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Abstract

The fundamental learning theory behind neural networks remains largely open.
What classes of functions can neural networks actually learn? Why doesn’t the
trained network overfit when it is overparameterized?
In this work, we prove that overparameterized neural networks can learn some
notable concept classes, including two and three-layer networks with fewer pa-
rameters and smooth activations. Moreover, the learning can be simply done by
SGD (stochastic gradient descent) or its variants in polynomial time using poly-
nomially many samples. The sample complexity can also be almost independent
of the number of parameters in the network.
On the technique side, our analysis goes beyond the so-called NTK (neural tan-
gent kernel) linearization of neural networks in prior works. We establish a new
notion of quadratic approximation of the neural network, and connect it to the
SGD theory of escaping saddle points.

1 Introduction

Neural network learning has become a key machine learning approach and has achieved remarkable
success in a wide range of real-world domains, such as computer vision, speech recognition, and
game playing [25, 26, 30, 41]. In contrast to the widely accepted empirical success, much less
theory is known. Despite a recent boost of theoretical studies, many questions remain largely open,
including fundamental ones about the optimization and generalization in learning neural networks.

One key challenge in analyzing neural networks is that the corresponding optimization is non-convex
and is theoretically hard in the general case [40, 55]. This is in sharp contrast to the fact that simple
optimization algorithms like stochastic gradient descent (SGD) and its variants usually produce good
solutions in practice even on both training and test data. Therefore,

what functions can neural networks provably learn?

Another key challenge is that, in practice, neural networks are heavily overparameterized (e.g., [53]):
the number of learnable parameters is much larger than the number of the training samples. It
is observed that overparameterization empirically improves both optimization and generalization,
appearing to contradict traditional learning theory.2 Therefore,

why do overparameterized networks (found by those training algorithms) generalize?

∗Full version and future updates can be found on https://arxiv.org/abs/1811.04918.
2For example, Livni et al. [36] observed that on synthetic data generated from a target network, SGD con-

verges faster when the learned network has more parameters than the target. Perhaps more interestingly, Arora
et al. [6] found that overparameterized networks learned in practice can often be compressed to simpler ones
with much fewer parameters, without hurting their ability to generalize; however, directly learning such simpler
networks runs into worse results due to the optimization difficulty. We also have experiments in Figure 1(a).
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1.1 What Can Neural Networks Provably Learn?

Most existing works analyzing the learnability of neural networks [9, 12, 13, 20, 21, 28, 33, 34, 42,
43, 47, 49, 50, 56] make unrealistic assumptions about the data distribution (such as being random
Gaussian), and/or make strong assumptions about the network (such as using linear activations).
Li and Liang [32] show that two-layer ReLU networks can learn classification tasks when the data
come from mixtures of arbitrary but well-separated distributions.

A theorem without distributional assumptions on data is often more desirable. Indeed, how to obtain
a result that does not depend on the data distribution, but only on the concept class itself, lies in the
center of PAC-learning which is one of the foundations of machine learning theory [48]. Also,
studying non-linear activations is critical because otherwise one can only learn linear functions,
which can also be easily learned via linear models without neural networks.

Brutzkus et al. [14] prove that two-layer networks with ReLU activations can learn linearly-separable
data (and thus the class of linear functions) using just SGD. This is an (improper) PAC-learning
type of result because it makes no assumption on the data distribution. Andoni et al. [5] proves that
two-layer networks can learn polynomial functions of degree r over d-dimensional inputs in sample
complexityO(dr). Their learner networks use exponential activation functions, where in practice the
rectified linear unit (ReLU) activation has been the dominant choice across vastly different domains.

On a separate note, if one treats all but the last layer of neural networks as generating a random
feature map, then training only the last layer is a convex task, so one can learn the class of linear
functions in this implicit feature space [15, 16]. This result implies low-degree polynomials and
compositional kernels can be learned by neural networks in polynomial time. Empirically, training
last layer greatly weakens the power of neural networks (see Figure 1).

Our Result. We prove that an important concept class that contains three-layer (resp. two-layer)
neural networks equipped with smooth activations can be efficiently learned by three-layer (resp.
two-layer) ReLU neural networks via SGD or its variants.

Specifically, suppose in aforementioned class the best network (called the target function or target
network) achieves a population risk OPT with respect to some convex loss function. We show that
one can learn up to population risk OPT + ε, using three-layer (resp. two-layer) ReLU networks of
size greater than a fixed polynomial in the size of the target network, in 1/ε, and in the “complexity”
of the activation function used in the target network. Furthermore, the sample complexity is also
polynomial in these parameters, and only poly-logarithmic in the size of the learner ReLU network.

We stress here that this is agnostic PAC-learning because we allow the target function to have er-
ror (e.g., OPT can be positive for regression), and is improper learning because the concept class
consists of smaller neural networks comparing to the networks being trained.

Our Contributions. We believe our result gives further insights to the fundamental questions about
the learning theory of neural networks.

• To the best of our knowledge, this is the first result showing that using hidden layers of neural
networks one can provably learn the concept class containing two (or even three) layer neural
networks with non-trivial activation functions.3

• Our three-layer result gives the first theoretical proof that learning neural networks, even with
non-convex interactions across layers, can still be plausible. In contrast, in the two-layer case
the optimization landscape with overparameterization is almost convex [17, 32]; and in previ-
ous studies on the multi-layer case, researchers have weakened the network by applying the so-
called NTK (neural tangent kernel) linearization to remove all non-convex interactions [4, 27].

• To some extent we explain the reason why overparameterization improves testing accuracy:
with larger overparameterization, one can hope to learn better target functions with possibly
larger size, more complex activations, smaller risk OPT, and to a smaller error ε.

• We establish new tools to tackle the learning process of neural networks in general, which can
be useful for studying other network architectures and learning tasks. (E.g., the new tools here

3In contrast, Daniely [15] focuses on training essentially only the last layer (and the hidden-layer movement
is negligible). After this paper has appeared online, Arora et al. [8] showed that neural networks can provably
learn two-layer networks with a slightly weaker class of smooth activation functions. Namely, the activation
functions that are either linear functions or even functions.
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have allowed researchers to study also the learning of recurrent neural networks [2].)

Other Related Works. We acknowledge a different line of research using kernels as improper
learners to learn the concept class of neural networks [22, 23, 36, 54]. This is very different from us
because we use “neural networks” as learners. In other words, we study the question of “what can
neural networks learn” but they study “what alternative methods can replace neural networks.”

There is also a line of work studying the relationship between neural networks and NTKs (neural
tangent kernels) [3, 4, 7, 27, 31, 51]. These works study neural networks by considering their
“linearized approximations.” There is a known performance gap between the power of real neural
networks and the power of their linearized approximations. For instance, ResNet achieves 96%
test error on the CIFAR-10 data set but NTK (even with infinite width) achieves 77% [7]. We also
illustrate this in Figure 1.

1.2 Why Do Overparameterized Networks Generalize?

Our result above assumes that the learner network is sufficiently overparameterized. So, why does it
generalize to the population risk and give small test error? More importantly, why does it generalize
with a number of samples that is (almost) independent of the number of parameters?

This question cannot be studied under the traditional VC-dimension learning theory since the VC
dimension grows with the number of parameters. Several works [6, 11, 24, 39] explain generaliza-
tion by studying some other “complexity” of the learned networks. Most related to the discussion
here is [11] where the authors prove a generalization bound in the norms (of weight matrices) of
each layer, as opposed to the number of parameters. There are two main concerns with those results.

• Learnability = Trainability + Generalization. It is not clear from those results how a network
with both low “complexity” and small training loss can be found by the training method.
Therefore, they do not directly imply PAC-learnability for non-trivial concept classes (at least
for those concept classes studied by this paper).

• Their norms are “sparsity induced norms”: for the norm not to scale with the number of hidden
neurons m, essentially, it requires the number of neurons with non-zero weights not to scale
with m. This more or less reduces the problem to the non-overparameterized case.

At a high level, our generalization is made possible with the following sequence of conceptual steps.

• Good networks with small risks are plentiful: thanks to overparameterization, with high prob-
ability over random initialization, there exists a good network in the close neighborhood of
any point on the SGD training trajectory. (This corresponds to Section 6.2 and 6.3.)

• The optimization in overparameterized neural networks has benign properties: essentially
along the training trajectory, there is no second-order critical points for learning three-layer
networks, and no first-order critical points for two-layer. (This corresponds to Section 6.4.)

• In the learned networks, information is also evenly distributed among neurons, by utilizing
either implicit or explicit regularization. This structure allows a new generalization bound that
is (almost) independent of the number of neurons. (This corresponds to Section 6.5 and 6.6,
and we also empirically verify it in Section 7.1.)

Since practical neural networks are typically overparameterized, we genuinely hope that our results
can provide theoretical insights to networks used in various applications.

1.3 Roadmap

In the main body of this paper, we introduce notations in Section 2, present our main results and
contributions for two and three-layer networks in Section 3 and 4, and conclude in Section 5.

For readers interested in our novel techniques, we present in Section 6 an 8-paged proof sketch of our
three-layer result. For readers more interested in the practical relevance, we give more experiments
in Section 7. In the appendix, we begin with mathematical preliminaries in Appendix A. Our full
three-layer proof is in Appendix C. Our two-layer proof is much easier and in Appendix B.
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Figure 1: Performance comparison. 3layer/2layer stands for training (hidden weights) in three and
two-layer neural networks. (last) stands for conjugate kernel [15], meaning training only the
output layer. (NTK) stands for neural tangent kernel [27] with finite width. We also implemented
other direct kernels such as [54] but they perform much worse.

Setup. We consider `2 regression task on synthetic data where feature vectors x ∈ R4

are generated as normalized random Gaussian, and label is generated by target function
F ∗(x) = (sin(3x1) + sin(3x2) + sin(3x3) − 2)2 · cos(7x4). We use N training samples,
and SGD with mini-batch size 50 and best tune learning rates and weight decay parameters. See
Appendix 7 for our experiment setup, how we choose such target function, and more experiments.

2 Notations

σ(·) denotes the ReLU function σ(x) = max{x, 0}. Given f : R → R and a vector x ∈ Rm, f(x)
denotes f(x) = (f(x1), . . . , f(xm)). For a vector w, ‖w‖p denote its p-th norm, and when clear
from the context, abbreviate ‖w‖ = ‖w‖2. For a matrix W ∈ Rm×d, use Wi or sometimes wi to

denote the i-th row ofW . The row `p norm is ‖W‖2,p :=
(∑

i∈[m] ‖Wi‖p2
)1/p

, the spectral norm is

‖W‖2, and the Frobenius norm is ‖W‖F = ‖W‖2,2. We say f : Rd → R is L-Lipschitz continuous
if |f(x)− f(y)| ≤ L‖x− y‖2; is L-Lipschitz smooth if ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

Function complexity. The following notion measures the complexity of any smooth activation
function φ(z). Suppose φ(z) =

∑∞
i=0 ciz

i. Given a non-negative R, the complexity

Cε(φ,R) :=
∑∞
i=0

(
(C∗R)i +

(√log(1/ε)√
i

C∗R
)i)|ci|, Cs(φ,R) := C∗

∑∞
i=0(i+ 1)1.75Ri|ci|

where C∗ is a sufficiently large constant (e.g., 104). Intuitively, Cs measures the sample complexity:
how many samples are required to learn φ correctly; while Cε bounds the network size: how much
over-parameterization is needed for the algorithm to efficiently learn φ up to ε error. It is always
true that Cs(φ,R) ≤ Cε(φ,R) ≤ Cs(φ,O(R))× poly(1/ε).4 While for sin z, exp(z) or low degree
polynomials, Cs(φ,O(R)) and Cε(φ,R) only differ by o(1/ε).

Example 2.1. If φ(z) = ec·z − 1, φ(z) = sin(c · z), φ(z) = cos(c · z) for constant c or φ(z) is
low degree polynomial, then Cε(φ, 1) = o(1/ε) and Cs(φ, 1) = O(1). If φ(z) = sigmoid(z) or
tanh(z), we can truncate their Taylor series at degree Θ(log 1

ε ) to get ε approximation. One can
verify this gives Cε(φ, 1) ≤ poly(1/ε) and Cs(φ, 1) ≤ O(1).

3 Result for Two-Layer Networks

We consider learning some unknown distribution D of data points z = (x, y) ∈ Rd × Y , where x
is the input point and y is the label. Without loss of generality, assume ‖x‖2 = 1 and xd = 1

2 .5

Consider a loss function L : Rk × R → Y such that for every y ∈ Y , the function L(·, y) is non-
negative, convex, 1-Lipschitz continuous and 1-Lipschitz smooth and L(0, y) ∈ [0, 1]. This includes
both the cross-entropy loss and the `2-regression loss (for bounded Y).

4Recall
(√log(1/ε)

√
i

C∗
)i ≤ eO(log(1/ε)) = 1

poly(ε)
for every i ≥ 1.

5 1
2

can always be padded to the last coordinate, and ‖x‖2 = 1 can always be ensured from ‖x‖2 ≤ 1 by
padding

√
1− ‖x‖22. This assumption is for simplifying the presentation.
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Concept class and target function F ∗(x). Consider target functions F ∗ : Rd → Rk of

F ∗ = (f∗1 , . . . , f
∗
k ) and f∗r (x) =

p∑
i=1

a∗r,iφi(〈w∗1,i, x〉)〈w∗2,i, x〉 (3.1)

where each φi : R→ R is infinite-order smooth and the weights w∗1,i ∈ Rd, w∗2,i ∈ Rd and a∗r,i ∈ R.
We assume for simplicity ‖w∗1,i‖2 = ‖w∗2,i‖2 = 1 and |a∗r,i| ≤ 1.6 We denote by

Cε(φ,R) := maxj∈[p]{Cε(φj , R)} and Cs(φ,R) := maxj∈[p]{Cs(φj , R)}
the complexity of F ∗ and assume they are bounded.

In the agnostic PAC-learning language, our concept class consists of all functions F ∗ in the form
of (3.1) with complexity bounded by threshold C and parameter p bounded by threshold p0. Let
OPT = E[L(F ∗(x), y)] be the population risk achieved by the best target function in this concept
class. Then, our goal is to learn this concept class with population risk OPT + ε using sample and
time complexity polynomial in C, p0 and 1/ε. In the remainder of this paper, to simplify notations,
we do not explicitly define this concept class parameterized by C and p. Instead, we equivalently
state our theorem with respect to any (unknown) target function F ∗ with specific parameters C and
p satisfying OPT = E[L(F ∗(x), y)]. We assume OPT ∈ [0, 1] for simplicity.
Remark. Standard two-layer networks f∗r (x) =

∑p
i=1 a

∗
r,iφ(〈w∗1,i, x〉) are special cases of (3.1) (by

setting w∗2,i = (0, . . . , 0, 1) and φi = φ). Our formulation (3.1) additionally captures combinations
of correlations between non-linear and linear measurements of different directions of x.

Learner network F (x;W ). Using a data set Z = {z1, . . . , zN} of N i.i.d. samples from D, we
train a network F = (f1, · · · , fk) : Rd → Rk with

fr(x) :=

m∑
i=1

ar,iσ(〈wi, x〉+ bi) = a>r σ(Wx+ b) (3.2)

where σ is the ReLU activation, W = (w1, . . . , wm) ∈ Rm×d is the hidden weight matrix, b ∈ Rm
is the bias vector, and ar ∈ Rm is the output weight vector. To simplify analysis, we only update W
and keep b and ar at initialization values. For such reason, we write the learner network as fr(x;W )

and F (x;W ). We sometimes use b(0) = b and a(0)
r = ar to emphasize they are randomly initialized.

Our goal is to learn a weight matrix W with population risk E
[
L(F (x;W ), y)

]
≤ OPT + ε.

Learning Process. LetW (0) denote the initial value of the hidden weight matrix, and letW (0)+Wt

denote the value at time t. (Note that Wt is the matrix of increments.) The weights are initialized
with Gaussians and then W is updated by the vanilla SGD. More precisely,

• entries of W (0) and b(0) are i.i.d. random Gaussians from N (0, 1/m),
• entries of each a(0)

r are i.i.d. random Gaussians from N (0, ε2
a) for some fixed εa ∈ (0, 1].7

At time t, SGD samples z = (x, y) ∼ Z and updates Wt+1 = Wt − η∇L(F (x;W (0) +Wt), y).

3.1 Main Theorem

For notation simplicity, with high probability (or w.h.p.) means with probability 1− e−c log2m for a
sufficiently large constant c, and Õ hides factors of polylog(m).

Theorem 1 (two-layer). For every ε ∈
(
0, 1

pkCs(φ,1)

)
, there exists

M0 = poly(Cε(φ, 1), 1/ε) and N0 = poly(Cs(φ, 1), 1/ε)

such that for every m ≥ M0 and every N ≥ Ω̃(N0), choosing εa = ε/Θ̃(1) for the initialization,
choosing learning rate η = Θ̃

(
1

εkm

)
and

T = Θ̃

(
(Cs(φ, 1))2 · k3p2

ε2

)
,

6For general ‖w∗1,i‖2 ≤ B, ‖w∗2,i‖2 ≤ B, |a∗r,i| ≤ B, the scaling factor B can be absorbed into the
activation function φ′(x) = φ(Bx). Our results then hold by replacing the complexity of φ with φ′.

7We shall choose εa = Θ̃(ε) in the proof due to technical reason. As we shall see in the three-layer case, if
weight decay is used, one can relax this to εa = 1.
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with high probability over the random initialization, SGD after T iteration satisfies

Esgd
[

1
T

∑T−1
t=0 E(x,y)∼DL(F (x;W (0) +Wt), y)

]
≤ OPT + ε.

Example 3.1. For functions such as φ(z) = ez, sin z, sigmoid(z), tanh(z) or low degree polynomi-
als, using Example 2.1, our theorem indicates that for target networks with such activation functions,
we can learn them using two-layer ReLU networks with

size m =
poly(k, p)

poly(ε)
and sample complexity min{N,T} =

poly(k, p, logm)

ε2

We note sample complexity T is (almost) independent of m, the amount of overparametrization.

3.2 Our Interpretations

Overparameterization improves generalization. By increasing m, Theorem 1 supports more
target functions with possibly larger size, more complex activations, and smaller population risk
OPT. In other words, when m is fixed, among the class of target functions whose complexities
are captured by m, SGD can learn the best function approximator of the data, with the smallest
population risk. This gives intuition how overparameterization improves test error, see Figure 1(a).

Large margin non-linear classifier. Theorem 1 is a nonlinear analogue of the margin theory for
linear classifiers. The target function with a small population risk (and of bounded norm) can be
viewed as a “large margin non-linear classifier.” In this view, Theorem 1 shows that assuming the
existence of such large-margin classifier, SGD finds a good solution with sample complexity mostly
determined by the margin, instead of the dimension of the data.

Inductive bias. Recent works (e.g., [4, 32]) show that when the network is heavily overparame-
terized (that is, m is polynomial in the number of training samples) and no two training samples are
identical, then SGD can find a global optimum with 0 classification error (or find a solution with
ε training loss) in polynomial time. This does not come with generalization, since it can even fit
random labels. Our theorem, combined with [4], confirms the inductive bias of SGD for two-layer
networks: when the labels are random, SGD finds a network that memorizes the training data; when
the labels are (even only approximately) realizable by some target network, then SGD learns and
generalizes. This gives an explanation towards the well-known empirical observations of such in-
ductive bias (e.g., [53]) in the two-layer setting, and is more general than Brutzkus et al. [14] in
which the target network is only linear.

4 Result for Three-Layer Networks

Concept class and target function F ∗(x). This time we consider more powerful target functions
F ∗ = (f∗1 , · · · , f∗k ) of the form

f∗r (x) :=
∑
i∈[p1]

a∗r,iΦi

 ∑
j∈[p2]

v∗1,i,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,i,jφ2,j(〈w∗2,j , x〉)

 (4.1)

where each φ1,j , φ2,j ,Φi : R → R is infinite-order smooth, and the weights w∗1,i, w
∗
2,i ∈ Rd,

v∗1,i, v
∗
2,i ∈ Rp2 and a∗r,i ∈ R satisfy ‖w∗1,j‖2 = ‖w∗2,j‖2 = ‖v∗1,i‖2 = ‖v∗2,i‖2 = 1 and |a∗r,i| ≤ 1.

Let
Cε(φ,R) = maxj∈[p2],s∈[1,2]{Cε(φs,j , R)}, Cε(Φ, R) = maxj∈[p1]{Cε(Φj , R)}
Cs(φ,R) = maxj∈[p2],s∈[1,2]{Cs(φs,j , R)}, Cs(Φ, R) = maxj∈[p1]{Cs(Φj , R)}

to denote the complexity of the two layers, and assume they are bounded.

Our concept class contains measures of correlations between composite non-linear functions and
non-linear functions of the input, there are plenty of functions in this new concept class that may not
necessarily have small-complexity representation in the previous formulation (3.1), and as we shall
see in Figure 1(a), this is the critical advantage of using three-layer networks compared to two-
layer ones or their NTKs. The learnability of this correlation is due to the non-convex interactions
between hidden layers. As a comparison, [15] studies the regime where the changes in hidden layers
are negligible thus can not show how to learn this concept class with a three-layer network.
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Remark 4.1. Standard three-layer networks

f∗r (x) =
∑
i∈[p1] a

∗
r,iΦi

(∑
j∈[p2] v

∗
i,jφj(〈w∗j , x〉)

)
are only special cases of (4.1). Also, even in the special case of Φi(z) = z, the target

f∗r (x) =
∑
i∈[p1] a

∗
r,i

(∑
j∈[p2] v

∗
1,i,jφ1(〈w∗1,j , x〉)

)(∑
j∈[p2] v

∗
2,i,jφ2(〈w∗2,j , x〉)

)
captures combinations of correlations of non-linear measurements in different directions of x.

Learner network F (x;W,V ). Our learners are three-layer networks F = (f1, . . . , fk) with

fr(x) =
∑
i∈[m2]

ar,iσ(ni(x) + b2,i) where each ni(x) =
∑
j∈[m1]

vi,jσ (〈wj , x〉+ b1,j)

The first and second layers have m1 and m2 hidden neurons. Let W ∈ Rm1×d and V ∈ Rm2×m1

represent the weights of the first and second hidden layers respectively, and b1 ∈ Rm1 and b2 ∈ Rm2

represent the corresponding bias vectors, ar ∈ Rm2 represent the output weight vector.

4.1 Learning Process

Again for simplicity, we only update W and V . The weights are randomly initialized as:

• entries of W (0) and b1 = b
(0)
1 are i.i.d. from N (0, 1/m1),

• entries of V (0) and b2 = b
(0)
2 are i.i.d. from N (0, 1/m2),

• entries of each ar = a
(0)
r are i.i.d. from N (0, ε2

a) for εa = 1.

As for the optimization algorithm, we use SGD with weight decay and an explicit regularizer.

