the received messages and the internal state in the l-th
communication round (1 ≤ l ≤ L− 1). Let g(L)(m

(L)
1 ,m

(L)
2 , . . . ,m

(L)
Δ , s(L)) : RdL(Δ+1) → Y be

the function that determines the output from the received messages and the internal state in the L-th
communication round. Then, we construct a VVC-GNN that solves the same set of graph problems
as A. Namely, let f (1) : Rd1+(d1+1)Δ → Rd2(Δ+1) be

f (1)(z(1)
v ,z

(1)
ptail(v,1)

, pn(v, 1), z
(1)
ptail(v,2)

, pn(v, 2), . . . , z
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1 (g
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pn(v,1)

(z
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ptail(v,1)

), g
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pn(v,2)

(z
(1)
ptail(v,2)

), . . . , g
(0)
pn(v,Δ)(z

(1)
ptail(v,Δ)), z

(1)
v ),

g
(1)
2 (g

(0)
pn(v,1)

(z
(1)
ptail(v,1)

), g
(0)
pn(v,2)

(z
(1)
ptail(v,2)

), . . . , g
(0)
pn(v,Δ)(z

(1)
ptail(v,Δ)), z

(1)
v ),

. . . ,

g
(1)
Δ (g

(0)
pn(v,1)

(z
(1)
ptail(v,1)

), g
(0)
pn(v,2)

(z
(1)
ptail(v,2)

), . . . , g
(0)
pn(v,Δ)(z

(1)
ptail(v,Δ)), z

(1)
v ),

g(1)(g
(0)
pn(v,1)

(z
(1)
ptail(v,1)

), g
(0)
pn(v,2)

(z
(1)
ptail(v,2)

), . . . , g
(0)
pn(v,Δ)(z

(1)
ptail(v,Δ)), z

(1)
v ))

and let f (l) : Rdl(Δ+1)+(dl(Δ+1)+1)Δ → Rdl+1(Δ+1) (2 ≤ l ≤ L− 1) be

f (l)(z(l)
v ,z

(l)
ptail(v,1)

, pn(v, 1), z
(l)
ptail(v,2)

, pn(v, 2), . . . , z
(l)
ptail(v,Δ), pn(v,Δ)) =

CONCAT(g
(l)
1 (π

(l)
pn(v,1)

(z
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),π
(l)
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(z
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), . . . ,π
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ptail(v,Δ)),π

(l)
Δ+1(z

(l)
v )),
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g
(l)
2 (π

(l)
pn(v,1)

(z
(l)
ptail(v,1)

),π
(l)
pn(v,2)

(z
(l)
ptail(v,2)

), . . . ,π
(l)
pn(v,Δ)(z

(l)
ptail(v,Δ)),π

(l)
Δ+1(z

(l)
v )),

. . . ,
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(l)
Δ (π

(l)
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(z
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),π
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), . . . ,π
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pn(v,Δ)(z
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ptail(v,Δ)),π

(l)
Δ+1(z
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v )),

g(l)(π
(l)
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),π
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), . . . ,π
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(l)
Δ+1(z
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v ))),

where π
(l)
i (h) : dl(Δ + 1) → dl selects the i-th component from h (2 ≤ l ≤ L, 1 ≤ i ≤ Δ + 1),

namely, π(l)
i (h)j = zdli+j (1 ≤ j ≤ dl). Finally, let f (L) : RdL(Δ+1)+(dL(Δ+1)+1)Δ → Y be

f (L)(z(L)
v , z

(L)
ptail(v,1)

, pn(v, 1), z
(L)
ptail(v,2)

, pn(v, 2), . . . , z
(L)
ptail(v,Δ), pn(v,Δ)) =

g(L)(π
(L)
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(z
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),π
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(z
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), . . . ,π
(L)
pn(v,Δ)(z

(L)
ptail(v,Δ)),π

(L)
Δ+1(z

(L)
v ))