For some λ ∈ (0, 1], we will use λF (x;W,V ) as the learner network, i.e., linearly scale F down
by λ. This is equivalent to replacing W , V with

√
λW ,

√
λV , since a ReLU network is positive

homogenous. The SGD will start with λ = 1 and slowly decrease it, similar to weight decay.8

We also use an explicit regularizer for some λw, λv > 0 with9

R(
√
λW,
√
λV ) := λv‖

√
λV ‖2F + λw‖

√
λW‖42,4 .

Now, in each round t = 1, 2, . . . , T , we use (noisy) SGD to minimize the following stochastic
objective for some fixed λt−1:

L2(λt−1;W ′, V ′) := L
(
λt−1F

(
x;W (0) +W ρ + ΣW ′, V (0) + V ρ + V ′Σ

))
+R(

√
λt−1W

′,
√
λt−1V

′) (4.2)
Above, the objective is stochastic because (1) z ∼ Z is a random sample from the training set, (2)
W ρ and V ρ are two small perturbation random matrices with entries i.i.d. drawn from N (0, σ2

w)
and N (0, σ2

v) respectively, and (3) Σ ∈ Rm1×m1 is a random diagonal matrix with diagonals i.i.d.
uniformly drawn from {+1,−1}. We note that the use of W ρ and V ρ is standard for Gaussian
smoothing on the objective (and not needed in practice).10 The use of Σ may be reminiscent of the
Dropout technique [46] in practice which randomly masks out neurons, and can also be removed.11

8We illustrate the technical necessity of adding weight decay. During training, it is easy to add new infor-
mation to the current network, but hard to forget “false” information that is already in the network. Such false
information can be accumulated from randomness of SGD, non-convex landscapes, and so on. Thus, by scaling
down the network we can effectively forget false information.

9This ‖ · ‖2,4 norm on W encourages weights to be more evenly distributed across neurons. It can be
replaced with ‖

√
λt−1Wt−1‖2+α2,2+α for any constant α > 0 for our theoretical purpose. We choose α = 2 for

simplicity, and observe that in practice, weights are automatically spread out due to data randomness, so this
explicit regularization may not be needed. See Section 7.1 for an experiment.

10Similar to known non-convex literature [19] or smooth analysis, we introduce Gaussian perturbation W ρ

and V ρ for theoretical purpose and it is not needed in practice. Also, we apply noisy SGD which is the vanilla
SGD plus Gaussian perturbation, which again is needed in theory but believed unnecessary for practice [19].

11In the full paper we study two variants of SGD. This present version is the “second variant,” and the first
variant L1(λt−1;W ′, V ′) is the same as (4.2) by removing Σ. Due to technical difficulty, the best sample
complexity we can prove for L1 is a bit higher.
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Algorithm 1 SGD for three-layer networks (second variant (4.2))

Input: Data set Z , initialization W (0), V (0), step size η, number of inner steps Tw, σw, σv, λw, λv .
1: W0 = 0, V0 = 0, λ1 = 1, T = Θ

(
η−1 log log(m1m2)

ε0

)
.

2: for t = 1, 2, . . . , T do
3: Apply noisy SGD with step size η on the stochastic objective L2(λt−1;W,V ) for Tw steps; the starting

point is W = Wt−1, V = Vt−1 and suppose it reaches Wt, Vt. � see Lemma A.9
4: λt+1 = (1− η)λt. � weight decay
5: end for
6: Randomly sample Σ̂ with diagonal entries i.i.d. uniform on {1,−1}
7: Randomly sample Θ̃(1/ε20) many noise matrices

{
W ρ,j , V ρ,j

}
. Let

j∗ = arg minj

{
Ez∈ZL

(
λTF

(
x;W (0) +W ρ,j + Σ̂WT , V

(0) + V ρ,j + VT Σ̂
))}

8: Output W (out)
T = W (0) +W ρ,j∗ + Σ̂WT , V (out)

T = V (0) + V ρ,j
∗

+ VT Σ̂.

Algorithm 1 presents the details. Specifically, in each round t, Algorithm 1 starts with weight ma-
trices Wt−1, Vt−1 and performs Tw iterations. In each iteration it goes in the negative direction of
the stochastic gradient ∇W ′,V ′L2(λt;W

′, V ′). Let the final matrices be Wt, Vt. At the end of this
round t, Algorithm 1 performs weight decay by setting λt = (1− η)λt−1 for some η > 0.

4.2 Main Theorems

For notation simplicity, with high probability (or w.h.p.) means with probability 1− e−c log2(m1m2)

and Õ hides factors of polylog(m1,m2).

Theorem 2 (three-layer, second variant). Consider Algorithm 1. For every constant γ ∈ (0, 1/4],
every ε0 ∈ (0, 1/100], every ε = ε0

kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2
, there exists

M = poly
(
Cε(Φ,

√
p2Cε(φ, 1)),

1

ε

)
such that for every m2 = m1 = m ≥M , and properly set λw, λv, σw, σv in Table 1, as long as

N ≥ Ω̃

((Cε(Φ,√p2Cε(φ, 1)) · Cε(φ, 1) · √p2p1k
2

ε0

)2
)

there is a choice η = 1/poly(m1,m2) and T = poly(m1,m2) such that with probability≥ 99/100,

E(x,y)∼DL(λTF (x;W
(out)
T , V

(out)
T ), y) ≤ (1 + γ)OPT + ε0.

4.3 Our Contributions

Our sample complexity N scales polynomially with the complexity of the target network, and is
(almost) independent of m, the amount of overparameterization. This itself can be quite surprising,
because recent results on neural network generalization [6, 11, 24, 39] require N to be polynomial
in m. Furthermore, Theorem 2 shows three-layer networks can efficiently learn a bigger concept
class (4.1) comparing to what we know about two-layer networks (3.1).

From a practical standpoint, one can construct target functions of the form (4.1) that cannot be
(efficiently) approximated by any two-layer target function in (3.1). If data is generated according
to such functions, then it may be necessary to use three-layer networks as learners (see Figure 1).

From a theoretical standpoint, even in the special case of Φ(z) = z, our target function can cap-
ture correlations between non-linear measurements of the data (recall Remark 4.1). This means
Cε(Φ,Cε(φ, 1)

√
p2) ≈ O(

√
p2Cε(φ, 1)), so learning it is essentially in the same complexity as

learning each φs,j . For example, a three-layer network can learn cos(100〈w∗1 , x〉) · e100〈w∗2 ,x〉 up to
accuracy ε in complexity poly(1/ε), while it is unclear how to do so using two-layer networks.

Technical Contributions. We highlight some technical contributions in the proof of Theorem 2.

In recent results on the training convergence of neural networks for more than two layers [3, 4], the
optimization process stays in a close neighborhood of the initialization so that, with heavy overpa-
rameterization, the network becomes “linearized” and the interactions across layers are negligible.
In our three-layer case, this means that the matrix W never interacts with V . They then argue that

8



SGD simulates a neural tangent kernel so the learning process is almost convex [27]. In our analysis,
we directly tackle non-convex interactions between W and V , by studying a “quadratic approxima-
tion” of the network. (See Remark 6.1 for a mathematical comparison.) Our new proofs techniques
that could be useful for future theoretical applications.

Also, for the results [3, 4] and our two-layer Theorem 1 to hold, it suffices to analyze a regime where
the “sign pattern” of ReLUs can be replaced with that of the random initialization. (Recall σ(x) =
Ix≥0 · x and we call Ix≥0 the “sign pattern.”) In our three-layer analysis, the optimization process
has moved sufficiently away from initialization, so that the sign pattern change can significantly
affect output. This brings in additional technical challenge because we have to tackle non-convex
interactions between W and V together with changing sign patterns.12

Comparison to Daniely [15]. Daniely [15] studies the learnability of multi-layer networks when
(essentially) only the output layer is trained, which reduces to a convex task. He shows that multi-
layer networks can learn a compositional kernel space, which implies two/three-layer networks can
efficiently learn low-degree polynomials. He did not derive the general sample/time complexity
bounds for more complex functions such as those in our concept classes (3.1) and (4.1), but showed
that they are finite.

In contrast, our learnability result of concept class (4.1) is due to the non-convex interaction between
hidden layers. Since Daniely [15] studies the regime when the changes in hidden layers are negli-
gible, if three layer networks are used, to the best of our knowledge, their theorem cannot lead to
similar sample complexity bounds comparing to Theorem 2 by only training the last layer of a three-
layer network. Empirically, one can also observe that training hidden layers is better than training
the last layer (see Figure 1).

5 Conclusion and Discussion

We show by training the hidden layers of two-layer (resp. three-layer) overparameterized neu-
ral networks, one can efficiently learn some important concept classes including two-layer (resp.
three-layer) networks equipped with smooth activation functions. Our result is in the agnostic PAC-
learning language thus is distribution-free. We believe our work opens up a new direction in both
algorithmic and generalization perspectives of overparameterized neural networks, and pushing for-
ward can possibly lead to more understanding about deep learning.

Our results apply to other more structured neural networks. As a concrete example, consider con-
volutional neural networks (CNN). Suppose the input is a two dimensional matrix x ∈ Rd×s which
can be viewed as d-dimensional vectors in s channels, then a convolutional layer on top of x is
defined as follows. There are d′ fixed subsets {S1, S2, . . . , Sd′} of [d] each of size k′. The output
of the convolution layer is a matrix of size d′ × m, whose (i, j)-th entry is φ(〈wj , xSi〉), where
xSi ∈ Rk′×s is the submatrix of x with rows indexed by Si; wj ∈ Rk′×s is the weight matrix of the
j-th channel; and φ is the activation function. Overparameterization then means a larger number of
channels m in our learned network comparing to the target. Our analysis can be adapted to show a
similar result for this type of networks.

One can also combine this paper with properties of recurrent neural networks (RNNs) [3] to derive
PAC-learning results for RNNs [2], or use the existential tools of this paper to derive PAC-learning
results for three-layer residual networks (ResNet) [1]. The latter gives a provable separation between
neural networks and kernels in the efficient PAC-learning regime.
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Therefore, if after training we replace the sign pattern with random initialization, the output will be meaningless.
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PROOF SKETCH

We present key technical lemmas we used for proving the three-layer network theorems in Section 6
so that interested readers do not need to go through the appendix. Many of them can be of in-
dependent interests and have found further applications beyond this paper (such as for residual
networks [1] and for recurrent networks [2]). The full proof is in Appendix C.

The two-layer result is based on similar ideas but simpler, and the full proof is in Appendix B.

We give more experiments in Section 7 on Page 21. Our appendix starts on page 23.

6 Proof Overview for Three Layer Networks

In Section 6.1, we state the main theorem for the first variant of the SGD, which we excluded from
the main body due to space limitation. In Section 6.2, we show the existence of some good “pseudo
network” that can approximate the target. In Section 6.3, we present our coupling technique be-
tween a real network and a pseudo network. In Section 6.4, we present the key lemma about the
optimization procedure. In Section 6.5, we state a simple generalization bound that is compatible
with our algorithm. These techniques together give rise to the proof of Theorem 3. In Section 6.6,
we present additional techniques needed to show Theorem 2.

6.1 First Variant of SGD

In the first variant of SGD, in each round t = 1, 2, . . . , T , we use (noisy) SGD to minimize the
following stochastic objective for some fixed λt−1:

L1(λt−1;W ′, V ′) := L
(
λt−1F

(
x;W (0) +W ρ +W ′, V (0) + V ρ + V ′

))
+R(

√
λt−1W

′,
√
λt−1V

′)

(6.1)
Above, the objective is stochastic because (1) z ∼ Z is a random sample from the training set, and
(2) W ρ and V ρ are two small perturbation matrices. This is only different from (4.2) by removing
Σ. We include the pseudocode in Algorithm 2.

Algorithm 2 SGD for three-layer networks (first variant (6.1))

Input: Data set Z , initialization W (0), V (0), step size η, number of inner steps Tw, σw, σv, λw, λv .

1: W0 = 0, V0 = 0, λ1 = 1, T = Θ
(
η−1 log log(m1m2)

ε0

)
.

2: for t = 1, 2, . . . , T do
3: Apply noisy SGD with step size η on the stochastic objective L1(λt−1;W,V ) for Tw steps;

the starting point is W = Wt−1, V = Vt−1 and suppose it reaches Wt, Vt. � see Lemma A.9
4: λt+1 = (1− η)λt. � weight decay
5: end for
6: Randomly sample Θ̃(1/ε2

0) many noise matrices
{
W ρ,j , V ρ,j

}
. Let

j∗ = arg min
j

{
Ez∈ZL

(
λTF

(
x;W (0) +W ρ,j +WT , V

(0) + V ρ,j + VT
))}

7: Output W (out)
T = W (0) +W ρ,j∗ +WT , V (out)

T = V (0) + V ρ,j
∗

+ VT .

Below is the main theorem for using the first variant of SGD to train three-layer networks.

Theorem 3 (three-layer, first variant). Consider Algorithm 2. In the same setting as Theorem 2, for
every m2 = m1 = m ≥M , as long as

N ≥ Ω̃(Mm3/2)
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there is choice η = 1/poly(m1,m2), T = poly(m1,m2) such that with probability at least 99/100,

E(x,y)∼DL(λTF (x;W
(out)
T , V

(out)
T ), y) ≤ (1 + γ)OPT + ε0.

As m goes large, this sample complexity N ≈ m3/2 polynomially scales with m so may not be
very efficient (we did not try hard to improve the exponent 3/2). Perhaps interesting enough, this
is already non-trivial, because N can be much smaller than m2, the number of parameters of the
network or equivalently the naive VC dimension bound. Recall in our second variant of SGD, the
sample complexity N only grows polylogarithmically in m.

6.2 Existence

We wish to show the existence of some good “pseudo network” that can approximate the target
network. In a pseudo network, each ReLU activation σ(x) = Ix≥0x is replaced with Ix(0)≥0x where
x(0) is the value at random initialization. Formally, let

• Dw,x ∈ {0, 1}m1×m1 denote a diagonal sign matrix indicating the sign of the ReLU’s for the
first layer at random initialization, that is, [Dw,x]i,i = I[〈w(0)

i , x〉+ b
(0)
1,i ≥ 0], and

• Dv,x ∈ {0, 1}m2×m2 denote the diagonal sign matrix of the second layer at random initializa-
tion.

Consider the output of a three-layer network at randomly initialized sign without bias as

g(0)
r (x;W,V ) := arDv,xV Dw,xWx

G(0)(x;W,V ) :=
(
g

(0)
1 , · · · , g(0)

k

)
Remark 6.1. The above pseudo network can be reminiscent of the simpler linearized NTK approxi-
mation of a network used in prior work [4, 27], which in our language means

arDv,xV Dw,xW
(0)x+ arDv,xV

(0)Dw,xWx .

In such linearization it is clear that the weight matrices W and V do not interact with each other. In
contrast, in our quadratic formula arDv,xV Dw,xWx, the matricesW and V are multiplied together,
resulting in a non-convex interaction after putting into the loss function. We shall see in Section 6.3
that the pseudo network can be made close to the real network in some sense.

Lemma 6.2 (existence). For every ε ∈
(
0, 1

kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2

)
, there exists

M = poly

(
Cε
(
Φ,
√
p2Cε(φ, 1)

)
,

1

ε

)
C0 = Cε(Φ,

√
p2Cε(φ, 1)) · Cε(φ, 1) · Õ(p1

√
p2k)

such that if m1,m2 ≥M , then with high probability, there exists weights W>, V > with

‖W>‖2,∞ = max
i
‖w>

i ‖2 ≤
C0

m1
, ‖V >‖2,∞ = max

i
‖v>i ‖2 ≤

√
m1

m2

such that

E(x,y)∼D

[
k∑
r=1

∣∣∣f∗r (x)− g(0)
r (x;W>, V >)

∣∣∣] ≤ ε,
and hence,

E(x,y)∼D

[
L(G(0)(x;W>, V >), y)

]
≤ OPT + ε.

In other words, at randomly initialized signs, there exist choices ofW> and V > with small norms so
thatG(0)(x;W>, V >) approximates the target. Later, we will combine this with the coupling lemma
Section 6.3 to show a main structural property of overparameterized networks: solutions with good
population risks are dense in the parameter space, in the sense that with high probability over the
random initialization, there exists a good solution in the “close” neighborhood of the initialized
weights.
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6.2.1 Technical Ideas

We begin with a simple task to illustrate the main idea. Let w∗ ∈ Rd be a given vector and
suppose we want to approximate function φ(〈w∗, x〉) (over x) by designing a random function
I〈w,x〉+b0≥0h(〈w,w∗〉, b0) (over x) where w is a random Gaussian, b0 is a random bias, and h(·, ·)
is a function at our choice. The next lemma says that, we can design h with good property so that
the expectation of the random function I〈w,x〉+b0≥0h(〈w,w∗〉, b0) is close to φ(〈w∗, x〉).

Lemma 6.3 (indicator to function). For every smooth function φ, every ε ∈
(
0, 1

Cs(φ,1)

)
, there

exists a function h : R2 → [−Cε(φ, 1),Cε(φ, 1)] that is also Cε(φ, 1)-Lipschitz continuous on its
first coordinate with the following two (equivalent) properties:

(a) For every x1 ∈ [−1, 1]:∣∣∣E [I
α1x1+β1

√
1−x2

1+b0≥0
h(α1, b0)

]
− φ(x1)

∣∣∣ ≤ ε
where α1, β1, b0 ∼ N (0, 1) are independent random variables.

(b) For every w∗, x ∈ Rd with ‖w∗‖2 = ‖x‖2 = 1:∣∣E [I〈w,x〉+b0≥0h(〈w,w∗〉, b0)
]
− φ(〈w∗, x〉)

∣∣ ≤ ε
where w ∼ N (0, I) is an d-dimensional Gaussian, b0 ∼ N (0, 1).

Furthermore, h satisfies Eα1,b0∼N (0,1)

[
h(α1, b0)2

]
≤ (Cs(φ, 1))2.

If one designs a vector w> =
(
0, . . . , 0, 2h(〈w,w∗〉, b0)

)
, then using xd = 1/2, Lemma 6.3 implies∣∣E [I〈w,x〉+b0≥0〈w>, x〉

]
− φ(〈w∗, x〉)

∣∣ ≤ ε. Therefore, Lemma 6.3 corresponds to Lemma 6.2 in
the special case of a single neuron.
Remark. The reason Lemma 6.3b is equivalent to Lemma 6.3a consists of a few thinking steps.
Without loss of generality, one can assume w∗ = (1, 0, 0, . . . , 0) and write φ(〈w∗, x〉) = φ(x1)
and write h(〈w,w∗〉, b0) = h(w1, b0) so it only depends on the first coordinate of w and b0. Under
such simplifications, the second through last coordinates do not make any difference, so we can
assume without loss of generality that w∗, w, x are only in 2 dimensions, and write w = (α1, β1)

and x = (x1,
√

1− x2
1). In sum, proving Lemma 6.3a suffices in establishing Lemma 6.3b.

Given Lemma 6.3, we can directly apply it to the two-layer case (see Appendix B.1) to show the
existence of good pseudo networks. As for the three-layer case, we need to apply Lemma 6.3 twice:
once for (each neuron of) the second hidden layer and once for the output.

Consider the the input (without bias) to a single neuron of the second hidden layer at random initial-
ization. Without loss of generality, say the first neuron, given as:

n1(x) =
∑
i∈[m1]

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
.

Even though n1(x) is completely random, using Lemma 6.3, we can derive the following lemma
which rewrites n1(x) in the direction of an arbitrary function φ.

Lemma 6.4 (information out of randomness). For every smooth function φ, every w∗ ∈ Rd with
‖w∗‖2 = 1, for every ε ∈

(
0, 1

Cs(φ,1)

)
, there exists real-valued functions

ρ(v
(0)
1 ,W (0), b

(0)
1 ), B(x, v

(0)
1 ,W (0), b

(0)
1 ), R(x, v

(0)
1 ,W (0), b

(0)
1 ), and φε(x)

such that for every x:

n1(x) = ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
φε(x) +B

(
x, v

(0)
1 ,W (0), b

(0)
1

)
+R

(
x, v

(0)
1 ,W (0), b

(0)
1

)
.

Moreover, letting C = Cε(φ, 1) be the complexity of φ, and if v(0)
1,i ∼ N (0, 1

m2
) and w(0)

i,j , b
(0)
1,i ∼

N (0, 1
m1

) are at random initialization, then we have

1. For every fixed x, ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
is independent of B

(
x, v

(0)
1 ,W (0), b

(0)
1

)
.

2. ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
∼ N

(
0, 1

100C2m2

)
.
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3. For every x with ‖x‖2 = 1, |φε(x)− φ(〈w∗, x〉)| ≤ ε.

4. For every fixed x with ‖x‖2 = 1, with high probability
∣∣∣R(x, v(0)

1 ,W (0), b
(0)
1

)∣∣∣ ≤
Õ
(

1√
m1m2

)
and

∣∣∣B (x, v(0)
1 ,W (0), b

(0)
1

)∣∣∣ ≤ Õ ( 1√
m2

)
.

Furthermore, there exists real-valued function ρ̃(v
(0)
1 ) satisfying with high probability:

ρ̃(v
(0)
1 ) ∼ N

(
0,

1

100C2m2

)
and W2(ρ|

W (0),b
(0)
1
, ρ̃) ≤ Õ

(
1

C
√
m1m2

)
.

Lemma 6.4 shows that, up to some small noise B and R, we can “view” the input to any neuron of
the second layer essentially as “a Gaussian variable ρ” times “the target function φ(〈w∗, x〉)” in the
first layer of the target network. This allows us to apply Lemma 6.3 again for the output layer, so as
to construct for instance a composite function Φ(·) with φi as its inputs.13

Remark. Lemma 6.4 may sound weird at first look because random initialization cannot carry any
information about the target. There is no contradiction here, because we will show, B is essentially
another Gaussian (with the same distribution as ρ) times

√
constant− φ2(〈w∗, x〉), thus n1(x) can

still be independent of the value of φ(〈w∗, x〉). Nevertheless, the decomposition in Lemma 6.4 shall
enable us to show that, when we start to modify the hidden weights W,V , the learning process will
start to discover this structure and make the weight of the term relating to φ(〈w∗, x〉) stand out from
other terms.

Using Lemma 6.4 and applying Lemma 6.3 once more, we can prove Lemma 6.2.

6.3 Coupling Between Real and Pseudo Networks

Suppose we are currently at weights W (0) + W ′ + W ρ, V (0) + V ′ + V ρ, where matrices W ρ, V ρ

are random Gaussian matrices such that:
V ρi,j ∼ N (0, σ2

v) and W ρ
i,j ∼ N (0, σ2

w)

for some σv, σw ∈ [1/(m1m2), 1] to be specified later, and W ′, V ′ are matrices with bounded
norms that can depend on the randomness of W (0), b

(0)
1 , V (0), b

(0)
2 . Intuitively, W ′ and V ′ capture

how much the algorithm has moved away from the initialization, while W ρ, V ρ are introduced for
adding smoothness in the optimization, see Section 6.4.