Intuitively, the embedding of the node v in the l-th layer is the concatenation of all the messages
that v sends and the internal state of v in the l-th communication round of A. We now prove that
π
(l)
pn(v,i)

(z
(l)
ptail(v,i)

) = m
(l)
vi and π

(l)
Δ+1(z

(l)
v ) = s

(l)
v (2 ≤ l ≤ L) hold by induction. First, z(1)

v = s
(1)
v

and g
(0)
pn(v,i)

(z
(1)
ptail(v,i)

) = m
(1)
vi hold by definition. Therefore,

π
(2)
pn(v,i)

(z
(2)
ptail(v,i)

)

= g
(1)
pn(v,i)

(g
(0)
pn(ptail(v,i),1)
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), . . . , g
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(1)
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(1)
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)
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,m
(1)
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, . . . ,m
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ptail(v,i)Δ
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(1)
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)

= m
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and

π
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v )
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(0)
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v )

= g(1)(m
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v2 , . . . ,m

(1)
vΔ, s

(1)
v )

= s(2)v

In the induction step, let π(k)
pn(v,i)

(z
(k)
ptail(v,i)

) = m
(k)
vi and π

(k)
Δ+1(z

(k)
v ) = s

(k)
v hold. Then,

π
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)
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(k)
ptail(ptail(v,i),Δ)),π
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(k)
ptail(v,i)2

, . . . ,m
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ptail(v,i)Δ

, s
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)

= m
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and

π
(k+1)
Δ+1 (z(k+1)

v )

= g(k)(π
(k)
pn(v,1)

(z
(k)
ptail(v,1)

),π
(k)
pn(v,2)

(z
(k)
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), . . . ,π
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ptail(v,Δ)),π
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= g(k)(m
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v1 ,m
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v2 , . . . ,m
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vΔ, s
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= s(k+1)
v

By induction, π(l)
pn(v,i)

(z
(l)
ptail(v,i)

) = m
(l)
vi and π

(l)
Δ+1(z

(l)
v ) = s

(l)
v (2 ≤ l ≤ L) hold. Therefore, the

final output of this VVC-GNN is the same as that of A.

Lemma 14 ([10]). Let PSB(1), PMB(1), and PVVC(1) be the set of graph problems that distributed local
algorithms on SB(1), MB(1), and VVC(1) models can solve only with the degree features, respectively.
Then, PSB(1) � PMB(1) � PVVC(1).
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Proof of Theorem 2. From Theorem 1 and Lemma 14, PSB(1) = PSB-GNNs � PMB(1) = PMB-GNNs �
PVVC(1) = PVVC-GNNs holds.

Lemma 15 ([1, 24]). Let A be any distributed local algorithm with L communication rounds,
G = (V,E) and G� = (V �, E�) be any graphs, p and p� be any port numberings of G and G�, X and
X � be any input to the nodes V and V �, and v and v� be any nodes of G and G�, respectively. If the
radius-L local views of v and v� are the same, the outputs of A for v and v� are the same.

Proof of Theorem 3. PCPNGNNs ⊆ PVVC-GNNs clearly holds because any CPNGNN is a VVC-GNN.
Now, we prove PCPNGNNs ⊇ PVVC-GNNs. We decompose CPNGNNs into two parts. The first part
Φθ corresponds to lines 3-8 of in Algorithm 2 (i.e., communication round) and the second part
Ψθ� corresponds to the tenth line of Algorithm 2 (i.e., calculating the final embedding). Namely,
Φθ(G,X, v) = z

(L+1)
v and Ψθ�(z

(L+1)
v ) = zv, where θ and θ� are parameters of the network (i.e.,

W (l) (l = 1, 2, . . . , L) and the parameters of MLP).

Let W (1),W (2), . . . ,W (L) be the identity matrices. Let G = (V,E) and G� = (V,E) be any
graphs, p and p� be any port numberings of G and G�, X and X � be input vectors whose elements
are non-negative integers, and v and v� be any nodes of G and G�, respectively.