Let us introduce the notion of pseudo networks at the current weights. Let

• Dw,x denote the diagonal sign matrix of the first layer at random initialization W (0),

• Dv,x denote the diagonal sign matrix of the second layer at random initialization W (0), V (0),

• Dw,x + D′w,x ∈ {0, 1}m1×m1 denote the diagonal sign matrix of the first layer at weights

W (0)+W ′+W ρ and V (0)+V ′+V ρ, i.e., [Dw,x+D′w,x]i,i = I[〈w(0)
i +w′i+w

(ρ)
i , x〉+b(0)

1,i ≥
0].

• Dv,x + D′v,x ∈ {0, 1}m2×m2 denote the diagonal sign matrix of the second layer at these
weights.

For a fixed r ∈ [k], let us denote row vector ar = (ar,i)i∈[m2]. Define the pseudo network (and its
semi-bias, bias-free versions) as

gr(x;W,V ) = ar(Dv,x +D′v,x)
(
V (Dw,x +D′w,x) (Wx+ b1) + b2

)
g(b)
r (x;W,V ) = ar(Dv,x +D′v,x)V (Dw,x +D′w,x)(Wx+ b1)

g(b,b)
r (x;W,V ) = ar(Dv,x +D′v,x)V (Dw,x +D′w,x)Wx

As a sanity check, at W (0) +W ′ +W ρ, V (0) + V ′ + V ρ the pseudo network equals the true one:

gr

(
x;W (0) +W ′ +W ρ, V (0) + V ′ + V ρ

)
= fr

(
x;W (0) +W ′ +W ρ, V (0) + V ′ + V ρ

)
13One technical issue is the following. When considering multiple neurons of the second layer, those Gaus-

sian variables ρ are not independent because they all depend on W (0). The notion of ρ̃ in Lemma 6.4 removes
such dependency across multiple neurons, at the expense of small Wasserstein distance.
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We state Lemma 6.5 below.

Lemma 6.5 (coupling). Suppose τv ∈
[
0, 1
]
, τw ∈

(
1

m
3/2
1

, 1

m
1/2
1

]
, σw ∈

(
1

m
3/2
1

, τw
m

1/4
1

]
, σv ∈(

0, 1

m
1/2
2

]
and η > 0. Given fixed unit vector x, and perturbation matrices W ′, V ′,W ′′, V ′′ (that

may depend on the randomness of W (0), b
(0)
1 , V (0), b

(0)
2 and x) satisfying

‖W ′‖2,4 ≤ τw, ‖V ′‖F ≤ τv, ‖W ′′‖2,4 ≤ τw, ‖V ′′‖F ≤ τv ,

and random diagonal matrix Σ with each diagonal entry i.i.d. drawn from {±1}, then with high
probability the following holds:

1. (Sparse sign change). ‖D′w,x‖0 ≤ Õ(τ
4/5
w m

6/5
1 ), ‖D′v,x‖0 ≤

Õ
(
σvm

3/2
2 + τ

2/3
v m2 + τ

2/3
w m

1/6
1 m2

)
.

2. (Cross term vanish).

gr(x;W (0) +W ρ +W ′ + ηΣW ′′, V (0) + V ρ + V ′ + ηV ′′Σ)

= gr

(
x;W (0) +W ρ +W ′, V (0) + V ρ + V ′

)
+ g(b,b)

r (x; ηΣW ′′, ηV ′′Σ) + g′r(x)

where EΣ[g′r(x)] = 0 and with high probability |g′r(x)| ≤ ηÕ
(√

m2τv√
m1

+
√
m2τw

)
.

The first statement “sparse sign change” of Lemma 6.5 says that, if we move from random initial-
ization W (0), V (0) to W (0) + W ′ + W ρ, V (0) + V ′ + V ρ, then how many signs of the ReLUs (in
each layer) will change, as a function of the norms of W ′ and V ′. This calculation is similar to [4]
but slightly more involved due to the ‖ · ‖2,4 norm that we use here.

The second statement “cross term vanish” of Lemma 6.5 studies, if we are currently at weights
(W,V ) = (W (0) +W ′ +W ρ, V (0) + V ′ + V ρ) and want to move to (W + ηΣW ′′, V + ηV ′′Σ)
where Σ is a diagonal matrix with diagonal entries i.i.d. uniformly chosen from {±1}, then how
does the function value change in the pseudo network.

6.3.1 Coupling + Existence

We quickly point out a corollary by applying the coupling and existential lemmas together.

Recall in the existential Lemma 6.2, we have studied a pseudo network G(0) where the signs are
determined at the random initialization W (0), V (0). Now, the coupling Lemma 6.5 says that the
amount of sign change from G(0)) to G(b,b) can be controlled. Therefore, if parameters are chosen
appropriately, the existential Lemma 6.2 should also apply to G(b,b). Formally,

In the three-layer network results, we choose parameters

τ ′v =
1
√
ε0

m
1/2−0.005
1

m
1/2
2

, τ ′w =
C0

ε
1/4
0

1

m
3/4−0.005
1

, λv =
2

τ2
v

, λw =
2

(τ ′w)4
,

σv =
1

m
1/2+0.01
2

, σw =
1

m1−0.01
1

, τv =
m

1/2−0.001
1

m
1/2
2

� τ ′v, τw =
1

m
3/4−0.01
1

� τ ′w

m2 = m1, εa = 1,

for C0 = Cε(Φ,
√
p2Cε(φ, 1)) · Cε(φ, 1) · Õ(p1

√
p2k) and ε = ε0

kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2

Table 1: Three-layer parameter choices (the constant inside Θ can depend on γ).
λw, λv give the weights of the regularizer λw‖ · ‖42,4 + λv‖ · ‖22,2 in the objective (6.1) and (4.2).
σw, σv give the amount of Gaussian perturbation we add to the objective (for analysis purpose).
τ ′w, τ

′
v are set so that if the regularizer is bounded, it satisfies ‖W ′‖2,4 ≤ τ ′w and ‖V ′‖F ≤ τ ′v .

τw, τv are set so that the coupling lemma works whenever ‖W ′‖2,4 ≤ τw and ‖V ′‖F ≤ τv .

Corollary 6.6 (existence after coupling). In the same setting as Lemma 6.2, given perturbation
matrices W ′, V ′ (that may depend on the randomness of the initialization and the data distribution
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D) with
‖W ′‖2,4 ≤ τw, ‖V ′‖F ≤ τv .

Using parameter choices from Table 1, w.h.p. there exist W> and V > (independent of the random-
ness of W ρ, V ρ) satisfying

‖W>‖2,∞ = max
i
‖w>

i ‖2 ≤
C0

m1
, ‖V >‖2,∞ = max

i
‖v>i ‖2 ≤

√
m1

m2

E(x,y)∼D

[
k∑
r=1

∣∣∣f∗r (x)− g(b,b)
r (x;W>, V >)

∣∣∣] ≤ ε,
E(x,y)∼D

[
L(G(b,b)(x;W>, V >), y)

]
≤ OPT + ε.

As we shall see later, Corollary 6.6 gives rise toW> and V > that shall be used as a descent direction
for the objective. (Corollary 6.6 did not use all the parameters inside Table 1, and some of those
parameters shall be used in later subsections.)

6.4 Optimization

The naı̈vely approach is to

• use the property that solutions with good risks are dense in the parameter space (i.e.,
Corollary 6.6) to show that the optimization landscape of the overparameterized three-layer
neural network is benign: it has no spurious local minimal or (more or less) even any second-
order critical points; and

• use existing theorems on escaping saddle points (such as [19]) to show that SGD will not be
stuck in saddle points and thus converges.

Key issue. Unfortunately, before digging into the details, there is already a big hole in this approach.
ReLU networks are not second-order-differentiable: a ReLU activation does not have a well-defined
Hessian/sub-Hessian at zero. One may naı̈vely think that since a ReLU network is infinite-order
differentiable everywhere except a measure zero set, so we can safely ignore the Hessian issue
and proceed by pretending that the Hessian of ReLU is always zero. This intuition is very wrong.
Following it, we could have run into the absurd conclusion that any piece-wise linear function is
convex, since the Hessian of it is zero almost everywhere. In other words, the only non-smooth
point of ReLU has a Hessian value equal to the Dirac δ-function, but such non-smooth points, albeit
being measure zero, are actually turning points in the landscape. If we want a meaningful second-
order statement of the ReLU network, we must not naı̈vely ignore the “Hessian” of ReLU at zeros.

Smoothing. To fix the naı̈ve approach, we use Gaussian smoothing. Given any bounded function
f : Rm3 → R, we have that Eρ∼N (0,σ2I)[f(x + ρ)] is a infinite-order differentiable function in x
as long as σ > 0. Thus, we can consider the smoothed version of the neural network: F (x;W +
W ρ, V +V ρ) whereW ρ, V ρ are random Gaussian matrices. We show that E[L(F (x;W+W ρ, V +
V ρ), y)] also has the desired property of essentially having no second-order critical points. Perhaps
worth pointing out, the Hessian of this smoothed function is significantly different from the original
one. For example, Eρ∼N (0,1)[σ(x + ρ)] has a Hessian value ≈ 1 at all x = [−1, 1], while in the
original ReLU function σ, the Hessian is 0 almost everywhere.

In practice, since the solution Wt, Vt are found by stochastic gradient descent starting from ran-
dom initialization, they will have a non-negligible amount of intrinsic noise. Thus, the additional
smoothing in the algorithm might not be needed by an observation in [29]. Smooth analysis [44]
might also be used for analyzing the effect of such noise, but this is beyond the scope of this paper.

Actual algorithm. Let us consider the following smoothed, and regularized objective:

L′(λt,Wt, Vt) = EWρ,V ρ,(x,y)∼Z

[
L
(
λtF

(
x;W (0) +W ρ +Wt, V

(0) + V ρ + Vt

)
, y
)]

+R(
√
λtWt,

√
λtVt)

where W ρ, V ρ are Gaussian random matrices with each entry i.i.d. from N (0, σ2
w) and N (0, σ2

v),
respectively. R(

√
λtWt,

√
λtVt) = λv‖

√
λtVt‖2F + λw‖

√
λtWt‖42,4 and λv, λw are set such that

λv‖
√
λtV

>‖2F ≤ ε0 and λw‖
√
λtW

>‖42,4 ≤ ε0 for every W> and V > coming from Lemma 6.2.
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See Algorithm 2 (first SGD variant) for the details. We prove the following lemma.

Lemma 6.7 (descent direction). For every ε0 ∈ (0, 1) and ε = ε0
kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2

, for
every constant γ ∈ (0, 1/4], consider the parameter choices in Table 1, and consider any λt,Wt, Vt
(that may depend on the randomness of W (0), b(0), V (0), b(1) and Z) with

λt ∈
(
(ε/ log(m1m2))Θ(1), 1

]
and L′(λt,Wt, Vt) ∈ [(1 + γ)OPT + Ω(ε0/γ), Õ(1)]

With high probability over the random initialization, there exists W>, V > with ‖W>‖F , ‖V >‖F ≤
1 such that for every η ∈

[
0, 1

poly(m1,m2)

]
:

min
{
EΣ

[
L′
(
λt,Wt +

√
ηΣW>, Vt +

√
ηV >Σ

) ]
, L′
(
(1− η)λt,Wt, Vt

)}
≤ (1− ηγ/4)(L′(λt,Wt, Vt)) ,

where Σ ∈ Rm1×m1 is a diagonal matrix with each diagonal entry i.i.d. uniformly drawn from
{±1}.

Lemma 6.7 says one of the following two scenarios will happen. Either (1) there exist W>, V >

so that updating in a random direction (ΣW>, V >Σ) decreases the objective, or (2) performing
weight decay decreases the objective. It is a simple exercise to check that, if (1) happens, then
F ′(λ, ·, ·) has a very negative curvature in the Hessian (see Fact A.8) at the current point. Therefore,
Lemma 6.7 essentially says that after appropriate regularization, every second-order critical point of
L′ is approximately global minimum.

More interestingly, since (noisy) stochastic gradient descent is capable of finding approximate
second-order critical points with a global convergence rate, one can show the following final con-
vergence rate for minimizing L′ for Algorithm 2.

Lemma 6.8 (convergence). In the setting of Theorem 3, with probability at least 99/100,
Algorithm 2 (the first SGD variant) converges in TTw = poly (m1,m2) iterations to a point

L′(λT ,WT , VT ) ≤ (1 + γ)OPT + ε0.

6.4.1 Details of Smoothing

The next lemma shows that when doing a small update to the current weight, one can view the sign
pattern as fixed for the smoothed objective, up to a small error. Specifically, for every input x and
every W = W (0) +W ′, V = V (0) + V ′, let Σ be a random diagonal matrix with ± entries, and let

• Dw,x,ρ denote the diagonal matrix with diagonals being 0-1 signs of the first layer atW +W ρ;

• Dw,x,ρ,η denote of the first layer at weights W +W ρ + ηΣW ′′;

• Dv,x,ρ denote that of the second layer at weights W +W ρ and V + V ρ; and

• Dv,x,ρ,η denote that of the second layer at weights W +W ρ + ηΣW ′′ and V + V ρ + ηΣV ′′.

For a fixed r ∈ [k], consider the real network Pρ,η and the pseudo network P ′ρ,η:

Pρ,η := fr(x;W +W ρ + ηΣW ′′, V + V ρ + ηV ′′Σ)

= arDv,x,ρ,η

(
(V + V ρ + ηV ′′Σ)Dw,x,ρ,η ((W +W ρ + ηΣW ′′)x+ b1) + b2

)
P ′ρ,η := gr(x;W +W ρ + ηΣW ′′, V + V ρ + ηV ′′Σ)

= arDv,x,ρ

(
(V + V ρ + ηV ′′Σ)Dw,x,ρ ((W +W ρ + ηΣW ′′)x+ b1) + b2

)
.

We prove the following lemma:

Lemma 6.9 (smoothed real vs pseudo). There exists η0 = 1
poly(m1,m2) such that, for every η ≤ η0,

for every fixed x with ‖x‖2 = 1, for every W ′, V ′,W ′′, V ′′ that may depend on the randomness of
the initialization and

‖W ′‖2,4 ≤ τw, ‖V ′‖2,2 ≤ τv, ‖W ′′‖2,∞ ≤ τw,∞, ‖V ′′‖2,∞ ≤ τv,∞
we have with high probability:

EWρ,V ρ

[ |Pρ,η − P ′ρ,η|
η2

]
= Õ

(
m1

τ2
w,∞

σw
+
m2τ

2
w,∞

σv
+
m2

m1

τ2
v,∞

σv

)
+Op(η).
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where Op hides polynomial factor of m1,m2.

In other words, when working with a Gaussian smoothed network (with output Pρ,η), it suffices to
study a pseudo network (with output P ′ρ,η). In the proof of Lemma 6.7, this allows us to go from the
real (smoothed) network to the pseudo (smoothed) network, and then apply Lemma 6.5.

6.5 Generalization

In our first variant of SGD Algorithm 2, we show a very crude Rademacher complexity bound that
can be derived from the contraction lemma (a.k.a. Talagrand’s concentration inequality).

Lemma 6.10 (generalization for LR = L1). For every τ ′v, τ
′
w ≥ 0, every σv ∈ (0, 1/

√
m2], w.h.p.

for every r ∈ [k] and every N ≥ 1, the empirical Rademacher complexity is bounded by

1

N
Eξ∈{±1}N

 sup
‖V ′‖F≤τ ′v,‖W ′‖2,4≤τ ′w

∑
i∈[N ]

ξifr(xi;W
(0) +W ρ +W ′, V (0) + V ρ + V ′)


≤ Õ

(
τ ′wm1

√
m2 + τ ′vm2√
N

+
τ ′v
√
m1m2τ ′w(1/

√
m1 + τ ′w)

N1/4

)
.

Since the population risk is bounded by the Rademacher complexity, combining this with
Lemma 6.8, one can easily prove Theorem 3.

6.6 Second Variant of SGD

In our second variant of SGD Algorithm 1, we have added the Dropout-type noise matrix Σ directly
into the objective L2 (see (4.2)). Our new stochastic objective is the following.

L′′(λt,Wt, Vt) = EWρ,V ρ,Σ,x,y∼Z

[
L
(
λtF

(
W (0) +W ρ + ΣWt, V

(0) + V ρ + VtΣ, x
)
, y
)]

+R(
√
λtWt,

√
λtVt).

To show that this gives a better sampling complexity bound, we need the following stronger coupling
lemma. It gives a somewhat better bound on the “cross term vanish” part comparing to the old
coupling Lemma 6.5.

Lemma 6.11 (stronger coupling). With high probability over the random initialization and over a
random diagonal matrix Σ with diagonal entries i.i.d. generated from {−1, 1}, it satisfies that for
every W ′, V ′ with ‖V ′‖2 ≤ τv, ‖W ′‖2,4 ≤ τw for τv ∈ [0, 1] and τw ∈

[
1

m
3/4
1

, 1

m
9/16
1

]
, we have

fr(x;W (0) + ΣW ′, V (0) + V ′Σ) = arDv,x(V (0)Dw,x(W (0)x+ b1) + b2) + arDv,xV
′Dw,xW

′x

± Õ
(
τ8/5
w m

9/10
1 + τ16/5

w m
9/5
1

√
m2 +

√
m2√
m1

τv

)
.

Under parameter choices Table 1, the last error term is at most ε/k.

For this SGD variant, we also have the following the stronger Rademacher complexity bound. It re-
lies on Lemma 6.11 to reduce the function class to pseudo networks, which are only linear functions
in W ′ and V ′, and then computes its Rademacher complexity.

Lemma 6.12 (generalization for LR = L2). For every τ ′v ∈ [0, 1], τ ′w ∈
[

1

m
3/4
1

, 1

m
9/16
1

]
, every

σw ∈ [0, 1/
√
m1] and σv ∈ [0, 1/

√
m2], w.h.p. for every r ∈ [k] and every N ≥ 1, we have by our

choice of parameters in Lemma 6.7, the empirical Rademacher complexity is bounded by

1

N
Eξ∈{±1}N

 sup
‖V ′‖F≤τ ′v,‖W ′‖2,4≤τ ′w

∣∣∣∣∣∣
∑
i∈[N ]

ξiEΣ[fr(xi;W
(0) +W ρ + ΣW ′, V (0) + V ρ + V ′Σ)]

∣∣∣∣∣∣


≤ Õ

(
τ ′wτ

′
vm

1/4
1

√
m2√

N
+

(
(τ ′w)8/5m

9/10
1 + (τ ′w)16/5m

9/5
1

√
m2 +

√
m2√
m1

τ ′v

))
.

Under parameter choices in Table 1, this is at most Õ
( τ ′wτ ′vm1/4

1

√
m2√

N

)
+ ε/k.
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After plugging Lemma 6.11 and Lemma 6.12 into the final proof, we can show Theorem 2.
Remark. In contrast, without the Dropout-type noise matrix Σ, the error term in the old coupling
Lemma 6.5 is too large so we cannot get better Rademacher complexity bounds.

7 Empirical Evaluations
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Figure 2: Performance comparison. 3layer/2layer stands for training (hidden weights) in three and
two-layer neural networks. (last) stands for conjugate kernel [15], meaning training only the
output layer. (NTK) stands for neural tangent kernel [27] with finite width.

Setup. We consider `2 regression task on synthetic data where feature vectors x ∈ R4

are generated as normalized random Gaussian, and label is generated by target function
y = F ∗(x) = (tanh(8x1) + tanh(8x2) + tanh(8x3)− 2)2 · tanh(8x4).

We discuss our experiment details for Figure 1.

Recall that we generate synthetic data where the feature vectors x ∈ R4 are generated as random
Gaussian then normalized to norm 1, and labels are generated by target function y = F ∗(x) =
(sin(3x1) + sin(3x2) + sin(3x3) − 2)2 · cos(7x4). Intuitively, the constants 3 and 7 control the
complexity of the activation functions in the target function, and we choose these values to ensure
that the two factors in the target function have roughly the same complexity.14

To be more consistent with our theorems, we implement fully connected neural networks and train
only hidden weights (namely, W in the two-layer case and W,V in the two-layer case). We also
implement NTK with respect to only hidden weights. For conjugate kernel, we only train the last
(output) layer, that is, the weights ar ∈ Rm for r ∈ [k] in the language of this paper.

To be consistent with our theorems, we choose random initialization as follows. Entries of ar are
i.i.d. from N (0, 1), and entries of W,V, b1, b2 are i.i.d. from N (0, 1

m ). This ensures that the output
at random initialization is Θ(1).

We use the default SGD optimizer of pytorch, with momentum 0.9, mini-batch size 50, learning rate
lr and weight decay parameter wd. We carefully run each algorithm with respect to lr and wd in
the set {10−k, 2 · 10−k, 5 · 10−k : k ∈ Z}, and presents the best one in terms of testing accuracy. In
each parameter setting, we run SGD for 800 epochs, and decrease lr by 10 on epoch 400.

In Figure 2, we provide an additional experiment for target function y = F ∗(x) = (tanh(8x1) +
tanh(8x2) + tanh(8x3)− 2)2 · tanh(8x4).

7.1 Justification of Our ‖W‖2,4 Regularizer

Recall our three-layer theorem requires a slightly unconventional regularizer, namely, the ‖W‖2,4
norm of the first layer to encourage weights to be more evenly distributed across neurons. Is this
really necessary? To get some preliminary idea we run our aforementioned three-layer experiment
on the first data set,

• once with the traditional weight decay on W (which corresponds to minimizing ‖W‖F ), and
14Recall that our sample complexity in Theorem 2 has the form C(Φ,C(φ)) ignoring other parameters. But

in fact, one can be more careful on this target function and derive a sample complexity of the form C(Φ,C(φ1))·
C(φ2), where Φ(x) = (x − 2)2, φ1(x) = sin(3x) and φ2(x) = cos(7x). Because of this, to show the best
contrast between two and three-layer networks, we choose constant 7 on φ2 so that C(φ2) ≈ C(φ1)2.
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Figure 3: Empirical comparison between regularizers ‖W‖F and ‖W‖2,4.

• once with the ‖W‖2,4 norm without weight decay.

In both cases we best tune the learning rates as well as the weight decay parameter (or the weight of
the ‖W‖42,4 regularizer). We present our findings in Figure 3.

In Figure 3(a), we observe that there is no real difference between the two regularizers in terms of
test error. In one case (m = 200) using ‖W‖2,4 even gives slightly better test accuracy (but we do
not want to claim this as a general phenomenon).

More importantly, since by Cauchy-Schwarz we have ‖W‖F ≥ ‖W‖2,4 ≥ m−1/4‖W‖F . Let us
consider the following norm ratio:

ratio :=
‖W‖42,4 ·m
‖W‖4F

∈ [1,m]

If the ratio is close to 1, then one can argue that the more evenly distributed the rows (i.e., neurons)
of W ∈ Rm×d are. In contrast, if ratio is close to m then the weights in W are concentrated to a
single row. (Of course, we cannot expect ratio to be really close to 1 since there may not exist such
solutions with good accuracy to begin with.)

In Figure 3(b), we see that ratio is roughly the same between two types of regularizers. This means,
even if we regularize only the Frobenius norm, weights are still sufficiently distributed across neu-
rons comparing to what we can do by regularizing ‖W‖2,4. We leave it a future work to study why
SGD encourages such implicit regularization.

22



APPENDIX: COMPLETE PROOFS
We provide technical preliminaries in Appendix A, give our two-layer proofs in Appendix B, and
three-layer proofs in Appendix C.

A Technical Preliminaries

Wasserstein distance. The `2 Wasserstein distance between random variables A,B is

W2(A,B) :=
√

inf
(X,Y ) s.t. X∼A,Y∼B

E
[
|X − Y |2

]
where the infimum is taken over all possible joint distributions over (X,Y ) where the marginal on
X (resp. Y ) is distributed in the same way as A (resp. B).

Slightly abusing notation, in this paper, we say a random variable X satisfies |X| ≤ B with high
probability if (1) |X| ≤ B w.h.p. and (2) W2(X, 0) ≤ B. For instance, if g = N (0, 1/m), then
|g| ≤ Õ(1/

√
m) with high probability.

A.1 Probability

Lemma A.1 (Gaussian indicator concentration). Let (n1, α1, a1,1, a2,1), · · · , (nm, αm, a1,m, a2,m)
be m i.i.d. samples from some distribution, where within a 4-tuples:

• the marginal distribution of a1,i and a2,i is standard Gaussian N (0, 1);
• ni and αi are not necessarily independent;
• a1,i and a2,i are independent; and
• ni and αi are independent of a1,i and a2,i.

Suppose h : R→ [−L,L] is a fixed function. Then, for every B ≥ 1:

Pr

∣∣∣∣∣∣
∑
i∈[m]

a1,ia2,iI[ni ≥ 0]h(αi)

∣∣∣∣∣∣ ≥ BL(
√
m+B)

 ≤ 4e−B
2/8

and

Pr

∣∣∣∣∣∣
∑
i∈[m]

a2
1,iI[ni ≥ 0]h(αi)

−mE[a2
1,1I[n1 ≥ 0]h(α1)]

∣∣∣∣∣∣ ≥ BL(
√
m+B)

 ≤ 4e−B
2/8.

Proof of Lemma A.1. Let us consider a fixed n1, α1, · · · , nm, αm, then since each |I[ni ≥
0]h(αi)| ≤ L, by Gaussian chaos variables concentration bound (e.g., Example 2.15 in [37]) we
have that

Pr

∣∣∣∣∣∣
∑
i∈[m]

a1,ia2,iI[ni ≥ 0]h(αi)

∣∣∣∣∣∣ ≥ BL(
√
m+B)

∣∣∣∣∣{ni, αi}i∈[m]

 ≤ 4e−B
2/8.

Since this holds for every choice of {ni, αi}i∈[m] we can complete the proof. The second inequality
follows from sub-exponential concentration bounds. �
Proposition A.2. If X1, X2 are independent, and X1, X3 are independent conditional on X2, then
X1 and X3 are independent.

Proof. For every x1, x2, x3:
Pr[X1 = x1, X3 = x3 | X2 = x2] = Pr[X1 = x1 | X2 = x2] Pr[X3 = x3 | X2 = x2]

= Pr[X1 = x1] Pr[X3 = x3 | X2 = x2].

Multiplying Pr[X2 = x2] on both side leads to:
Pr[X1 = x1, X3 = x3, X2 = x2] = Pr[X1 = x1] Pr[X3 = x3, X2 = x2].

Marginalizing away X2 gives Pr[X1 = x1, X3 = x3] = Pr[X1 = x1] Pr[X3 = x3], so X1 and
X3 are independent. �
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A.2 Central Limit Theorem

The following Wasserstein distance bound of central limit theorem is easy to derive from known
results:

Lemma A.3 (new CLT). Let X1, · · · , Xm ∈ R be m independent zero-mean random variables
with each |Xi| ≤ C,

∑
i∈[m] E[X2

i ] = V , then there exists Z ∼ N (0, V ) such that

W2 (
∑m
i=1Xi, Z) = O (C logm) .

Proof. Define Σi = E[X2
i ] and without loss of generality assume Σ1 ≥ Σ2 ≥ · · · ≥ Σm. Let

us apply [52, Lemma 1.6] on each i, then for every t such that t ≥ 5C2

Σi
, let Yt ∼ N (0, tΣi) be

independent of Xi, we have

W2(Yt, Yt−1 +Xi) ≤
5C

t
.

In other words —by choosing t = Ri/Σi— we have for every Ri ≥ 5C2, letting Zi ∼ N (0, Ri),
Zi+1 ∼ N (0, Ri + Σi) be independent gaussian (also independent of Xi), it satisfies

W2(Zi+1, Zi +Xi) ≤
5CΣi
Ri

.

Repeatedly applying the above inequality and starting with Z1 ∼ N (0, 5C2) and choosing Ri =

5C2 +
∑i−1
j=1 Σj , we have Zi ∼ N (0, 5C2 +

∑i−1
j=1 Σj) and Zm+1 ∼ N (0, 5C2 + V ). Using

Σ1 ≥ Σ2 ≥ · · · ≥ Σm, we know that 5CΣi
Ri
≤ 5C

i−1 for i ≥ 2. This implies that

W2

(
Zm+1,

m∑
i=1

Xi

)
≤

m∑
i=2

5C

i− 1
+W2 (Z2, Z1 +X1) = O (C logm) +W2 (Z2, Z1 +X1)

Finally, since |X1| ≤ C we haveW2(X1, 0) ≤ C and Σ2
1 ≤ C2. By triangle inequality we have

W2 (Z2, Z1 +X1) ≤ W2(X1, 0) +W2(Z1, 0) +W2(Z2, 0) = O(C)

There exists Z ∼ N (0, V ) such thatW2(Zm+1, Z) = O(C). All of these together imply

W2

(
Z,

m∑
i=1

Xi

)
= O (C logm) . �

A.3 Interval Partition

Lemma A.4 (Interval Partition). For every τ ≤ 1
100 , there exists a function s : [−1, 1] × R →

{−1, 0, 1} and a set I(y) ⊂ [−2, 2] for every y ∈ [−1, 1] such that, for every y ∈ [−1, 1],

1. (Indicator). s(y, g) = 0 if g /∈ I(y), and s(y, g) ∈ {−1, 1} otherwise.

2. (Balanced). Prg∼N (0,1)[g ∈ I(y)] = τ for every y ∈ [−1, 1].

3. (Symmetric). Prg∼N (0,1) [s(y, g) = 1] = Prg∼N (0,1) [s(y, g) = −1].

4. (Unbiased). Eg∼N (0,1)[s(y, g)g | g ∈ I(y)] = y.

5. (Bounded). maxx∈I(y){s(y, x)x} −minx∈I(y){s(y, x)x} ≤ 10τ .

6. (Lipschitz). |I(y1)4I(y2)| ≤ O(|y2 − y1|) , where |I| :=
∫
x∈I dx is the measure of set

I ⊆ R.

We refer to I(y) as an “interval” although it may actually consist of two disjoint closed intervals.

Proof of Lemma A.4. Let us just prove the case when y ≥ 0 and the other case is by symmetry.
It is clear that, since there are only two degrees of freedom, there is a unique interval I1(y) =
[y − a(y), y + b(y)] with a(y), b(y) ≥ 0 such that

1. (Half probability). Prg∼N (0,1)[g ∈ I1(y)] = τ
2 .

2. (Unbiased). Eg∼N (0,1)[g | g ∈ I1(y)] = y.
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Next, consider two cases:

1. Suppose [y − a(y), y + b(y)] and [−y − b(y),−y + a(y)] are disjoint. In this case, we just
define I(y) := [y − a(y), y + b(y)] ∪ [−y − b(y),−y + a(y)] and define

s(y, g) :=

{
1 if g ∈ [y − a(y), y + b(y)];
−1 if g ∈ [−y − b(y),−y + a(y)];
0 otherwise.

2. [y − a(y), y + b(y)] and [−y − b(y),−y + a(y)] intersect. In this case, consider the unique
interval

I2(y) = [−e(y), e(y)]

where e(y) ≥ 0 is defined so that
Eg∼N (0,1)[g | g ∈ I2(y) ∧ g > 0] = Eg∼N (0,1)[|g| | g ∈ I2(y)] = y .

It must satisfy Prg∼N (0,1)[g ∈ I2(y) ∧ g > 0] < τ/2, because otherwise we must have
y − a(y) ≥ 0 and the two intervals should not have intersected.

Define τ ′(y) = Prg∼N (0,1)[g ∈ I2(y)] < τ . Let c(y) > e(y) be the unique positive real such
that

Pr
g∼N (0,1)

[g ∈ [e(y), c(y)]] =
τ − τ ′(y)

2
.

Let d(y) ∈ [e(y), c(y)] be the unique real such that
Pr

g∼N (0,1)
[g ∈ [e(y), d(y)]] = Pr

g∼N (0,1)
[g ∈ [d(y), c(y)]] .

Finally, we define I(y) = [−c(y), c(y)] and

s(y, g) :=

{
1 if g ∈ [0, e(y)] ∪ [e(y), d(y)] ∪ [−d(y),−e(y)];
−1 if g ∈ [−e(y), 0] ∪ [d(y), c(y)] ∪ [−c(y),−d(y)];
0 otherwise.

In both cases, one can carefully verify that properties 1, 2, 3, 4 hold. Property 5 follows from the
standard property of Gaussian random variable under condition τ ≤ 1/100 and y ∈ [−1, 1].

To check the final Lipschitz continuity property, recall for a standard Gaussian distribution, inside
interval [− 1

10 ,
1
10 ] it behaves, up to multiplicative constant factor, similar to a uniform distribution.

Therefore, the above defined functions a(y) and b(y) areO(1)-Lipschitz continuous in y. Let y0 ≥ 0
be the unique constant such that y−a(y) = 0 (it is unique because y−a(y) monotonically decreases
as y → 0+. It is clear that for y0 ≤ y1 ≤ y2 it satisfies

|I(y1)4I(y2)| ≤ O(y2 − y1) .

As for the turning point of y = y0, it is clear that
lim

y→y0+
I(y) = [−y0 − b(y0), y0 + b(y0)] = [−e(y0), e(y0)] = lim

y→y0−
I(y)

so the function I(·) is continuous at point y = y0. Finally, consider y ∈ [−y0, y0]. One can verify
that e(y) is O(1)-Lipschitz continuous in y, and therefore the above defined τ ′(y), d(y) and c(y)
are also O(1)-Lipschitz in y. This means, for −y0 ≤ y1 ≤ y2 ≤ y0, it also satisfies

|I(y1)4I(y2)| ≤ O(y2 − y1) .

This proves the Lipschitz continuity of I(y). �

A.4 Hermite polynomials

Definition A.5. Let hi(i ≥ 0) denote the degree-i (probabilists’) Hermite polynomial

hi(x) := i!

bi/2c∑
m=0

(−1)m

m!(i− 2m)!

xi−2m

2m

satisfying the orthogonality constraint

Ex∼N (0,1)[hi(x)hj(x)] =
√

2πj!δi,j
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where δi,j = 1 if i = j and δi,j = 0 otherwise. They have the following summation and multiplica-
tion formulas.

hi(x+ y) =

i∑
k=0

(
i

k

)
xi−khk(y),

hi(γx) =

b i2 c∑
k=0

γi−2k(γ2 − 1)k
(
i

2k

)
(2k)!

k!
2−khi−2k(x).

Lemma A.6.

(a) For even i > 0, for any x1 ∈ [0, 1] and b,

Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
I[α ≥ b]

]
= pix

i
1, where

pi = (i− 1)!!
exp(−b2/2)√

2π

i−1∑
r=1,r odd

(−1)
i−1−r

2

r!!

(
i/2− 1

(r − 1)/2

)
br.

(b) For odd i > 0, for any x1 ∈ [0, 1] and b,

Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
I[α ≥ b]

]
= pix

i
1, where

pi = (i− 1)!!
exp(−b2/2)√

2π

i−1∑
r=0,r even

(−1)
i−1−r

2

r!!

(
i/2− 1

(r − 1)/2

)
br.

(Throughout this paper, the binomial
(
n
m

)
is defined as Γ(n+1)

Γ(m+1)Γ(n+1−m) , and this allows us to write

for instance
(

5/2
−1/2

)
without notation change.)

Proof. Using the summation formula of Hermite polynomial, we have:

hi

(
αx1 + β

√
1− x2

1

)
=

i∑
k=0

(
i

k

)
(αx1)i−khk

(
β
√

1− x2
1

)
.

Using the multiplication formula of Hermite polynomial, we have:

hk

(
β
√

1− x2
1

)
=

b k2 c∑
j=0

(√
1− x2

1

)k−2j (
−x2

1

)j ( k
2j

)
(2j)!

j!
2−jhk−2j(β).

For even k, since Eβ∼N (0,1)[hn(β)] = 0 for n > 0, we have

Eβ∼N (0,1)

[
hk

(
β
√

1− x2
1

)]
=
(
−x2

1

)k/2 k!

(k/2)!
2−k/2,

and for odd k,

Eβ∼N (0,1)

[
hk

(
β
√

1− x2
1

)]
= 0.

This implies

Eβ∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)]
=

i∑
k=0,k even

(
i

k

)
(αx1)i−k

(
−x2

1

)k/2 k!

(k/2)!
2−k/2

= xi1

i∑
k=0,k even

(
i

k

)
αi−k

k!

(k/2)!
(−2)−k/2.

Therefore,

Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
I[α ≥ b]

]
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= xi1

i∑
k=0,k even

(
i

k

)
Eα∼N (0,1)[α

i−kI[α ≥ b]] k!

(k/2)!
(−2)−k/2 . (A.1)

Define
Li,b := Eα∼N (0,1)[α

iI[α ≥ b]].
(a) Consider even i > 0. By Lemma A.7, we have for even i ≥ 0:

Li,b = (i− 1)!!Φ(0, 1; b) + φ(0, 1; b)

i−1∑
j=1,j odd

(i− 1)!!

j!!
bj .

So

Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
I[α ≥ b]

]

= xi1

 i∑
k=0,k even

(
i

k

)
Li−k,b

k!

(k/2)!
(−2)−k/2


= xi1

 i∑
k=0,k even

(
i

k

)
(i− k − 1)!!Φ(0, 1; b)

k!

(k/2)!
(−2)−k/2


+ xi1φ(0, 1; b)

 i∑
k=0,k even

(
i

k

) i−k−1∑
j=1,j odd

(i− k − 1)!!

j!!
bj

 k!

(k/2)!
(−2)−k/2

 .

Since
i∑

k=0,k even

(
i

k

)
(i− k − 1)!!

k!

(k/2)!
(−2)−k/2 =

i∑
k=0,k even

i!(i− k − 1)!!

(i− k)!(k/2)!

(−1)k/2

2k/2

=

i∑
k=0,k even

i!

(i− k)!!(k/2)!

(−1)k/2

2k/2

= (i− 1)!!

i∑
k=0,k even

i!!

(i− k)!!(k/2)!

(−1)k/2

2k/2

= (i− 1)!!

i∑
k=0,k even

(
i/2

k/2

)
(−1)k/2

= 0,

we know that

Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
I[α ≥ b]

]
= xi1(i− 1)!!φ(0, 1; b)

i−1∑
r=1,r odd

crb
r

where cr is given by:

cr :=
1

(i− 1)!!

i−1−r∑
k=0,k even

(
i

k

)
(i− k − 1)!!

r!!

k!

(k/2)!
(−2)−k/2

=

i−1−r∑
k=0,k even

(
i/2

k/2

)
(−1)k/2

r!!

=

(i−1−r)/2∑
j=0

(
i/2

j

)
(−1)j

r!!

=

(i−1−r)/2∑
j=0

(
j − i/2− 1

j

)
1

r!!
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=
1

r!!

(
−i/2 + (i− 1− r)/2

(i− 1− r)/2

)
=

(−1)(i−1−r)/2

r!!

(
i/2− 1

(i− 1− r)/2

)
=

(−1)
i−1−r

2

r!!

(
i/2− 1

(r − 1)/2

)
.

(b) Consider odd i > 0. By Lemma A.7, we have for odd i > 0:

Li,b = φ(0, 1; b)

i−1∑
j=0,j even

(i− 1)!!

j!!
bj .

So

Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
I[α ≥ b]

]

= xi1

 i∑
k=0,k even

(
i

k

)
Li−k,b

k!

(k/2)!
(−2)−k/2


= xi1φ(0, 1; b)

 i∑
k=0,k even

(
i

k

) i−k−1∑
j=0,j even

(i− k − 1)!!

j!!
bj

 k!

(k/2)!
(−2)−k/2


= xi1(i− 1)!!φ(0, 1; b)

i−1∑
r=0,r even

crb
r

where cr is given by:

cr :=
1

(i− 1)!!

i−1−r∑
k=0,k even

(
i

k

)
(i− k − 1)!!

r!!

k!

(k/2)!
(−2)−k/2

=
(−1)

i−1−r
2

r!!

(
i/2− 1

(r − 1)/2

)
,

by a similar calculation as in the even i case.

The proof is completed. �
Lemma A.7. Define Li,b as:

Li,b := Eα∼N (0,1)[α
iI[α ≥ b]].

Then Li,b’s are given by the recursive formula:
L0,b = Φ(0, 1; b) := Pr

α∼N (0,1)
[α ≥ b],

L1,b = φ(0, 1; b) := Eα∼N (0,1)[αI[α ≥ b]] =
exp(−b2/2)√

2π
,

Li,b = bi−1φ(0, 1; b) + (i− 1)Li−2,b.

As a result (with the convention that 0!! = 1 and (−1)!! = 1)

for even i ≥ 0: Li,b = (i− 1)!!Φ(0, 1; b) + φ(0, 1; b)

i−1∑
j=1,j odd

(i− 1)!!

j!!
bj

for odd i > 0: Li,b = φ(0, 1; b)

i−1∑
j=0,j even

(i− 1)!!

j!!
bj .

One can verify that for b ≥ 0,

Li,b ≤ O(1)e−b
2/2 ·

i−1∑
j=0

(i− 1)!!

j!!
bj
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Proof. The base cases L0,b and L1,b are easy to verify. Then the lemma comes from induction. �

A.5 Optimization

Fact A.8. For every B-second-order smooth function f : Rd → R, every ε > 0, every η ∈(
0, O( ε

2

B2 )
]
, every fixed vector x ∈ Rd, suppose there is a random vector x2 ∈ Rd with E[x2] = 0

and ‖x2‖2 = 1 satisfying
Ex2

[f (x+
√
ηx2)] ≤ f(x)− ηε .

Then, λmin(∇2f(x)) ≤ −ε, where λmin is the minimal eigenvalue.

Proof of Fact A.8. We know that

f (x+
√
ηx2) = f(x) + 〈∇f(x),

√
ηx2〉+

1

2
(
√
ηx2)

>∇2f(x) (
√
ηx2)±O(Bη1.5).

Taking expectation, we know that

E[f (x+
√
ηx2)] = f(x) + η

1

2
E
[
x>2 ∇2f(x)x2

]
±O(Bη1.5)

Thus, E
[
x>2 ∇2f(x)x2

]
≤ −ε, which completes the proof. �

We also recall the following convergence theorem of SGD for escaping saddle point.15

Lemma A.9 (escape saddle points, Theorem 6 of [19]). Suppose a function f : Rd → R has its
stochastic gradient bounded by B in Euclidean norm, is absolutely bounded |f(x)| ≤ B, is B-
smooth, and is B-second-order smooth, then for every δ > 0, every p ∈ (0, 1), with probability at
least 1− p, noisy SGD outputs a point xT after T = poly(d,B, 1/δ, 1/p) iterations such that

∇2f(xT ) � −δI and f(xT ) ≤ f(x0) + δ · poly(d,B, 1/p)

A.6 Rademacher Complexity

Let F be a set of functions Rd → R and X = (x1, . . . , xN ) be a finite set of samples. Recall the
empirical Rademacher complexity with respect to X of F is

R̂(X ;F) := Eξ∼{±1}N
[

sup
f∈F

1

N

N∑
i=1

ξif(xi)
]

Lemma A.10 (Rademacher generalization). Suppose X = (x1, . . . , xN ) where each xi is gen-
erated i.i.d. from a distribution D. If every f ∈ F satisfies |f | ≤ b, for every δ ∈ (0, 1) with
probability at least 1− δ over the randomness of Z , it satisfies

sup
f∈F

∣∣∣∣∣Ex∼D[f(x)]− 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ ≤ 2R̂(Z;F) +O

(
b
√

log(1/δ)√
N

)
.

Corollary A.11. If F1, . . . ,Fk are k classes of functions Rd → R and Lx : Rk → [−b, b] is a
1-Lipschitz continuous function for any x ∼ D, then

sup
f1∈F1,...,fk∈Fk

∣∣∣∣∣Ex∼D[Lx(f1(x), . . . , fk(x))]− 1

N

N∑
i=1

Lx(f(xi))

∣∣∣∣∣ ≤ O(
k∑
r=1

R̂(Z;Fr)
)

+O

(
b
√

log(1/δ)√
N

)
.

Proof. Let F ′ be the class of functions by composing L with F1, . . . ,Fk, that is, F ′ = {Lx ◦
(f1, . . . , fk) | f1 ∈ F1 · · · fk ∈ Fk}. By the (vector version) of the contraction lemma of
Rademacher complexity16 it satisfies R̂(Z;F ′) ≤ O(1) ·

∑k
r=1 R̂(Z;Fr). �

15The original proof of [19] was for constant probability but it is easy to change it to 1 − δ at the expense
of paying a polynomial factor in 1/δ. The original proof did not state the objective “non-increasing” guarantee
but it is easy to show it for mini-batch SGD. Recall η = poly(d,B, 1/ε, 1/δ) in [19] so in each iteration, the
original SGD may increase the objective by no more than η2B

b
if a batch size b is used. If b is polynomially

large, this goal is easily achievable. In practice, however, using a very small batch size suffices.
16There are slightly different versions of the contraction lemma in the literature. For the scalar case without

absolute value, see [35, Section 3.8]; for the scalar case with absolute value, see [10, Theorem 12]; and for the
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Proposition A.12. We recall some basic properties of the Rademacher complexity. Let σ : R → R
be a fixed 1-Lipschitz function.

(a) (`2 linear) Suppose ‖x‖2 ≤ 1 for all x ∈ X . The class F = {x 7→ 〈w, x〉 | ‖w‖2 ≤ B} has
Rademacher complexity R̂(X ;F) ≤ O( B√

N
).

(b) (`1 linear) Suppose ‖x‖∞ ≤ 1 for all x ∈ X ⊆ Rm. The class F = {x 7→ 〈w, x〉 | ‖w‖1 ≤
B} has Rademacher complexity R̂(X ;F) ≤ O(B

√
logm√
N

).

(c) (addition) R̂(X ;F1 + F2) = R̂(X ;F1) + R̂(X ;F2).

(d) (contraction) R̂(X ;σ ◦ F) ≤ R̂(X ;F).

(e) Given F1, . . . ,Fm classes of functions X → R and suppose w ∈ Rm is a fixed vector, then

F ′ =
{
x 7→

∑m
j=1 wjσ(fj(x))

∣∣∣ fj ∈ Fj}
satisfies R̂(X ;F ′) ≤ 2‖w‖1 maxj∈[m] R̂(X ;Fj).