Lemma 16. If the radius-L local views of v and v� are the same, Φθ(G,X, v) = Φθ(G
�,X �, v�).

Proof of Lemma 16. We prove that for any v ∈ V , we can reconstruct the radius-l lo-
cal view of v from z

(l+1)
v using mathematical induction. When l = 1, z

(2)
v =

CONCAT(z
(1)
v , z

(1)
ptail(v,1)

, pn(v, 1), z
(1)
ptail(v,2)

, pn(v, 2), . . . , z
(1)
ptail(v,Δ), pn(v,Δ)). We omit the ReLU

function because the vector is always non-negative. The input vector of node v is z
(1)
v . The

input vector of the node that sends the message to the i-th port of node v is z
(1)
ptail(v,i)

, and

its port number that sends to the node v is pn(v, i). Therefore, z
(2)
v includes sufficient in-

formation on the input vector of node v, input vectors of neighboring nodes, and port num-
bering of the incident edges. In the induction step, for any v ∈ V , z

(k+1)
v contains suffi-

cient information to reconstruct the radius-k local view of v. When l = k + 1, z
(k+2)
v =

CONCAT(z
(k+1)
v , z

(k+1)
ptail(v,1)

, pn(v, 1), z
(k+1)
ptail(v,2)

, pn(v, 2), . . . , z
(k+1)
ptail(v,Δ), pn(v,Δ)). From the inductive

hypothesis, we can reconstruct the radius-k local view Tv of node v. For any i, we can reconstruct
the radius-k local view Ti of the node that sends a message to the i-th port of the node v. We call this
node ui for the purpose of explanation. Note that we cannot identify which node u is. We merge
all of Ti with Tv to construct the radius-(k + 1) local view of node v. There exists at least one child
of the root of Ti that is compatible when we merge Ti and Tv because v is an adjacent node of ui.
In other words, there exists a child c of the root of Ti such that the port numbering between c and
u is the same as that between v and u and the subtree of Ti where the root is c is the same as the
radius-(k−1) local view of v without the subtree where the root is v. The node c corresponds to node
v. Note that c may not be v itself, but this is irrelevant because the resulting tree is isomorphic. After
we merge all Ti, the resulting tree is the radius-(k + 1) local view of v. By mathematical induction,
for any v ∈ V , we can reconstruct the radius-l local view of v from z

(l+1)
v . Therefore, if the radius-L

local views of v and v� are the same, the outputs z(L+1)
v and z

(L+1)
v� must be the same.

Furthermore, if the input vectors X are bounded non-negative integers (i.e., X ∈ (N ∩ [0,α])n×d1

for some α ∈ N), the output vector Φθ(G,X, v) consists of bounded non-negative integers (i.e.,
Φθ(G,X, v) ∈ (N ∩ [0,β])dL+1 for some β ∈ N). Let N be any VVC-GNN. From Lemmas 12,
there exists a distributed local algorithm A that solves the same set of graph problems as N . Let
f(G,X, v) ∈ {0, 1}|Y | represent the one-hot vector of the output of A. From Lemma 15 and 16, there
exists a function h(v) : (N ∩ [0,β])dL+1 → {0, 1}|Y | such that h ◦ Φθ(G,X, v) = f(G,X, v). Let
h� : [0,β]dL+1 → [0, 1]|Y | be a linear interpolation of h. Because h� is continuous and bounded, from
the universal approximation theorem [5], there exists a parameter θ� such that for any v ∈ [0,β]dL+1 ,
�Ψθ�(v) − h�(v)�2 < 1/3. Therefore, the maximum index of Ψθ�(z

(L+1)
v ) is the same as that of

h(z
(L+1)
v ) and the output of this network is the same as that of N for any input.
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Algorithm 3 Calculating a consistent port numbering
Require: Graph G = (V,E).
Ensure: Consistent port numbering p.