(f) Given F1, . . . ,Fm classes of functions X → R and suppose for each j ∈ [m] there exist a
function f (0)

j ∈ Fj satisfying supx∈X |σ(f
(0)
j (x))| ≤ R, then

F ′ =
{
x 7→

∑m
j=1 vjσ(fj(x))

∣∣∣ fj ∈ Fj ∧ ‖v‖1 ≤ B ∧ ‖v‖∞ ≤ D}
satisfies R̂(X ;F ′) ≤ 2D

∑
j∈[m] R̂(X ;Fj) +O

(
BR logm√

N

)
.

Proof. The first three are trivial, and the contraction lemma is classical (see for instance [45]). The
derivations of Lemma A.12e and Lemma A.12f are less standard.

For Lemma A.12e, let us choose an arbitrary f
(0)
j from each Fj . We write f ∈ F to denote

(f1, . . . , fm) ∈ F1 × · · · × Fm.

Eξ
[

sup
f∈F

∑
i∈[N ]

ξi

m∑
j=1

wjσ(fj(xi))
]

¬
= Eξ

[
sup
f∈F

∑
i∈[N ]

ξi

m∑
j=1

wj
(
σ(fj(xi))− σ(f

(0)
j (xi))

)]

≤ Eξ
[

sup
f∈F

m∑
j=1

|wj |
∣∣∣ ∑
i∈[N ]

ξi
(
σ(fj(xi))− σ(f

(0)
j (xi))

)∣∣∣]

= Eξ
[ m∑
j=1

|wj | sup
fj∈Fj

∣∣∣ ∑
i∈[N ]

ξi
(
σ(fj(xi))− σ(f

(0)
j (xi))

)∣∣∣]

≤ 2Eξ

[ m∑
j=1

|wj | sup
fj∈Fj

∑
i∈[N ]

ξi
(
σ(fj(xi))− σ(f

(0)
j (xi))

)]
®
= 2Eξ

[ m∑
j=1

|wj | sup
fj∈Fj

∑
i∈[N ]

ξiσ(fj(xi))
]

≤ 2‖w‖1 ·N max
j∈[m]

R̂(X ;σ ◦ Fj)
¯
≤ 2N‖w‖1 · max

j∈[m]
R̂(X ;Fj) .

Above, ¬ is because ξiwjσ(f
(0)
j (xi)) is independent of fj and thus zero in expectation;  uses the

non-negativity of supfj∈Fj
∑
i∈[N ] ξi

(
σ(fj(xi))−σ(f

(0)
j (xi))

)
; ® is for the same reason as ¬; and

¯ is by Proposition A.12d.

vector case without absolute value, see [38].
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For Lemma A.12f,

Eξ
[

sup
f∈F,‖v‖1≤B,‖v‖∞≤D

∑
i∈[N ]

ξi

m∑
j=1

vjσ(fj(xi))
]

= Eξ
[

sup
f∈F,‖v‖1≤B,‖v‖∞≤D

∑
i∈[N ]

ξi

m∑
j=1

vj
(
σ(fj(xi))− σ(f

(0)
j (xi))

)
+
∑
i∈[N ]

ξi

m∑
j=1

vjσ(f
(0)
j (xi))

]

≤ Eξ
[

sup
f∈F,‖v‖∞≤D

∑
i∈[N ]

ξi

m∑
j=1

vj
(
σ(fj(xi))− σ(f

(0)
j (xi))

)]
+ Eξ

[
sup
‖v‖1≤B

∑
i∈[N ]

ξi

m∑
j=1

vjσ(f
(0)
j (xi))

]

≤ DEξ
[ ∑
j∈[m]

sup
fj∈Fj

∣∣∣ ∑
i∈[N ]

ξi
(
σ(fj(xi))− σ(f

(0)
j (xi))

)∣∣∣]+ Eξ
[

sup
‖v‖1≤B

∑
i∈[N ]

ξi

m∑
j=1

vjσ(f
(0)
j (xi))

]
¬
≤ 2DEξ

[ ∑
j∈[m]

sup
fj∈Fj

∑
i∈[N ]

ξi
(
σ(fj(xi))− σ(f

(0)
j (xi))

)]
+ Eξ

[
sup
‖v‖1≤B

∑
i∈[N ]

ξi

m∑
j=1

vjσ(f
(0)
j (xi))

]

= 2DEξ
[ ∑
j∈[m]

sup
fj∈Fj

∑
i∈[N ]

ξiσ(fj(xi))
]

+ Eξ
[

sup
‖v‖1≤B

∑
i∈[N ]

ξi

m∑
j=1

vjσ(f
(0)
j (xi))

]

= 2D ·N
∑
j∈[m]

R̂(X ;σ ◦ Fj) + Eξ
[

sup
‖v‖1≤B

∑
i∈[N ]

ξi

m∑
j=1

vjσ(f
(0)
j (xi))

]

= 2D ·N

∑
j∈[m]

R̂(X ;σ ◦ Fj) +O(BR
√
N logm) .

Above, ¬ is from the same derivation as Proposition A.12e; and  uses Proposition A.12b by view-
ing function class

{
x 7→

∑m
j=1 vj · σ(f

(0)
j (x))

}
as linear in v. �

B Proofs for Two-Layer Networks

Recall from (3.1) the target F ∗ = (f∗1 , · · · , f∗k ) for our two-layer case is

f∗r (x) :=

p∑
i=1

a∗r,iφi(〈w∗1,i, x〉)〈w∗2,i, x〉

We consider another function defined as G(x;W ) = (g1(x;W ), . . . , gk(x;W )) for the weight ma-
trix W , where

gr(x;W ) :=

m∑
i=1

a
(0)
r,i (〈wi, x〉+ b

(0)
i )I[〈w(0)

i , x〉+ b
(0)
i ≥ 0]

where wi is the r-th row of W and w(0)
i is the r-th row of W (0) (our random initialization). We

call this G a pseudo network. For convenience, we also define a pseudo network G(b)(x;W ) =

(g
(b)
1 (x;W ), . . . , g

(b)
k (x;W )) without bias

g(b)
r (x;W ) :=

m∑
i=1

a
(0)
r,i 〈wi, x〉I[〈w

(0)
i , x〉+ b

(0)
i ≥ 0],

Roadmap. Our analysis begins with showing that w.h.p. over the random initialization, there exists
a pseudo network in the neighborhood of the initialization that can approximate the target function
(see Section B.1). We then show that, near the initialization, the pseudo network approximates
the actual ReLU network F (see Section B.2). Therefore, there exists a ReLU network near the
initialization approximating the target. Furthermore, it means that the loss surface of the ReLU
network is close to that of the pseudo network, which is convex. This then allows us to show
the training converges (see Section B.3). Combined with a generalization bound localized to the
initialization, we can prove the final theorem that SGD learns a network with small risk.
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The proof is much simpler than the three-layer case. First, the optimization landscape is almost
convex, so a standard argument for convex optimization applies. While for three-layer case, the
optimization landscape is no longer this nice and needs an escaping-from-saddle-point argument,
which in turn requires several technicalities (smoothing, explicit regularization, weight decay, and
Dropout-like noise). Second, the main technical part of the analysis, the proof of the existential
result, only needs to deal with approximating one layer of neurons in the target, while in the three-
layer case, a composition of the neurons needs to be approximating, requiring additional delicate
arguments. It is also similar with the generalization bounds. However, we believe that the analysis
in the two-layer case already shows some of the key ideas, and suggest the readers to read it before
reading that for the three-layer case.

B.1 Existential Result

The main focus of this subsection is to show that there exists a good pseudo network near the
initialization. (Combining with the coupling result of the next subsection, this translates to the real
network near the initialization.)

Lemma B.1. For every ε ∈ (0, 1
pkCs(φ,1) ), letting εa = ε/Θ̃(1), there exists

M = poly(Cε(φ, 1), 1/ε) and C0 = Θ̃
(
Cε(φ, 1)

)
such that ifm ≥M , then with high probability there existsW> = (w>

1 , . . . , w
>
m) with ‖W>‖2,∞ ≤

kpC0

εam
and ‖W>‖F ≤ Õ(kpCs(φ,1)

εa
√
m

) and

E(x,y)∼D

[
k∑
r=1

∣∣∣f∗r (x)− g(b)
r (x;W>)

∣∣∣] ≤ ε,
and consequently,

E(x,y)∼D

[
L(G(b)(x;W>), y)

]
≤ OPT + ε.

Corollary B.2. In the same setting as Lemma B.1, we have that w.h.p.

E(x,y)∼D

[
k∑
r=1

∣∣∣f∗r (x)− gr(x;W (0) +W>)
∣∣∣] ≤ ε,

and consequently,

E(x,y)∼D

[
L(G(x;W (0) +W>), y)

]
≤ OPT + ε.

Proof of Lemma B.1. Recall the pseudo network without bias is given by

g(b)
r (x;W ) =

m∑
i=1

a
(0)
r,i (〈wi, x〉+ b

(0)
i )I[〈w(0)

i , x〉+ b
(0)
i ≥ 0].

Also recall from Lemma 6.3 that, for each i ∈ [p], there is function h(i) : R2 → R with |h(i)| ≤
Cε(φ, 1), satisfying ∣∣∣E [I

α1x1+β1

√
1−x2

1+b0≥0
h(i)(α1, b0)

]
− φi(x1)

∣∣∣ ≤ ε
where α1, β1, b0 ∼ N (0, 1) are independent random Gaussians.

Fit a single function a∗r,iφi(〈w∗1,i, x〉)〈w∗2,i, x〉. We first fix some r ∈ [k] and i ∈ [p] and
construct weights w>

j ∈ Rd. Define

w>
j :=

1

ε2
a

a
(0)
r,ja

∗
r,ih

(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)
w∗2,i (B.1)

where
√
m〈w(0)

j , w∗1,i〉,
√
mb

(0)
j has the same distribution with α1, b0 in Lemma 6.3. By Lemma 6.3,

we have that

E
w

(0)
j ,b

(0)
j ,a

(0)
r,j

[
a

(0)
r,j I〈w(0)

j ,x〉+b(0)j ≥0
〈w>

j , x〉
]

= E
w

(0)
j ,b

(0)
j

[
a∗r,iI〈w(0)

j ,x〉+b(0)j ≥0
h(i)

(√
m〈w(0)

j , w∗1,i〉,
√
mb

(0)
j

)
〈w∗2,i, x〉

]
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= a∗r,iφi(〈w∗1,i, x〉)〈w∗2,i, x〉 ± ε.

Fit a combination
∑

i∈[p] a
∗
r,iφi(〈w∗1,i, x〉)〈w∗2,i, x〉. We can re-define (the norm grows by a

maximum factor of p)

w>
j =

1

ε2
a

a
(0)
r,j

∑
i∈[p]

a∗r,ih
(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)
w∗2,i

and the same above argument gives

E
w

(0)
j ,b

(0)
j ,a

(0)
r,j

[
a

(0)
r,j I〈w(0)

j ,x〉+b(0)j ≥0
〈w>

j , x〉
]

=
∑
i∈[p]

a∗r,iφi(〈w∗1,i, x〉)〈w∗2,i, x〉 ± εp.

Fit multiple outputs. If there are k outputs let us re-define (the norm grows by a maximum factor
of k)

w>
j =

1

ε2
a

∑
r∈[k]

a
(0)
r,j

∑
i∈[p]

a∗r,ih
(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)
w∗2,i. (B.2)

and consider the quantity

Ξr,j := a
(0)
r,j 〈w

>
j , x〉I[〈w

(0)
j , x〉+ b

(0)
j ≥ 0] .

By definition of the initialization, we know that for r′ 6= r, E[a
(0)
r,ja

(0)
r′,j ] = 0. Thus, for every r ∈ [k],

it satisfies
E
w

(0)
j ,b

(0)
j ,a

(0)
1,j ,...,a

(0)
k,j

[Ξr,j ]

= E
w

(0)
j ,b

(0)
j ,a

(0)
1,j ,...,a

(0)
k,j

 ∑
r′∈[k]

a
(0)
r,ja

(0)
r′,j

ε2
a

∑
i∈[p]

I〈w(0)
j ,x〉+b(0)j ≥0

a∗r′,ih
(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)
〈w∗2,i, x〉


= E

w
(0)
j ,b

(0)
j

∑
i∈[p]

I〈w(0)
j ,x〉+b(0)j ≥0

a∗r,ih
(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)
〈w∗2,i, x〉


=
∑
i∈[p]

a∗r,iφi(〈w∗1,i, x〉))〈w∗2,i, x〉 ± pε = f∗r (x)± pε .

Now, re-scaling each w>
j by a factor of 1

m and re-scaling ε by 1
2pk , we can write

g(b)
r (x;W>) =

m∑
j=1

Ξr,j and E
[
g(b)
r (x;W>)

]
= f∗r (x)± ε

2k
.

Now, we apply the concentration from Lemma A.1, which implies for our parameter choice of m,
with high probability

|g(b)
r (x;W>)− f∗r (x)| ≤ ε

k
.

The above concentration holds for every fixed x with high probability, and thus also holds in expec-
tation with respect to (x, y) ∼ D. This proves the first statement. As for the second statement on
L(G(b)(x;W>), y), it follows from the Lipschitz continuity of L.

Norm onW>. According to its definition in (B.2), we have for each j ∈ [m], with high probability
‖w>

j ‖2 ≤ Õ
(
kpC0

εam

)
(here the additional 1

m is because we have re-scaled w>
j by 1

m ). This means

‖W>‖2,∞ ≤ Õ
(
kpC0

εam

)
. As for the Frobenius norm,

‖W>‖2F =
∑
j∈[m]

‖w>
j ‖

2 ≤
∑
j∈[m]

Õ(
k2p

ε2
am

2
) ·
∑
i∈[p]

h(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)2

(B.3)

Now, for each i ∈ [p], we know that
∑
j∈[m] h

(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)2

is a summation of

i.i.d. random variables, each with expectation at most Cs(φ, 1)2 by Lemma 6.3. Applying concen-
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tration, we have with high probability∑
j∈[m]

h(i)
(√

m〈w(0)
j , w∗1,i〉,

√
mb

(0)
j

)2

≤ m · Cs(φ, 1)2 +
√
m · C2

0 ≤ 2mCs(φ, 1)2

Putting this back to (B.3) we have ‖W>‖2F ≤ Õ(k
2p2Cs(φ,1)2

ε2am
). �

Proof of Corollary B.2. Let W> be the weights constructed in Lemma B.1 to approximate up to
error ε/2. Then

|gr(x;W (0) +W>)− g(b)
r (x;W>)| =

∣∣∣∣∣
m∑
i=1

a
(0)
r,i (〈w(0)

i , x〉+ b
(0)
i )I[〈w(0)

i , x〉+ b
(0)
i ≥ 0]

∣∣∣∣∣ .
By standard concentration (which uses the randomness of w(0) together with the randomness of
a

(0)
r,1 , . . . , a

(0)
r,m), the above quantity is with high probability bounded by Õ(εa) = ε/2. This is the

only place we need parameter choice εa. �

B.2 Coupling

Here we show that the weights after a properly bounded amount of updates stay close to the initial-
ization, and thus the pseudo network is close to the real network using the same weights.

Lemma B.3 (Coupling). For every unit vector x, w.h.p. over the random initialization, for every
time step t ≥ 1, we have the following. Denote τ = εaηt.

(a) For at most Õ(τ
√
km) fraction of i ∈ [m]:

I[〈w(0)
i , x〉+ b

(0)
i ≥ 0] 6= I[〈w(t)

i , x〉+ b
(0)
i ≥ 0].

(b) For every r ∈ [k],∣∣∣fr(x;W (0) +Wt)− gr(x;W (0) +Wt)
∣∣∣ = Õ(εakτ

2m3/2).

(c) For every y: ∥∥∥∥ ∂

∂W
L(F (x;W (0) +Wt), y)− ∂

∂W
L(G(x;W (0) +Wt), y)

∥∥∥∥
2,1

≤ Õ(εakτm
3/2 + ε2

ak
2τ2m5/2).

Proof of Lemma B.3. Let us recall

fr(x;W ) =

m∑
i=1

a
(0)
r,i (〈wi, x〉+ b

(0)
i )I[〈wi, x〉+ b

(0)
i ≥ 0]

gr(x;W ) =

m∑
i=1

a
(0)
r,i (〈wi, x〉+ b

(0)
i )I[〈w(0)

i , x〉+ b
(0)
i ≥ 0]. (B.4)

(a) W.h.p. over the random initialization, there is B = Õ(1) so that every |a(0)
r,i | ≤ εaB. Thus, by

the 1-Lipschitz continuity of L, for every i ∈ [m] and every t ≥ 0,∥∥∥∥∂fr(x;W (0) +Wt)

∂wi

∥∥∥∥
2

≤ εaB and
∥∥∥∥∂L(F (x;W (0) +Wt), y)

∂wi

∥∥∥∥
2

≤
√
kεaB (B.5)

which implies that
∥∥∥w(t)

i − w
(0)
i

∥∥∥
2
≤
√
kBεaηt =

√
kBτ . Accordingly, defineH

H :=
{
i ∈ [m]

∣∣∣ ∣∣∣〈w(0)
i , x

〉
+ b

(0)
i

∣∣∣ ≥ 2
√
kBτ

}
.

so it satisfies for every i ∈ H,∣∣∣(〈w(t)
i , x

〉
+ b

(0)
i

)
−
(〈
w

(0)
i , x

〉
+ b

(0)
i

)∣∣∣ ≤ √kBτ
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which implies I[〈w(0)
i , x〉+ b

(0)
i ≥ 0] = I[〈w(t)

i , x〉+ b
(0)
i ≥ 0].

Now, we need to bound the size of H. Since 〈w(0)
i , x〉 ∼ N (0, 1/m), and b(0)

i ∼ N (0, 1/m),
by standard property of Gaussian one can derive |H| ≥ m

(
1 − Õ(

√
kBτ
√
m)
)

= m
(
1 −

Õ(τ
√
km)

)
with high probability.

(b) It is clear from (B.4) that fr and gr only differ on the indices i 6∈ H. For such an index i 6∈ H,
the sign of 〈w(t)

i , x〉 + b
(0)
i is different from that of 〈w(0)

i , x〉 + b
(0)
i and their difference is at

most
√
kBτ . This contributes at most εaB ·

√
kBτ difference between fr and gr. Then the

bound follows from that there are only Õ
(
τm
√
km
)

many i 6∈ H.

(c) Note that
∂

∂wi
L(F (x;W (0) +Wt), y) = ∇L(F (x;W (0) +Wt), y)

∂

∂wi
F (x;W (0) +Wt)

By the Lipschitz smoothness assumption on L and Lemma B.3b, we have

‖∇L(F (x;W (0) +Wt), y)−∇L(G(x;W (0) +Wt), y)‖2 ≤ Õ(εak
3/2τ2m3/2) . (B.6)

For i ∈ H we have I[〈w(0)
i , x〉 + b

(0)
i ≥ 0] = I[〈w(t)

i , x〉 + b
(0)
i ≥ 0], so ∂F (x;W (0)+Wt)

∂wi
=

∂G(x;W (0)+Wt)
∂wi

, and thus the difference is only caused by (B.6). Using (B.5), each such i

contributes at most Õ(ε2
ak

2τ2m3/2), totaling Õ(ε2
ak

2τ2m5/2).

For i 6∈ H, it contributes at most
√
kεaB because of (B.5), and there are Õ(τm

√
km) many

such i’s, totaling Õ(εakτm
3/2).

�

B.3 Optimization

Recall for z = (x, y)

LF (z;Wt) := L(F (x;W (0) +Wt), y) ,

LG(z;Wt) := L(G(x;W (0) +Wt), y) .

For the set of samples Z , define

LF (Z;W ) :=
1

|Z|
∑

(x,y)∈Z

L(F (x;W +W (0)), y) ,

LG(Z;W ) :=
1

|Z|
∑

(x,y)∈Z

L(G(x;W +W (0)), y) .

We show the following lemma:

Lemma B.4. For every ε ∈ (0, 1
pkCs(φ,1) ), letting εa = ε/Θ̃(1) and η = Θ̃

(
1

εkm

)
, there exists

M = poly(Cε(φ, 1), 1/ε) and T = Θ
(k3p2 · Cs(φ, 1)2

ε2

)
such that, w.h.p., if m ≥M then

1

T

T−1∑
t=0

LF (Z;Wt) ≤ OPT + ε.

Proof of Lemma B.4. Let W> be constructed in Corollary B.2. Recall L(·, y) is convex and
G(x;W ) is linear in W so LG(z;W ) is convex in W . By such convexity, we have

LG(Z;Wt)− LG(Z;W>) ≤ 〈∇LG(Z;Wt),Wt −W>〉
≤ ‖∇LG(Z;Wt)−∇LF (Z;Wt)‖2,1‖Wt −W>‖2,∞

+ 〈∇LF (Z;Wt),Wt −W>〉.
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We also have
‖Wt+1 −W>‖2F = ‖Wt − η∇LF (z(t),Wt)−W>‖2F

= ‖Wt −W>‖2F − 2η〈∇LF (z(t),Wt),Wt −W>〉
+ η2‖∇LF (z(t),Wt)‖2F ,

so
LG(Z;Wt)− LG(Z;W>) ≤ ‖∇LG(Z;Wt)−∇LF (Z;Wt)‖2,1‖Wt −W>‖2,∞

+
‖Wt −W>‖2F − Ez(t) [‖Wt+1 −W>‖2F ]

2η

+
η

2
‖∇LF (Wt, z

(t))‖2F . (B.7)

Recall from (B.5) that with high probability over the random initialization,

‖Wt‖2,∞ = Õ(
√
kεaηt) , ‖Wt −W>‖2,∞ = Õ(

√
kεaηt+

kpC0

εam
) (B.8)

and ‖∇LF (Wt, z
(t))‖2F = Õ(ε2

akm) ,

where C0 is as in Lemma B.1. By Lemma B.3c, w.h.p. we know

‖∇LG(Z;Wt)−∇LF (Z;Wt)‖2,1 ≤ ∆ = Õ(ε2
akηTm

3/2 + ε4
ak

2(ηT )2m5/2).

Therefore, averaging up (B.7) from t = 0 to T − 1 we have that

1

T

T−1∑
t=0

Esgd[LG(Z;Wt)]− LG(Z;W>) ≤ Õ
(√

kεaηT∆ +
kpC0

εam
∆

)
+
‖W0 −W>‖2F

2ηT

+ Õ(kε2
aηm).

Note that ‖W0 − W>‖2F = ‖W>‖2F ≤ Õ
(k2p2Cs(φ,1)2

ε2am

)
from Lemma B.1. Also recall

εa = Θ(ε). By choosing η = Θ̃
(

ε
kmε2a

)
and T = Θ̃

(
k3p2Cs(φ, 1)2/ε2

)
we have ∆ =

Õ(k6p4Cs(φ, 1)4m1/2/ε2). Thus when m is large enough we have:

1

T

T−1∑
t=0

Esgd[LG(Z;Wt)]− LG(Z;W>) ≤ O(ε).