1: cv ← 0 ∀v ∈ V
2: p ← empty dictionary
3: for {u, v} ∈ E do
4: cu ← cu + 1
5: cv ← cv + 1
6: p((u, c[u])) = (v, c[v])
7: p((v, c[v])) = (u, c[u])
8: end for
9: return p

Lemma 17 ([3, 6, 15]). The optimal approximation ratio of the VVC model for the minimum domi-
nating set problem is Δ+ 1.
Lemma 18 ([3]). If inputs contain weak 2-coloring, the optimal approximation ratio of the VVC
model for the minimum dominating set problem is Δ+1

2 .
Lemma 19 ([3]). If inputs contain 2-coloring, the optimal approximation ratio of the VVC model for
the minimum dominating set problem is Δ+1

2 .
Lemma 20 ([2, 6, 15]). The optimal approximation ratio of the VVC model for the minimum vertex
cover problem is 2.
Lemma 21 ([3, 6]). The optimal approximation ratio of the VVC model for the maximum matching
problem does not exist.
Lemma 22 ([3]). If inputs contain weak 2-coloring, the optimal approximation ratio of the VVC
model for the maximum matching problem is Δ+1

2 .
Lemma 23 ([3]). For any Δ ≥ 1 and ε > 0, there is a distributed local algorithm on the VVC model
with approximation ratio factor 1 + ε for maximum matching in 2-colored graphs.

Theorems 4, 5, 6, 7, 8, 9, and 10 immediately follow from Lemmas 17, 18, 19, 20, 21, 22, and 23,
respectively, because from Theorems 1 and 3, the set of graph problems that CPNGNNs can solve is
the same as that that the VVC model can.

B How to Calculate a Consistent Port Numbering and a Weak 2-Coloring

A consistent port numbering can be calculated in linear time. We show the pseudo code in Algorithm
3. A weak 2-coloring can be also calculated in linear time by breadth first search. We show the
pseudo code in Algorithm 4. Note that if the input graph is bipartite, Algorithm 4 returns a 2-coloring
of the input graph.

C Experiments

In this section, we confirm that CPNGNNs can solve a graph problem that existing GNNs cannot
through experiments. We use a toy task named finding single leaf [10]. In this problem, the input is a
star graph, and the output must be a single leaf of the graph. If the input graph is not a star graph,
GNNs may output any subset of nodes. Formally, this graph problem is expressed as follows:

Π(G) =

�{{v} | v ∈ V, deg(v) = 1} if G is a star graph
2V (i.e., any subset of V ) otherwise

.

No MB-GNN can solve this problem because for any layer, the latent vector in each leaf node is
identical and MB-GNNs must output the same decision for all leaf nodes.

In this experiment, we use a star graph with four nodes: one center node and three leaves used for
both training and testing. We use a two-layer CPNGNN that learns the stochastic policy of node
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Algorithm 4 Calculating a weak 2-coloring
Require: Graph G = (V,E).
Ensure: Weak 2-coloring c.

1: fv ← false ∀v ∈ V
2: q ← empty queue
3: v0 ← an arbitrary node in G
4: q.push((v0, 0))
5: fv0 ← true
6: while q is not empty do
7: (v, x) ← q.front()
8: q.pop()
9: c(v) = x

10: for u ∈ N (v) do
11: if not fu then
12: q.push((u, 1− x))
13: fu ← true
14: end if
15: end for
16: end while
17: return c

selection and train the model using the REINFORCE algorithm [29]. If the output selects only one
leaf, the reward is 1, and otherwise, the reward is −1. We ran 10 trials with different seeds. After
10000 iterations of training, the model solves the finding single leaf problem in all trials. However,
we train GCN [12], GraphSAGE [9], and GAT [26] to solve this task, but none of them could solve
the finding single leaf problem, as our theory shows. This indicates that the existing GNNs cannot
solve such a simple combinatorial problem whereas out proposed model can.
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