By the coupling in Lemma B.3b, we know that LF (Z;Wt) is o(ε)-close to LG(Z;Wt); by applying
Corollary B.2, we know that LG(Z;W>) is ε-close to OPT. This finishes the proof. �

B.4 Generalization

The generalization can be bounded via known Rademacher complexity results. Recall

fr(x;W (0) +W ′) :=

m∑
i=1

a
(0)
r,i σ(〈w(0)

i + w′i, x〉+ b
(0)
i ) .

We have the following simple lemma (see also [35, Theorem 43])17

Lemma B.5 (two-layer network Rademacher complexity). For every τw,∞ ≥ 0, w.h.p. for every
r ∈ [k] and every N ≥ 1, we have the empirical Rademacher complexity bounded by

1

N
Eξ∈{±1}N

 sup
‖W ′‖2,∞≤τw,∞

∑
i∈[N ]

ξifr(xi;W
(0) +W ′)

 ≤ Õ(εamτw,∞√
N

)
.

Proof. The proof consists of the following simple steps.

• {x 7→ 〈w′j , x〉 | ‖w′j‖2 ≤ τw,∞} has Rademacher complexity O(
τw,∞√
N

) by Proposition A.12a.

• {x 7→ 〈w(0)
j + w′j , x〉 + bj | ‖w′j‖2 ≤ τw,∞} has Rademacher complexity O(

τw,∞√
N

)

because singleton class has zero complexity and adding it does not affect complexity by
17We note that [35, Theorem 43] did not have W (0) but the same result holds with the introduction of W (0).
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Proposition A.12c.

• {x 7→ fr(x;W (0) + W ′) | ‖W ′‖2,∞ ≤ τw,∞} has Rademacher complexity Õ(
εamτw,∞√

N
)

because w.h.p. ‖a(0)
r ‖1 ≤ Õ(εam) and Proposition A.12e. �

B.5 Theorem 1: Two-Layer

Proof of Theorem 1. First, we can apply Lemma B.4 to bound the training loss. That is

1

T

T−1∑
t=0

E(x,y)∈ZL(F (x;Wt +W (0)), y) ≤ OPT + ε.

Also recall from (B.8) and our parameter choices for η, T that

‖Wt‖2,∞ ≤ O
(
poly(k, p, logm) · Cs(φ, 1)2

ε2m

)
.

so we can choose τw,∞ = O( poly(k,p,logm)·Cs(φ,1)2

ε2m ). For each (x, y) ∼ D, it is a simple exercise to

verify that |L(F (x;Wt +W (0)), y)| ≤ O( poly(k,p,logm)·Cs(φ,1)2

ε ) with high probability.18 Thus, we

can plug the Rademacher complexity Lemma B.5 together with b = O( poly(k,p,logm)·Cs(φ,1)2

ε ) into
standard generalization statement Corollary A.11. It gives∣∣∣E(x,y)∈DL(F (x;Wt +W (0)), y)− E(x,y)∈ZL(F (x;Wt +W (0)), y)

∣∣∣
≤ O(

poly(k, p, logm) · Cs(φ, 1)2

ε
√
N

) . (B.9)

This completes the proof with large enough N . �

Remark B.6. Strictly speaking, |gr(x;W )| ≤ Õ(εa) does not hold for every x in D, thus the loss
function L is not absolutely bounded so one cannot apply Corollary A.11 directly.19 We only have
the statement that for each sample x, the loss function |L(F (x;Wt + W (0)), y)| ≤ b is bounded
by some parameter b with high probability. By union bound, with high probability this can hold for
all the training samples (but possibly not all the testing samples). A simple fix here is to apply a
truncation (for analysis purpose only) on the loss function L to make it always bounded by b. Then,
we can apply Corollary A.11: the population risk “E(x,y)∈DL(· · · )” in (B.9) becomes truncated
but the empirical risk “E(x,y)∈ZL(· · · )” in (B.9) stays unchanged. In other words, the truncated
population risk must be small according to Corollary A.11. Finally, we can remove truncation from
the population risk, because in the rare event that |L(F (x;Wt + W (0)), y)| exceeds b, it is at most
poly(m) so becomes negligible when evaluating the expectation E(x,y)∈DL(· · · ).
Remark B.7. In the above proof, it appears that N scales with ε−4 which may seemingly be larger
than T which only scales with ε−2. We are aware of a proof that tightens N to be on the order
of ε−2. It uses standard (but complicated) martingale analysis and creates extra difficulty that is
irrelevant to neural networks in general. We choose not to present it for simplicity.

C Proofs for Three-Layer Networks

Our three-layer proofs follow the same structure as our proof overview in Section 6.

C.1 Existential Results

C.1.1 Lemma 6.3: Indicator to Function

Recall without loss of generality it suffices to prove Lemma 6.3a.

18Indeed, with high probability |gr(x;W )| ≤ Õ(εa) and since ‖Wt‖2,∞ ≤ τw,∞ we have |g(b)r (x;Wt)| ≤
Õ(εaτw,∞m). Together we have |gr(x;W + Wt)| ≤ Õ(εaτw,∞m). By the coupling Lemma B.3b, this
implies |fr(x;W + Wt)| ≤ Õ(εaτw,∞m) as well. Using L(0, y) ∈ [0, 1] and the 1-Lipschitz continuity
finishes the proof.

19In some literature this issue was simply ignored or an absolute bound on L is imposed; however, the only
globally absolutely bounded convex function is constant.
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Lemma 6.3a (indicator to function). For every smooth function φ, every ε ∈
(
0, 1

Cs(φ,1)

)
, we have

that there exists a function h : R2 → [−Cε(φ, 1),Cε(φ, 1)] such that for every x1 ∈ [−1, 1]:∣∣∣E [I
α1x1+β1

√
1−x2

1+b0≥0
h(α1, b0)

]
− φ(x1)

∣∣∣ ≤ ε
where α1, β1 ∼ N (0, 1) and b0 ∼ N (0, 1) are independent random variables. Furthermore:

• h is Cε(φ, 1)-Lipschitz on the first coordinate.

• Eα1,b0∼N (0,1)

[
h(α1, b0)2

]
≤ (Cs(φ, 1))2.

For notation simplicity, let us denote w0 = (α1, β1) and x = (x1,
√

1− x2
1) where α1, β1 are two

independent random standard Gaussians.

Throughout the proof, we also take an alternative view of the randomness. We write 〈w0, x〉 = α

and α1 = αx1 +
√

1− x2
1β for two independent α, β ∼ N (0, 1).20

We first make a technical claim involving in fitting monomials in x1. Its proof is in Section C.1.2.

Claim C.1. Recall hi(x) is the degree-i Hermite polynomial (see Definition A.5). For every integer
i ≥ 1 there exists constant p′i with |p′i| ≥

(i−1)!!
200i2 such that

for even i : xi1 =
1

p′i
Ew0∼N (0,I),b0∼N (0,1) [hi(α1) · I[0 < −b0 ≤ 1/(2i)] · I[〈x,w0〉+ b0 ≥ 0]]

for odd i : xi1 =
1

p′i
Ew0∼N (0,I),b0∼N (0,1) [hi(α1) · I[|b0| ≤ 1/(2i)] · I[〈x,w0〉+ b0 ≥ 0]]

We next use Claim C.1 to fit arbitrary functions φ(x1). By Taylor expansion, we have

φ(x1) = c0 +

∞∑
i=1, odd i

cix
i
1 +

∞∑
i=2, even i

cix
i
1

= c0 +

∞∑
i=1

c′i · Eα,β,b0∼N (0,1)

[
hi(α1) · I[qi(b0)] · I[〈x,w0〉+ b0 ≥ 0]

]
where

c′i :=
ci
p′i

, |c′i| ≤
200i2 |ci|
(i− 1)!!

and qi(b0) =

{
|b0| ≤ 1/(2i), i is odd;
0 < −b0 ≤ 1/(2i), i is even. (C.1)

The next technical claim carefully bounds the absolute values of the Hermite polynomials. Its proof
is in Section C.1.2.

Claim C.2. Setting Bi := 100i1/2 + 10
√

log 1
ε , we have

(a)
∑∞
i=1 |c′i| · Ez∼N (0,1)

[
|hi(z)| · I[|z| ≥ Bi]

]
≤ ε/8

(b)
∑∞
i=1 |c′i| · Ez∼N (0,1)

[
|hi(Bi)| · I[|z| ≥ Bi]

]
≤ ε/8

(c)
∑∞
i=1 |c′i| · Ez∼N (0,1)

[
|hi(z)| · I[|z| ≤ Bi]

]
≤ 1

2Cε (φ, 1)

(d)
∑∞
i=1 |c′i| · Ez∼N (0,1)

[∣∣ d
dzhi(z)

∣∣ · I[|z| ≤ Bi]] ≤ 1
2Cε (φ, 1)

Now, let us define ĥi(α1) := hi(α1) · I[|α1| ≤ Bi] +hi(sign(α1)Bi) · I[|α1| > Bi] as the truncated
version of the Hermite polynomial hi(·).

Using Claim C.2, we have

φ(x1) = c0 +R′(x1) +

∞∑
i=1

c′i · Eα,β,b0∼N (0,1)

[
ĥi(α1) · I[qi(b0)] · I[〈x,w0〉+ b0 ≥ 0]

]
20This is possible for the following reason. Let x⊥ = (

√
1− x21,−x1) be unit vector orthogonal to x. We

can write w0 = αx+ βx⊥ where α, β ∼ N (0, 1) are two independent Gaussians.
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where |R′(x1)| < ε/4 uses Claim C.2a and Claim C.2b. In other words, if we define

h(α1, b0) := 2c0 +

∞∑
i=1

c′i · ĥi(α1) · I[qi(b0)]

then we have∣∣Eα,β,b0∼N (0,1)

[
I[〈x,w0〉+ b0 ≥ 0] · h(α1, b0)

]
− φ(x1)

∣∣ = |R′(x1)| ≤ ε/4 .

As for the range of h, we use Claim C.2b and Claim C.2c to derive that

|h(α1, b0)| ≤ 2c0 +
ε

8
+

1

2
Cε (φ, 1) ≤ Cε (φ, 1) .

As for the Lipschitz continuity of h on its first coordinate α1, we observe that for each i > 0,
ĥi(z) has zero sub-gradient for all |z| ≥ Bi. Therefore, it suffices to bound

∣∣ d
dzhi(z)

∣∣ for |z| <
Bi. Replacing the use of Claim C.2c by Claim C.2d immediately give us the same bound on the
Lipschitz continuity of h with respect to α1.

As for the expected square Eα1,b0∼N (0,1)

[
h(α1, b0)2

]
, we can write

h(α1, b0) = 2c0 +

∞∑
i=1

c′i · ĥi(α1) · I[qi(b0)]
¬
= 2c0 +

∞∑
i=1

c′i · hi(α1) · I[qi(b0)]± ε

4

Above, ¬ uses Claim C.2a and Claim C.2b. Using the othogonality condition of Hermite polyno-
mials (that is, Ex∼N (0,1)[hi(x)hj(x)] =

√
2πj!δi,j from Definition A.5), we immediately have

Eα1,b0∼N (0,1)[h(α1, b0)2] ≤ O(ε2 + c20) +O(1) ·
∞∑
i=1

(c′i)
2(i!) · Eb0 [I[qi(b0)]]

≤ O(ε2 + c20) +O(1) ·
∞∑
i=1

(c′i)
2(i!)

i

≤ O(ε2 + c20) +O(1) ·
∞∑
i=1

(i!) · i3 · |ci|2

((i− 1)!!)2

≤ O(ε2 + c20) +O(1) ·
∞∑
i=1

i3.5 · |ci|2 ≤ (Cs(φ, 1))2 .

Above, ¬ uses inequality i!
((i−1)!!)2 ≤ 2

√
i for all i ≥ 1.

This finishes the proof of Lemma 6.3a. �
C.1.2 Proofs of Claim C.1 and Claim C.2

Proof of Claim C.1. We treat the two cases separately.

Even i. By Lemma A.6, we know that
Ew0∼N (0,I),b0∼N (0,1) [hi(α1) · I[0 < −b0 ≤ 1/(2i)] · I[〈x,w0〉+ b0 ≥ 0]]

= Eb0∼N (0,1)

[
Eα,β∼N (0,1)

[
hi

(
αx1 + β

√
1− x2

1

)
· I[α ≥ −b0]

]
· I[0 < −b0 ≤ 1/(2i)]

]
= Eb0∼N (0,1) [pi · I[0 < −b0 ≤ 1/(2i)]]× xi1

where

pi = (i− 1)!!
exp(−b20/2)√

2π

i−1∑
r=1,r odd

(−1)
i−1−r

2

r!!

(
i/2− 1

(r − 1)/2

)
(−b0)r . (C.2)

We try to bound the coefficient “Eb0∼N (0,1) [pi · I[0 < −b0 ≤ 1/(2i)]]” as follows. Define cr as:

cr :=
(−1)

i−1−r
2

r!!

(
i/2− 1

(r − 1)/2

)
.

Then, for 0 ≤ −b0 ≤ 1
2i , we know that for all 1 < r ≤ i− 1, r odd:

|cr(−b0)r| ≤ 1

4
|cr−2(−b0)r−2|,
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which implies ∣∣∣∣∣∣
i−1∑

r=1,r odd

cr(−b0)r

∣∣∣∣∣∣ ≥ 2

3
|c1b0| =

2

3
|b0|

and

sign

 i−1∑
r=1,r odd

cr(−b0)r

 = sign(c1)

is independent of the randomness of b0. Therefore, using the formula of pi in (C.2):∣∣Eb0∼N (0,1)[pi · I[0 ≤ −b0 ≤ 1/(2i)]]
∣∣

=

∣∣∣∣∣∣Eb0∼N (0,1)

(i− 1)!!
exp(−b20/2)√

2π

i−1∑
r=1,r odd

cr(−b0)r · I[0 ≤ −b0 ≤ 1/(2i)]

∣∣∣∣∣∣
≥ Eb0∼N (0,1)

[
(i− 1)!!

exp(−b20/2)√
2π

2

3
|b0| · I[0 ≤ −b0 ≤ 1/(2i)]

]
≥ (i− 1)!!

100i2
.

Odd i. Similarly, by Lemma A.6, we have
Ew0∼N (0,I),b0∼N (0,1)

[
hi(α1) · I[|b0| ≤ 1/(2i)] · I[〈x,w0〉+ b0 ≥ 0]

]
= Eb0∼N (0,1)

[
pi · I[|b0| ≤ 1/(2i)]

]
× xi1

where

pi = (i− 1)!!
exp(−b20/2)√

2π

i−1∑
r=0,r even

(−1)
i−1−r

2

r!!

(
i/2− 1

(r − 1)/2

)
(−b0)r . (C.3)

This time we bound the coefficient “Eb0∼N (0,1) [pi · I[|b0| ≤ 1/(2i)]]” as follows. Define cr as:

cr :=
(−1)

i−1−r
2

r!!

(
i/2− 1

(r − 1)/2

)
.

Then, for |b0| ≤ 1
2i , we know that for all even r in 1 < r ≤ i− 1 it satisfies

|cr(−b0)r| ≤ 1

4
|cr−2(−b0)r−2|,

which implies ∣∣∣∣∣
i−1∑

r=0,r even

cr(−b0)r

∣∣∣∣∣ ≥ 2

3
|c0| =

2

3

∣∣∣∣(i/2− 1

−1/2

)∣∣∣∣ > 1

2i
.

and

sign

 i−1∑
r=1,r odd

cr(−b0)r

 = sign(c0)

is independent of the randomness of b0. Therefore, using the formula of pi in (C.3):∣∣Eb0∼N (0,1)

[
pi · I[|b0| ≤ 1/(2i)]

]∣∣
=

∣∣∣∣∣∣Eb0∼N (0,1)

(i− 1)!!
exp(−b20/2)√

2π

i−1∑
r=1,r odd

cr(−b0)r · I[|b0| ≤ 1/(2i)]

∣∣∣∣∣∣
≥ Eb0∼N (0,1)

[
(i− 1)!!

exp(−b20/2)√
2π

1

2i
· I[|b0| ≤ 1/(2i)]

]
≥ (i− 1)!!

100i2
.

�

40



Proof of Claim C.2. By the definition of Hermite polynomial (see Definition A.5), we have that

|hi(x)| ≤
bi/2c∑
j=0

i!|x|i−2j

j!(i− 2j)!2j
≤
bi/2c∑
j=0

|x|i−2ji2j

j!
(C.4)

Using our bound on c′i (see (C.1)), we have

|c′ihi(z)| ≤ O(1)|ci|
i4

i!!

bi/2c∑
j=0

|z|i−2ji2j

j!
. (C.5)

(a) Denote by b = Bi = 100i1/2θ for notational simplicity (for some parameter θ ≥ 1 that we
shall choose later). We have

|c′i| · Ez∼N (0,1)[|hi(z)| · I[|z| ≥ b]]| ≤ 2|c′i| · Ez∼N (0,1)

bi/2c∑
j=0

|z|i−2ji2jI[z ≥ b]
j!


= O(1)|ci|

i4

i!!

bi/2c∑
j=0

Li−2j,b · i2j

j!
, (C.6)

where recall from Lemma A.7 that

Li,b ≤ O(1)e−b
2/2 ·

i−1∑
j=0

(i− 1)!!

j!!
bj

≤ O(1)e−b
2/2 ·

i−1∑
j=0

(i− 1)!!

j!!

(
100i1/2θ

)j
≤ O(1)e−b

2/2 (100θ)
i · (i− 1)!! ·

i−1∑
j=0

ij/2

j!!

≤ O(1)e−b
2/2 (200θ)

i · (i− 1)!! (using
∑i−1
j=0

ij/2

j!! ≤ 2i)

Thus we have
bi/2c∑
j=0

Li−2j,b · i2j

j!
≤ O(1) (200θ)

i
e−b

2/2

bi/2c∑
j=0

(i+ 1− 2j)!! · i2j

j!

≤ O(1) (400θ)
i
e−b

2/2

bi/2c∑
j=0

i(i−2j)/2 · i2j

j!

= O(1) (400θ)
i
e−b

2/2ii/2
bi/2c∑
j=0

ij

j!

¬
≤ O(1) (1200θ)

i
e−b

2/2ii/2 (C.7)

≤ O(ii/2) · 1200i ·

(
θ · e−104θ2

)i
®
≤ ii/2 · 1

100i
· ε2

¯
≤ ii/2 · 1

100i
· ε
|ci|

(C.8)

Above, inequality ¬ uses
∑i−1
j=0

ij

j! ≤ 3i; inequality  uses our definition of b = Bi; inequality

® uses (θ ·e−104θ2)i ≤ ε2

100000i for θ = 1+

√
log(1/ε)

10
√
i

; and inequality ¯ uses ε|ci| ≤ 1. Putting
this back to (C.6), we have

∞∑
i=1

|c′i| · Ez∼N (0,1)[|hi(z)| · I[|z| ≥ b]]| ≤ O(1)

∞∑
i=1

i4

i!!

ε

100i
ii/2 ≤ ε

8
.
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Above, in the last inequality we have used i4

i!! i
i/2 ≤ 40 · 4i for i ≥ 1.

(b) Similar to the previous case, we calculate that

|c′i| · Ez∼N (0,1)[|hi(b)| · I[|z| ≥ b]]| ≤ |c′i| · Ez∼N (0,1)

bi/2c∑
j=0

bi−2ji2j

j!
I[|z| ≥ b]


≤ O(1)|ci|

i4

i!!
· L0,bb

i

bi/2c∑
j=0

b−2j · i2j

j!

¬
≤ O(1)|ci|

i4

i!!
· e−b

2/2bi
bi/2c∑
j=0

ij

j!


≤ O(1)|ci|

i4

i!!
· e−b

2/2(3b)i

≤ |ci|
i4

i!!
· e−b

2/2(3b)i .

Above, inequality ¬ uses b2j = B2j
i ≥ (10i)j ; and inequality  uses again

∑i−1
j=0

ij

j! ≤ 3i.
Using this and continue from (C.7) of the previous case, we finish the proof.

(c) Again denote by b = Bi = 100i1/2θ for notational simplicity. By Eq. (C.5), it holds that
∞∑
i=1

|c′i| · Ez∼N (0,1)

[
|hi(z)| · I[|z| ≤ Bi]

]
≤ O(1)

∞∑
i=1

|ci|
i4

i!!

bi/2c∑
j=0

Bi−2j
i i2j

j!

≤ O(1)

∞∑
i=1

|ci|
i4

i!!

bi/2c∑
j=0

(
100i1/2θ

)i−2j i2j

j!

≤ O(1)

∞∑
i=1

|ci|
i4

i!!

(
100i1/2θ

)i bi/2c∑
j=0

ij

j!

¬
≤
∞∑
i=1

|ci| (O(1)θ)
i


≤
∞∑
i=1

|ci|

(
O(1)

(
1 +

√
log(1/ε)

10
√
i

))i
≤ 1

2
Cε (φ, 1) .

Here, in ¬ we use the fact that i
j

j! ≤ 10i; in  we use the fact that
(
a
b

)b ≤ ea for all b ∈ [1, a].

(d) By the definition of Hermite polynomial (see Definition A.5), we can also bound∣∣ d
dx
hi(x)

∣∣ ≤ bi/2c∑
j=0

|x|i−2ji2j

which is the same upper bound comparing to (C.4). Therefore, the same proof of Claim C.2c
also applies to

∣∣ d
dxhi(x)

∣∣. �

C.1.3 Lemma 6.4: Information out of Randomness

Let us consider a single neural of the second layer at random initialization, given as:

n1(x) =
∑
i∈[m1]

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
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Lemma 6.4 (information out of randomness). For every smooth function φ, every w∗ ∈ Rd with
‖w∗‖2 = 1, for every ε ∈

(
0, 1

Cs(φ,1)

)
, there exists real-valued functions

ρ(v
(0)
1 ,W (0), b

(0)
1 ), B(x, v

(0)
1 ,W (0), b

(0)
1 ), R(x, v

(0)
1 ,W (0), b

(0)
1 ), and φε(x)

such that for every x:

n1(x) = ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
φε(x) +B

(
x, v

(0)
1 ,W (0), b

(0)
1

)
+R

(
x, v

(0)
1 ,W (0), b

(0)
1

)
.

Moreover, letting C = Cε(φ, 1) be the complexity of φ, and if v(0)
1,i ∼ N (0, 1

m2
) and w(0)

i,j , b
(0)
1,i ∼

N (0, 1
m1

) are at random initialization, then we have

1. For every fixed x, ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
is independent of B

(
x, v

(0)
1 ,W (0), b

(0)
1

)
.

2. ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
∼ N

(
0, 1

100C2m2

)
.

3. For every x with ‖x‖2 = 1, |φε(x)− φ(〈w∗, x〉)| ≤ ε.

4. For every fixed x with ‖x‖2 = 1, with high probability
∣∣∣R(x, v(0)

1 ,W (0), b
(0)
1

)∣∣∣ ≤
Õ
(

1√
m1m2

)
and

∣∣∣B (x, v(0)
1 ,W (0), b

(0)
1

)∣∣∣ ≤ Õ ( 1√
m2

)
.

Furthermore, there exists real-valued function ρ̃(v
(0)
1 ) satisfying with high probability:

ρ̃(v
(0)
1 ) ∼ N

(
0,

1

100C2m2

)
and W2(ρ|

W (0),b
(0)
1
, ρ̃) ≤ Õ

(
1

C
√
m1m2

)
.

Before going to proofs, we recall from Section A that we have overridden the notion of “with high
probability” so the above statement impliesW2(R, 0) ≤ O

(
1√

m1m2

)
andW2(B, 0) ≤ Õ

(
1√
m2

)
.

Proof of Lemma 6.4. Without loss of generality we assume w∗ = e1. Recall that

n1(x) =
∑
i∈[m1]

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
By Lemma 6.3, for every ε > 0, there exists a function h such that for every unit x with xd = 1

2 and
every i ∈ [m1]:

E
w

(0)
i ∼N (0, I

m1
),b

(0)
1,i∼N (0, 1

m1
)

[
h
(
w

(0)
i,1 , b

(0)
1,i

)
xdI[〈w(0)

i , x〉+ b
(0)
1,i ≥ 0]

]
=
φε(x1)

C
=
φε(〈w∗, x〉)

C
(C.9)

with
|φε(〈w∗, x〉)− φ(〈w∗, x〉)| ≤ ε

and
∣∣∣h(w(0)

i,1 , b
(0)
1,i

)∣∣∣ ∈ [0, 1]. (Here to apply Lemma 6.3, we have re-scaled h in Lemma 6.3 by 1
C

and re-scaled α1, β1, b0 in Lemma 6.3 by 1√
m1

.)

Throughout the proof, we fix some parameter τ (that we shall in the end choose τ = 1
100 ). Let us

construct the sign function s : [−1, 1] × R → {−1, 0, 1} and the set function I : [−1, 1] 3 y 7→
I(y) ⊂ R given in Lemma A.4. Now, for every w(0)

i,1 , define

Ii := I
(
h
(
w

(0)
i,1 , b

(0)
1,i

))
⊂ [−2, 2]

Also define set

S :=
{
i ∈ [m1] :

√
m2v

(0)
1,i ∈ Ii

}
.

We define what we call “effective sign of v(0)
1,i ” to be

si := s
(
h
(
w

(0)
i,1 , b

(0)
1,i

)
,
√
m2v

(0)
1,i

)
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By the definition of Ii and s (see Lemma A.4), we claim that S and the “effective sign” of those v(0)
1,i

in this set i ∈ S are independent of W (0). Indeed, for any fixed choice of W (0), each i ∈ [m1] is in
set S with probability τ , and for each i ∈ S, si is ±1 each with half probability. In other words, the
following unit vector u ∈ Rm1 is independent of W (0):

ui :=

{
si√
|S|

if i ∈ S;

0 if i /∈ S.
Since each i ∈ S with probability τ , we also know with high probability:

|S| = τm1 ±O(
√
τm1) . (C.10)

Conversely, conditioning on S = S0 and {si}i∈S = s being fixed (or equivalently on u being
fixed), the distribution of W (0) is also unchanged. Since the entries of W (0) are i.i.d. generated
from N (0, 1/m1), we can write W (0) ∈ Rm1×d as

W (0) = αue>d + β

where α := u>W (0)ed ∼ N
(

0, 1
m1

)
and β ∈ Rm1×d are two independent random variables given

u (the entries of β are not i.i.d.) This factorizes out the randomness of the last column ofW (0) along
the direction u, and in particular,

• α is independent of u.

A simple observation here is that, although α ∼ N
(

0, 1
m1

)
, if we fix W (0) (or b(0)

1 ) then the

distribution of α is not Gaussian. Fortunately, fixingW (0) and b(0)
1 , we still have that the coordinates

of s = (s1, . . . , sm1) are i.i.d. (each si is zero with probability 1 − τ , and si is ±1 each with
probability τ/2).

Let α|
W (0),b

(0)
1

denote the conditional distribution of α. With high probability over W (0),

‖W (0)ed‖∞ ≤ Õ
(

1√
m1

)
. Fixing the support of u to be S, we know that for every i ∈ S , ui

is i.i.d. ± 1√
|S|

. This implies that fixing W (0), b
(0)
1 ,S, the quantity

α = u>W (0)ed =
∑
i∈S

ui[W
(0)ed]i (C.11)

is a sum of |S| many independent, mean zero random variables with each |ui[W (0)ed]i| ≤
Õ
(

1√
m1|S|

)
and

∑
i∈S ui[W

(0)ed]
2
i = 1

m1
± Õ

(
1√

τm
3/2
1

)
w.h.p. Applying any Wasserstein dis-

tance bound of central limit theorem (see Lemma A.3), we know that there exists some random
Gaussian g ∼ N (0, 1

m1
) that is independent of W0 or b(0)

1 such that w.h.p.

W2(α|
W (0),b

(0)
1
, g) ≤ Õ

(
1√
τm1

)
. (C.12)

We can write

n1(x) =
∑
i∈[m1]

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
=
∑
i6∈S

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
︸ ︷︷ ︸

:=B1

(
x,v

(0)
1 ,W (0),b

(0)
1

)
+
∑
i∈S

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
,

By definition of B1, conditioning on the randomness of u, we know that B1 is independent of α —
because 〈w(0)

i , x〉+ b
(0)
1,i = 〈βi, x〉+ b

(0)
1,i for i 6∈ S. Since u and α are independent, we know that α

and B1 are independent by Proposition A.2. We continue to write
n1(x)−B1

=
∑
i∈S

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
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=
∑
i∈S

v
(0)
1,i I[〈w

(0)
i , x〉+ b

(0)
1,i ≥ 0]

(
αsi√
|S|

xd + 〈βi, x〉+ b
(0)
1,i

)
=
∑
i∈S

v
(0)
1,i I[〈w

(0)
i , x〉+ b

(0)
1,i ≥ 0]

αsi√
|S|

xd︸ ︷︷ ︸
:=T3

+
∑
i∈S

v
(0)
1,i I[〈w

(0)
i , x〉+ b

(0)
1,i ≥ 0]

(
〈βi, x〉+ b

(0)
1,i

)
︸ ︷︷ ︸

:=T4

First consider T3. For each i ∈ S we have∣∣∣∣si · v(0)
1,i −

1
√
m2

h
(
w

(0)
i,1 , b

(0)
1,i

)∣∣∣∣ ≤ O( 1
√
m2

)
and

E
v
(0)
1,i

[
si · v(0)

1,i −
1
√
m2

h
(
w

(0)
i,1 , b

(0)
1,i

)
| i ∈ S

]
= 0 .

Above, the first row is because
√
m2v

(0)
1,i ∈ Ii and the Bounded-ness property of the interval (see

Lemma A.4); and the second row by the Unbiased property of the interval (see Lemma A.4). By
concentration, for fixed vector x, with high probability over the randomness of V (0):∣∣∣∣∣∑

i∈S

(
v

(0)
1,i si −

1
√
m2

h
(
w

(0)
i,1 , b

(0)
1,i

))
I[〈w(0)

i , x〉+ b
(0)
1,i ≥ 0]

∣∣∣∣∣ ≤ Õ
(√
|S|
√
m2

)
.

In other words,

T3 =
∑
i∈S

α√
m2|S|

h
(
w

(0)
i,1 , b

(0)
1,i

)
xdI[〈w(0)

i , x〉+ b
(0)
1,i ≥ 0] +R1

where R1 = R1

(
x, v

(0)
1 ,W (0), b

(0)
1

)
satisfies |R1| ≤ Õ

(
|α|√
|S|
·
√
|S|
√
m2

)
≤ Õ

(
1√

m1m2

)
. We write

T5 :=
T3 −R1

α
=
∑
i∈S

1√
m2|S|

h
(
w

(0)
i,1 , b

(0)
1,i

)
xdI[〈w(0)

i , x〉+ b
(0)
1,i ≥ 0] .

By (C.9) (i.e., the property of h), we know that for every fixed x, using concentration bound, with
high probability over W (0) and b(0):∣∣∣∣∣T5 −

√
|S|

√
m2C

φε(〈w∗, x〉)

∣∣∣∣∣ ≤ Õ
(

1
√
m2

)
.

and thus by (C.10) ∣∣∣∣C√m2√
τm1

T5 − φε(〈w∗, x〉)
∣∣∣∣ ≤ Õ( C

√
τm1

)
.

Let us define

ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
:=

√
τm1

C
√
m2

α ∼ N
(

0,
τ

C2m2

)
.

Then,

T3 = ρ
(
v

(0)
1 ,W (0), b

(0)
1

)
· φε(〈w∗, x〉) +R1 +R2

(
x, v

(0)
1 ,W (0), b

(0)
1

)
,

where |R2| ≤ Õ
(

C
√
τm1

)
× τ

C
√
m2

= Õ

( √
τ

√
m1m2

)
Note that α is independent of u so ρ is also independent of u. We can also define

ρ̃
(
v

(0)
1

)
:=

√
τm1

C
√
m2

g ∼ N
(

0,
τ

C2m2

)
.

and using (C.12) we can derive the desired bound on W2(ρ|
W (0),b

(0)
1
, ρ̃) in the statement of

Lemma 6.4.

Next consider T4. Recall

T4 :=
∑
i∈S

v
(0)
1,i I[〈w

(0)
i , x〉+ b

(0)
1,i ≥ 0]

(
〈βi, x〉+ b

(0)
1,i

)
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For fixed unit vector x, with high probability, we have that∣∣∣∣α si√
|S|

∣∣∣∣ =

∣∣∣∣ α√
|S|

∣∣∣∣ = Õ

(
1√
|S|m1

)
and therefore

〈w(0)
i , x〉+ b

(0)
1,i =

αsi√
|S|

xd + 〈βi, x〉+ b
(0)
1,i = 〈βi, x〉+ b

(0)
1,i ± Õ

(
1√
|S|m1

)
,

By the above formula, for an index i ∈ S to have I[〈βi, x〉+ b
(0)
1,i ≥ 0] 6= I[〈w(0)

i , x〉+ b
(0)
1,i ≥ 0], it

must satisfy ∣∣∣(〈w(0)
i , x〉+ b

(0)
1,i

)∣∣∣ ≤ Õ( 1√
|S|m1

)
. (C.13)

Thus, for fixed S, since W (0) is independent of S, with high probability over the randomness of
W (0), there are at most Õ

(√
|S|
)

many indices i ∈ S satisfying (C.13). In other words, using
|v(0)

1,i | ≤ Õ(1/
√
m2) with high probability, we have

T4 =
∑
i∈S

v
(0)
1,i I[〈βi, x〉+ b

(0)
1,i ≥ 0]

(
〈βi, x〉+ b

(0)
1,i

)
︸ ︷︷ ︸

:=T6

+R3

with R3 = R3

(
x, v

(0)
1 ,W (0), b

(0)
1

)
satisfying |R3| ≤ Õ

(
1√

m1m2

)
with high probability.

To bound T6. Recall

S :=
{
i ∈ [m1] :

√
m2v

(0)
1,i ∈ I

(
h
(
w

(0)
i,1 , b

(0)
1,i

))}
.

and we can define a similar notion

S ′ :=
{
i ∈ [m1] :

√
m2v

(0)
1,i ∈ I

(
h
(
βi,1, b

(0)
1,i

))}
.

Observe that

h
(
w

(0)
i,1 , b

(0)
1,i

)
= h

(
βi,1 + 〈αuied, e1〉, b(0)

1,i

)
= h

(
βi,1, b

(0)
1,i

)
.

Therefore, we have S = S ′ and can write

T6 =
∑
i∈S′

v
(0)
1,i I[〈βi, x〉+ b

(0)
1,i ≥ 0]

(
〈βi, x〉+ b

(0)
1,i

)
︸ ︷︷ ︸

:=B2(x,v
(0)
1 ,W (0),b

(0)
1 )

Again, conditioning on the randomness of u, we know that B2 is independent of α. Since u and α
are independent, we know that α and B2 are also independent (by Proposition A.2). In other words,
setting B = B1 +B2, B and α (and therefore ρ) are independent.

Let R = R1 + R2 + R3 be the residual term, setting τ = 1
100 , we have |R| ≤ Õ

(
1√

m1m2

)
with

high probability.

As for the norm bound on B, recall

n1(x) =
∑
i∈[m1]

v
(0)
1,i σ

(
〈w(0)

i , x〉+ b
(0)
1,i

)
and by our random initialization, n1(x) ∼ N

(
0, 1

m2

∥∥σ(W (0)x + b
(0)
1

)∥∥2

2

)
. At the same time, with

high probability
∥∥σ(W (0)x + b

(0)
1

)∥∥2

2
= O(1). Therefore, we know |n1(x)| ≤ Õ( 1√

m2
), and this

implies |B| ≤ Õ( 1√
m2

) with high probability. �
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C.1.4 Lemma 6.2: Existence

Lemma 6.2 (existence). For every ε ∈
(
0, 1

kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2

)
, there exists

M = poly

(
Cε
(
Φ,
√
p2Cε(φ, 1)

)
,

1

ε

)
C0 = Cε(Φ,

√
p2Cε(φ, 1)) · Cε(φ, 1) · Õ(p1

√
p2k)

such that if m1,m2 ≥M , then with high probability, there exists weights W>, V > with

‖W>‖2,∞ = max
i
‖w>

i ‖2 ≤
C0

m1
, ‖V >‖2,∞ = max

i
‖v>i ‖2 ≤

√
m1

m2

such that

E(x,y)∼D

[
k∑
r=1

∣∣∣f∗r (x)− g(0)
r (x;W>, V >)

∣∣∣] ≤ ε,
and hence,

E(x,y)∼D

[
L(G(0)(x;W>, V >), y)

]
≤ OPT + ε.

Let us mostly focus on proving Lemma 6.2 for a single term

a∗ · Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

 .

Extending it to multiple terms and multiple outputs, that is

f∗r (x) =
∑
i∈[p1]

a∗r,iΦi

 ∑
j∈[p2]

v∗1,i,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,i,jφ2,j(〈w∗2,j , x〉)


is rather straightforward (and indeed a repetition of the proof of Lemma B.1 in the two-layer case).

The proof consists of several steps.

Step 1: Existence in expectation

Recall that the input (without bias) to each neuron at random initialization in the second hidden layer
is

ni(x) =
∑
r∈[m1]

v
(0)
i,r σ

(
〈w(0)

r , x〉+ b
(0)
1,r

)
We first use Lemma 6.4 to derive the following claim:

Claim C.3. For every ε ∈ (0, 1/Cs(φ, 1)), there exists real-value functions φ1,j,ε(·) satisfying

|φ1,j,ε(〈w∗1,j , x〉)− φ1,j(〈w∗1,j , x〉)| ≤ ε for all j ∈ [p2] and ‖x‖2 = 1,

and the following holds. Denote by

C := Cε(φ, 1), C ′ := 10C
√
p2, φ1,j,ε(x) :=

1

C ′
φ1,j,ε(〈w∗1,j , x〉).

For every i ∈ [m2], there exist independent Gaussians21

αi,j ∼ N (0, 1/m2) and βi(x) ∼ N
(

0, 1
m2

(
1−

∑
j∈[p2] φ

2
1,j,ε(x)

))
,

satisfying

W2

ni(x),
∑
j∈[p2]

αi,jφ1,j(x) + β(x)

 ≤ O( p
2/3
2

m
1/6
1

√
m2

)

21More specifically, αi,j = αi,j(v
(0)
i ,W (0), b

(0)
1 ) and βi = βi(x, v

(0)
i ,W (0), b

(0)
1 ) depend on the random-

ness of v(0)i , W (0) and b(0)1 .
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Proof of Claim C.3. Let us define p2S many chunks of the first layer, each chunk corresponds to a
set Sj,l of cardinality |Sj,l| = m1

p2S
for j ∈ [p2], l ∈ [S], such that

Sj,l =

{
(j − 1)

m1

p2
+ (l − 1)

m1

p2S
+ k

∣∣∣ k ∈ [ m1

p2S

]}
⊂ [m1]

Let us then denote vi[j, l] to be (vi,r)r∈Sj,l and W [j, l] to be (Wr)r∈Sj,l . Recall that the input
(without bias) to each neuron at random initialization in the second hidden layer is

ni(x) =
∑
r∈[m1]

v
(0)
i,r σ

(
〈w(0)

r , x〉+ b
(0)
1,r

)
=
∑
j∈[p2]

∑
l∈[S]

∑
r∈Sj,l

v
(0)
i,r σ

(
〈w(0)

r , x〉+ b
(0)
1,r

)
.

For each j ∈ [p2] and l ∈ [S], let us apply Lemma 6.4 to the summation
∑
r∈Sj,l . . . in the above

formula, to approximate φ1,j(〈w∗1,j , x〉). (We need to replace m1 with m1

p2S
and scale up W (0) and

b
(0)
1 by

√
p2S before applying Lemma 6.4)). It tells us we can write ni(x) as:

ni(x) =
∑

j∈[p2],l∈[S]

ρj

(
v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)
φ1,j,ε(〈w∗1,j , x〉)

+
∑

j∈[p2],l∈[S]

Bj

(
x, v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)
+Rj

(
x, v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)
where random variables ρj,l := ρj

(
v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)
∼ N (0, 1

100C2m2(p2S) ) are inde-
pendent Gaussian for different j and l. Let C := Cε(φ, 1). We know that

ρj :=
∑
l∈[S]

ρj,l ∼ N
(

0,
1

100C2p2m2

)
= N

(
0,

1

C ′2m2

)
for

C ′ := 10C
√
p2 .

Moreover, |φ1,j,ε(〈w∗1,j , x〉)− φ1,j(〈w∗1,j , x〉)| ≤ ε for each j ∈ [p2].

Let us then denote

Bs
j(x) :=

∑
l∈[S]

Bj

(
x, v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)

Rs
j(x) :=

∑
l∈[S]

Rj

(
x, v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)
Lemma 6.4 tells us that random variables ρj are independent of Bj(x), and with high probability

|Rs
j(x)| ≤ S × Õ

(
1√

(m1/(p2S))m2

1√
p2S

)
≤ Õ

(
S

√
m1m2

)
and

|Bj
(
x, v

(0)
i [j, l],W (0)[j, l], b

(0)
1 [j, l]

)
| ≤ 1√

p2S
× Õ

(
1
√
m2

)
= Õ

(
1√

m2p2S

)
Let us apply the Wasserstein distance version of the central limit theorem (see for instance [18,
Theorem 1]) 22: since Bs

j(x) is the summation of S i.i.d random variables, there is a Gaussian
random variable βj(x) only depending on the randomness of Bs

j(x) such that

W2(Bs
j(x), βj(x)) ≤ Õ

(
1√

m2p2S

)
22All the variables considered in this section is not absolutely bounded, but only with high probabil-

ity with a Gaussian tail. Strictly speaking, when apply this Theorem we should be first replaced Bs
j by

Bs
jIallBj≤Õ(1/

√
m2p2S)

. We choose to avoid writing this truncation in the paper to simply the presentation.
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Define β′(x) =
∑
j∈[p2] βj(x), we know that β′(x) is a Gaussian random variable independent of

all the ρj with

W2

ni(x),
∑
j∈[p2]

ρjφ1,j,ε(〈w∗1,j , x〉) + β′(x)

 ≤ Õ( Sp2√
m1m2

+

√
p2√
m2S

)
Let us slightly override notation and denote

φ1,j,ε(x) =
1

C ′
φ1,j,ε(〈w∗1,j , x〉),

We then have that variables αi,j := C ′ρj ∼ N (0, 1/m2) are i.i.d. and

W2

ni(x),
∑
j∈[p2]

αi,jφ1,j,ε(x) + β′(x)

 ≤ Õ( Sp2√
m1m2

+

√
p2√
m2S

)

Since by our random initialization, ni(x) ∼ N
(

0, 1
m2

∥∥∥σ (W (0)x+ b
(0)
1

)∥∥∥2

2

)
, and since for every

every unit vector x, with high probability
∥∥∥σ (W (0)x+ b

(0)
1

)∥∥∥2

2
= 1± Õ

(
1√
m1

)
, we can write

W2(ni(x), g) ≤ Õ(
1

√
m1m2

) for g ∼ N (0,
1

m2
). (C.14)

Since we can write g =
∑
j∈[p2] αi,jφ1,j,ε(x) + βi(x) for

βi(x) ∼ N

0,
1

m2

1−
∑
j∈[p2]

φ2
1,j,ε(x)

 ,

being an independent from αi,1, . . . , αi,p2 , we conclude that (by choosing S = (m1/p2)1/3)

W2

ni(x),
∑
j∈[p2]

αi,jφ1,j,ε(x) + βi(x)

 ≤ Õ( 1
√
m1m2

+
Sp2√
m1m2

+

√
p2√
m2S

)
≤ O

(
p

2/3
2

m
1/6
1

√
m2

)
.

(C.15)

This finishes the proof of Claim C.3. �
Claim C.4. In the same notations as Claim C.3, there exists function h : R2 → [−C ′′, C ′′] for
C ′′ = Cε (Φ, C ′) such that for every i ∈ [m2],

E

I
ni(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)
Proof of Claim C.4. Let us slightly override notation and denote

φ2,j(x) := φ2,j(〈w∗2,j , x〉).
We apply Lemma 6.3 again with φ chosen as Φ′(z) = Φ(C ′x).23 We know there exists a function
h : R2 → [−C ′′, C ′′] for C ′′ = Cε (Φ′, 1) = Cε (Φ, C ′) such that

Eαi,βi

I∑
j∈[p2] αi,jφ1,j,ε(x)+βi(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(x)


23More specifically, we can choose w from Lemma 6.3 as

(
αi,1, . . . , αi,p2 , βi/

√
1−

∑
j∈[p2] φ

2
1,j,ε(x)

))
,

choose x from Lemma 6.3 as
(
φ1,1,ε(x), . . . , φ1,p2,ε(x),

√
1−

∑
j∈[p2] φ

2
1,j,ε(x)

)
, choose w∗ from

Lemma 6.3 as (v∗1,1, . . . , v
∗
1,p2 , 0), and choose b0 from Lemma 6.3 as b(0)2,i .
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= Φ

C ′ ∑
j∈[p2]

v∗1,jφ1,j,ε(x)

 ∑
j∈[p2]

v∗2,jφ2,j(x)

± εC ′′′ (C.16)

where

C ′′′ = sup
x:‖x‖2≤1

∣∣∣∣∣∣
∑
j∈[p2]

v∗2,jφ2,j(x)

∣∣∣∣∣∣ ≤ p2Cs(φ, 1) .

Next, we wish to use the Wasserstein bound from Claim C.3 to replace
∑
j∈[p2] αi,jφ1,j,ε(x)+βi(x)

with ni(x). We derive that

E

I
ni(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(x)


¬
= E

I
αi,jφ1,j,ε(x)+βi(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(x)


±O

W2

ni(x),
∑
j∈[p2]

αi,jφ1,j,ε(x) + βi(x)

√m2C
′′′C ′′

 (C.17)


= Φ

C ′ ∑
j∈[p2]

v∗1,jφ1,j,ε(x)

 ∑
j∈[p2]

v∗2,jφ2,j(x)

±O(εC ′′′ + C ′′C ′′′p
2/3
2

m
1/6
1

)

®
= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O(εC ′′′ + C ′′′ · (εp2)LΦ +
C ′′C ′′′p

2/3
2

m
1/6
1

)

¯
= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)
.

Above, ¬ uses the fact that ni ∼ N
(

0, 1
m2

∥∥∥σ (W (0)x+ b
(0)
1

)∥∥∥2

2

)
with

∥∥∥σ (W (0)x+ b
(0)
1

)∥∥∥
2
≤

2 w.h.p. and |h| ≤ C ′′ is bounded.  uses Claim C.3 and (C.16). ® uses C ′φ1,j,ε(x) =
φ1,j,ε(〈w∗1,j , x〉), φ2,j(x) = φ2,j(〈w∗2,j , x〉), and denote by LΦ the Lipschitz continuity parame-
ter of Φ (namely, |Φ(x) − Φ(y)| ≤ LΦ|x − y| for all x, y ∈

[
− p2Cs(φ, 1), p2Cs(φ, 1)

]
)). ¯ uses

LΦ ≤ Cs(Φ, p2Cs(φ, 1)) and our assumption m1 ≥M . This proves Claim C.4. �

Step 2: From expectation to finite neurons

Intuitively, we wish to apply concentration bound on Claim C.4 with respect to all neurons i ∈ [m2]
on the second layer. Recall ai ∼ N (0, εa) is the weight of the i-th neuron at the output layer. Our
main result of Step 2 is the following claim.

Claim C.5. In the same notation as Claim C.4,

1

m2

∑
i∈[m2]

a2
i

ε2
a

I
ni(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)

Proof of Claim C.5. Across different choices of i, the values of ni(x) and αi,j can be correlated.
This makes it not a trivial thing to apply concentration. In the remainder of this proof, let us try to
modify the two quantities to make them independent across i.
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First modify αi,j . Recall αi,j = C ′ρj = C ′
∑
l∈[S] ρj,l where each ρj,l is a function on

v
(0)
i [j, l],W (0)[j, l], and b

(0)
1 [j, l]. Now, using the ρ̃ notion from Lemma 6.4, let us also define

ρ̃j,l = ρ̃j

(
v

(0)
i [j, l]

)
which is in the same distribution as ρj,l except that it does not depend on W (0)

or b(0)
1 . We can similarly let ρ̃j =

∑
l∈[S] ρ̃j,l. From Lemma 6.4, we know that with high probability

over W (0):24

ρ̃j ∼ N
(

0,
1

C ′2m2

)
and W2(ρj,l|W (0),b(0) , ρ̃j,l) ≤ Õ

(
1

C
√
m1m2

)
=⇒W2(ρj |W (0),b(0) , ρ̃j) ≤ Õ

(
S

C
√
m1m2

)
(C.18)

According, we define α̃i,j = C ′ρ̃j = C ′
∑
l∈[S] ρ̃j,l.

Next modifty ni(x). Recall ni(x) =
∑
r∈[m1] v

(0)
i,r σ

(
〈w(0)

r , x〉+ b
(0)
1,r

)
and accordingly we de-

fine

ñi(x) :=

∑
r∈[m1] v

(0)
i,r σ

(
〈w(0)

r , x〉+ b
(0)
1,r

)
‖u‖2

E[‖u‖2]

where vector u :=
(
σ
(
〈w(0)

r , x〉+ b
(0)
1,r

))
r∈[m1]

. By definition, we know

ñi(x) ∼ N
(

0,
1

m2
E[‖u‖2]2

)
is a Gaussian variable and is independent of u. As a consequence, the quantities ñi(x) are indepen-
dent among different choices of i ∈ [m1]. Using standard concentration on ‖u‖2 (see the line above
(C.14)), we have for every x with ‖x‖2 = 1,

W2(ni(x), ñi(x)) ≤ Õ
(

1
√
m1m2

)
(C.19)

Concentration. Using Claim C.4 of Step 1 we have

E

I
ni(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)
Using the notions of ñ and α̃ and the Wasserstein distance bounds (C.18) and (C.19), it implies25

E

I
ñi(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jα̃i,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)
Using Eai [

a2i
ε2a

] = 1 and applying standard concentration —and the independence of tuples
(ai, ñi(x), (α̃i,j)j∈[p2]) with respect to different choices of i— we know with high probability

1

m2

∑
i∈[m2]

a2
i

ε2
a

I
ñi(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jα̃i,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


24Recall from the proof of Claim C.3 that, we need to replace m1 with m1

p2S
and scale up W (0) and b(0)1 by√

p2S before applying Lemma 6.4.
25We have skipped the details since it is analogous to (C.17).
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= E

I
ñi(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jα̃i,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

± Õ(C ′′C ′′′√
m2

)
Using again the Wasserstein distance bounds bounds (C.18) and (C.19), we can combine the above
two equations to derive that w.h.p.

1

m2

∑
i∈[m2]

a2
i

ε2
a

I
ni(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)
�

Step 3: From finite neurons to the network

We now construct the network and prove Lemma 6.2. Recall we focus on constructing

a∗ · Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

 .

We shall explain towards the end how to extend it to multiple terms and multiple outputs.

For each φ2,j , applying Lemma 6.3b, we can construct hφ,j : R2 → [−C,C] satisfying

∀i′ ∈ [m1] : E
[
hφ,j

(
〈w∗2,j , w

(0)
i′ 〉, b

(0)
1,i′

)
I〈w(0)

i′ ,x〉+b
(0)

1,i′≥0

]
= φ2,j(〈w∗2,j , x〉)± ε . (C.20)

Now consider an arbitrary vector v ∈ Rm1 with vi ∈ {−1, 1}.
• Define V > ∈ Rm2×m1 as

V > = (C0 · C ′′/C)−1/2 a
∗

m2

aih
 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 v>


i∈[m2]

where the notations of h : R2 → [−C ′′, C ′′] and αi,j come from Claim C.4. We have

‖V >‖2,∞ ≤
Õ(
√
C ′′C)√
C0

·
√
m1

m2

• Define W> ∈ Rm1×d as

W> = (C0 · C ′′/C)1/2 2

ε2
am1

vi ∑
j∈[p2]

v∗2,jhφ,j

(
〈w∗2,j , w

(0)
i 〉, b

(0)
1,i

)
ed


i∈[m1]

.

We have

‖W>‖2,∞ ≤
2
√
p2

√
C0 · C ′′C
m1

,

Given these weights, suppose the signs of ReLU’s are determined by the random initialization (i.e.,
by W (0) and V (0)). We can consider the network output

g(0)(x;W>, V >) := aDv,xV
>Dw,xW

>x

=
∑
i∈[m2]

aiIni(x)+b
(0)
2,i≥0

∑
i′∈[m1]

v∗i,i′〈w>
i , x〉I〈w(0)

i′ ,x〉+b
(0)

1,i′≥0

=
a∗

m2

∑
i∈[m2]

a2
i

ε2
a

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 I
ni(x)+b

(0)
2,i≥0
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×
∑
j∈[p2]

v∗2,j

 1

m1

∑
i′∈[m1]

hφ,j

(
〈w∗2,j , w

(0)
i′ 〉, b

(0)
1,i′

)
I〈w(0)

i′ ,x〉+b1,i′≥0


(C.21)

Above, we have used 〈ed, x〉 = xd = 1/2. Since hφ,j ∈ [−C ′′, C ′′], we can apply concentration on
(C.20) and get (recalling m1 is sufficiently large) w.h.p

1

m1

∑
i′∈[m1]

hφ,j

(
〈w∗2,j , w

(0)
i′ 〉, b

(0)
1,i′

)
I〈w(0)

i′ ,x〉+b1,i′≥0
= φ2,j(〈w∗2,j , x〉)± 2ε

Using Claim C.5, we have

1

m2

∑
i∈[m2]

a2
i

ε2
a

I
ni(x)+b

(0)
2,i≥0

h

 ∑
j∈[p2]

v∗1,jαi,j , b
(0)
2,i

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


= Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)

±O (p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε

)
Putting this into (C.21), and using a∗ ∈ [−1, 1] and h ∈ [−C ′′, C ′′], we know that with high
probability

g(0)(x;W>, V >) = a∗ · Φ

 ∑
j∈[p2]

v∗1,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,jφ2,j(〈w∗2,j , x〉)


±O

(
p2

2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1)ε
)

Finally, scaling down the value of ε by factor p2
2Cs(Φ, p2Cs(φ, 1))Cs(φ, 1) we complete the proof

of Lemma 6.2 for a single output and for a single Φ.
Remark C.6. The proof generalizes to fitting a combination of multiple functions∑

i∈[p1]

a∗iΦi

 ∑
j∈[p2]

v∗1,i,jφ1,j(〈w∗1,j , x〉)

 ∑
j∈[p2]

v∗2,i,jφ2,j(〈w∗2,j , x〉)


in the same way as the proof of Lemma B.1, if we choose the vector v ∈ {−1, 1}m1 uniformly
at random and apply concentration. Note that we have to further scale down ε by 1

p1
for the same

reason as Lemma B.1, and the norm of V > shall grow by a factor of p1.
Remark C.7. The proof generalizes to multiple outputs in the same way as Lemma B.1, using the
fact that weights ar,i are independent across different outputs r. Note that we have to further scale
down ε by 1

k for the same reason as Lemma B.1, and the norm of V > shall grow by a factor of k.

Finally, applying the two remarks above, we have

‖V >‖2,∞ ≤
Õ(
√
C ′′C)p1k√
C0

·
√
m1

m2
and ‖W>‖2,∞ ≤

2
√
p2

√
C0 · C ′′C
m1

,

We thus finish the proof of Lemma 6.2 with our choice of C0. �

C.2 Coupling

C.2.1 Lemma 6.5: Coupling

Lemma 6.5 (coupling, restated). Suppose τv ∈
[
0, 1
]
, τw ∈

(
1

m
3/2
1

, 1

m
1/2
1

]
, σw ∈

(
1

m
3/2
1

, τw
m

1/4
1

]
,

σv ∈
(
0, 1

m
1/2
2

]
and η > 0. Given fixed unit vector x, and perturbation matrices W ′, V ′,W ′′, V ′′

(that may depend on the randomness of W (0), b
(0)
1 , V (0), b

(0)
2 and x) satisfying

‖W ′‖2,4 ≤ τw, ‖V ′‖F ≤ τv, ‖W ′′‖2,4 ≤ τw, ‖V ′′‖F ≤ τv ,

and random diagonal matrix Σ with each diagonal entry i.i.d. drawn from {±1}, then with high
probability the following holds:
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1. (Sparse sign change). ‖D′w,x‖0 ≤ Õ(τ
4/5
w m

6/5
1 ), ‖D′v,x‖0 ≤

Õ
(
σvm

3/2
2 + τ

2/3
v m2 + τ

2/3
w m

1/6
1 m2

)
.

2. (Cross term vanish).

gr(x;W (0) +W ρ +W ′ + ηΣW ′′, V (0) + V ρ + V ′ + ηV ′′Σ)

= gr

(
x;W (0) +W ρ +W ′, V (0) + V ρ + V ′

)
+ g(b,b)

r (x; ηΣW ′′, ηV ′′Σ) + g′r(x)

where EΣ[g′r(x)] = 0 and with high probability |g′r(x)| ≤ ηÕ
(√

m2τv√
m1

+m
1/2
2 τw

)
.

Part I, Sparsity

For notation simplicity, we only do the proof when there is no bias term. The proof with bias term
is analogous (but more notationally involved). Let us denote

z0 := Dw,xW
(0)x

z2 := (Dw,x +D′w,x)(W (0) +W ρ +W ′)x−Dw,xW
(0)x .

We let

• diagonal matrix Dw,x denotes the sign of ReLU’s at weights W (0),

• diagonal matrix Dw,x +D′′w,x denotes the sign of ReLU’s at weights W (0) +W ρ, and

• diagonal matrix Dw,x +D′w,x denotes the sign of ReLU’s at weights W (0) +W ρ +W ′.

Sign change in D′′w,x. Each coordinate of W (0)x ∼ N
(

0, 1
m1

)
and each coordinate of W ρx ∼

N (0, σ2
w). Thus, by standard property of Gaussian, for each i, we have Pr[|W ρ

i x| ≥ |W
(0)
i x|] ≤

Õ
(
σw
√
m1

)
. By concentration bound, with high probability, the number of sign changes of the

ReLU activations in the first hidden layer caused by adding W ρ is no more than

‖D′′w,x‖0 ≤ Õ(σwm
3/2
1 ) .

Moreover, for each coordinate i with [D′′w,x]i,i 6= 0, we must have |(D′′w,xW (0)x)i| ≤ |(W ρx)i| ≤
Õ(σw) with high probability, and thus

‖D′′w,xW (0)x‖2 ≤ Õ
(
σw

√
σwm

3/2
1

)
= Õ

(
σ3/2
w m

3/4
1

)
By our assumption σw ≤ τw/m1/4

1 , we have

‖D′′w,x‖0 ≤ τwm
5/4
1 and ‖D′′w,xW (0)x‖2 ≤ τ3/2

w m
3/8
1 (C.22)

Sign change inD′w,x −D′′w,x. Let s = ‖D′w,x −D′′w,x‖0 be the total number of sign changes of
the ReLU activations in the first hidden layer caused by further adding W ′x. Observe that, the total
number of coordinates i where |((W (0) + W ρ)xi| ≤ s′′ := 2τw

s1/4
is at most Õ

(
s′′m

3/2
1

)
with high

probability. Now, if s ≥ Ω̃
(
s′′m

3/2
1

)
, then W ′ must have caused the sign change of s

2 coordinates

each by absolute value at least s′′. Since ‖W ′‖2,4 ≤ τw, this is impossible because s
2 × (s′′)4 > τ4

w.
Therefore, we must have

s ≤ Õ(s′′m3/2) = Õ
( τw
s1/4

m
3/2
1

)
=⇒ ‖D′w,x −D′′w,x‖0 = s ≤ Õ

(
τ4/5
w m

6/5
1

)
. (C.23)

Next, for each coordinate i where (D′w,x − D′′w,x)i,i 6= 0, we must have |((W (0) + W ρ)x)i| ≤
|(W ′x)i|, and since (W ′x)4

i must sum up to at most τw for those s coordinates, we have

‖
(
D′w,x −D′′w,x

)
(W (0) +W ρ)x‖2 ≤

√ ∑
i,(D′w,x−D′′w,x)i,i 6=0

(W ′x)2
i
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≤
√√√√√s · ∑

i,(D′w,x−D′′w,x)i,i 6=0

(W ′x)4
i ≤ O

(
s1/4τw

)
= Õ

(
τ6/5
w m

3/10
1

)
(C.24)

Sum up: First Layer. Combining (C.22) and (C.23) and using τw ≤ m−1/4
1 from assumption, we

have

‖D′w,x‖0 ≤ Õ
(
τ4/5
w m

6/5
1 + τwm

5/4
1

)
≤ Õ

(
τ4/5
w m

6/5
1

)
.

By the 1-Lipschitz continuity of ReLU, we know that w.h.p.

‖z2‖2 =
∥∥∥(Dw,x +D′w,x)(W (0) +W ρ +W ′)x−Dw,xW

(0)x
∥∥∥

2

=
∥∥∥σ(W (0) +W ρ +W ′)x)− σ(W (0)x)

∥∥∥
2

≤ ‖(W ρ +W ′)x‖2 ≤ ‖W ′x‖2 + ‖W ρx‖2 ≤ Õ
(
τwm

1/4
1 + σwm

1/2
1

)
≤ Õ

(
τwm

1/4
1

)
where we have used our assumption σw ≤ τwm−1/4

1 .

Second Layer Sign Change. The sign change in the second layer is caused by input vector

changing from V (0)z0 to V (0)z0 + V (0)z2 + V ρ(z0 + z2) + V ′(z0 + z2).

Here, using w.h.p. ‖z‖2 ≤ Õ(1), we have

‖V ρ(z0 + z2)‖∞ ≤ Õ(σv) · (‖z0‖2 + ‖z2‖2) ≤ Õ(σv)

‖V (0)z2 + V ′(z0 + z2)‖2 ≤ Õ (τv + ‖z2‖2) ≤ Õ
(
τv + τwm

1/4
1

)
In comparison (at random initialization) we have V (0)z0 ∼ N

(
0,
‖z0‖22
m2

I
)

with ‖z0‖2 = Ω̃(1).
Using a careful two-step argument (see Claim C.8), we can bound

‖D′v,x‖0 ≤ Õ
((

τv + τwm
1/4
1

)2/3

m2 + σvm
3/2
2

)
.

�
Part II, Diagonal Cross Term

Recall
gr(x;W,V ) = ar(Dv,x +D′v,x)

(
V (Dw,x +D′w,x) (Wx+ b1) + b2

)
g(b)
r (x;W,V ) = ar(Dv,x +D′v,x)V (Dw,x +D′w,x)(Wx+ b1)

g(b,b)
r (x;W,V ) = ar(Dv,x +D′v,x)V (Dw,x +D′w,x)Wx

and one can carefully check that

gr(x;W (0) +W ρ +W ′ + ηΣW ′′, V (0) + V ρ + V ′ + ηV ′′Σ)

= gr

(
x;W (0) +W ρ +W ′, V (0) + V ρ + V ′

)
+ g(b,b)

r (ηΣW ′′, ηV ′′Σ)

+ g(b)
r (x;W (0) +W ρ +W ′, ηV ′′Σ) + g(b,b)

r (x; ηΣW ′′, V (0) + V ρ + V ′)︸ ︷︷ ︸
error terms

We consider the last two error terms.

First error term. The first term is
g(b)
r (x;W (0) +W ρ +W ′, ηV ′′Σ)

= ηar(Dv,x +D′v,x)V ′′Σ(Dw,x +D′w,x)((W (0) +W ρ +W ′)x+ b1)

Clearly, it has zero expectation with respect to Σ. With high probability, we have

‖(Dw,x +D′w,x)((W (0) +W ρ +W ′)x+ b1)‖∞

≤ ‖(W (0) +W ρ +W ′)x+ b1‖∞ ≤ Õ

(
τw + σw +

1

m
1/2
1

)
≤ Õ

(
1

m
1/2
1

)
(C.25)
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and we have ‖ar(Dv,x + D′v,x)V ′′‖2 ≤ Õ
(
τvm

1/2
2

)
. By Fact C.9, using the randomness of Σ,

with high probability

|g(b)
r (x;W (0) +W ρ +W ′, ηV ′′Σ)| = ηÕ

(
τv
√
m2√
m1

)
Second error term. We write down the second error term
g(b,b)
r (x; ηΣW ′′, V (0) + V ρ + V ′) = ηar(Dv,x +D′v,x)(V (0) + V ρ + V ′)(Dw,x +D′w,x)ΣW ′′x

= ηar(Dv,x +D′v,x)V ′(Dw,x +D′w,x)ΣW ′′x

+ ηarDv,x(V (0) + V ρ)(Dw,x +D′w,x)ΣW ′′x

+ ηarD
′
v,x(V (0) + V ρ)(Dw,x +D′w,x)ΣW ′′x

Obviously all the three terms on the right hand side have zero expectation with respect to Σ.

• For the first term, since w.h.p. ‖ar(Dv,x + D′v,x)V ′(Dw,x + D′w,x)‖2 = Õ(τvm
1/2
2 ) and

‖W ′′x‖∞ ≤ τw, by Fact C.9, using the randomness of Σ we know that w.h.p.

|ar(Dv,x +D′v,x)V ′(Dw,x +D′w,x)ΣW ′′x| ≤ Õ(τvm
1/2
2 τw)

• For the second term, since ‖W ′′x‖2 ≤ τwm1/4
1 and w.h.p.26

‖arDv,x(V (0) + V ρ)(Dw,x +D′w,x)‖∞ ≤ ‖arDv,x(V (0) + V ρ)‖∞ ≤ Õ(1)

by Fact C.9, using the randomness of Σ we know that w.h.p.

|arDv,x(V (0) + V ρ)(Dw,x +D′w,x)ΣW ′′x| = Õ(τwm
1/4
1 )

• For the third term, again by ‖W ′′x‖∞ ≤ τw and Fact C.9, we have: w.h.p.

|arD′v,x(V (0) + V ρ)ΣW ′′x| ≤ Õ
(
‖arD′v,x(V (0) + V ρ)‖2τw

)
≤ Õ

(
m

1/2
2 τw

)
.

�
Tool

The following are some tools used in the above proofs.

A variant of the following claim has appeared in [4].

Claim C.8. Suppose V ∈ Rm2×m1 is a random matrix with entries drawn i.i.d. from N
(
0, 1

m2

)
,

For all unit vector h ∈ Rm1 , and for all g′ ∈ Rm2 that can be written as

g′ = g′1 + g′2 where ‖g′1‖ ≤ 1 and ‖g′2‖∞ ≤
1

4
√
m2

.

LetD′ be the diagonal matrix where (D′)k,k = I(V h+g′)k≥0−I(V h)k≥0. Then, letting x = D′(V h+
g′), we have

‖x‖0 ≤ O(m2‖g′1‖2/3 +m
3/2
2 ‖g′2‖∞) and

‖x‖1 ≤ O
(
m

1/2
2 ‖g′1‖4/3 +m

3/2
2 ‖g′2‖2∞

)
.

Proof of Claim C.8. We first observe g = V h follows fromN
(
0, I

m2

)
regardless of the choice of h.

Therefore, in the remainder of the proof, we just focus on the randomness of g.

We also observe that (D′)j,j is non-zero for some diagonal j ∈ [m2] only if
|(g′1 + g′2)j | > |(g)j | . (C.26)

26We note that the derivation of ‖arDv,x(V (0) + V ρ)‖∞ ≤ Õ(1) may be non-trivial for some readers,
because Dv,x is dependent of the randomness of V (0) + V (ρ). In fact, for every fixed basis vector ej , we have
w.h.p. ‖Dv,x(V (0)+V ρ)ej‖2 ≤ Õ(1), and thus by the randomness of ar it satisfies |arDv,x(V (0)+V ρ)ej | ≤
Õ(1). Taking a union bound over j = 1, 2, . . . ,m2 gives the bound. Such proof idea was repeatedly used in
[4].
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Let ξ ≤ 1
2
√
m2

be a parameter to be chosen later. We shall make sure that ‖g′2‖∞ ≤ ξ/2.

• We denote by S1 ⊆ [m2] the index sets where j satisfies |(g)j | ≤ ξ. Since we know (g)j ∼
N (0, 1/m2), we have Pr[|(g)j | ≤ ξ] ≤ O

(
ξ
√
m2

)
for each j ∈ [m2]. Using Chernoff bound

for all j ∈ [m2], we have with high probability

|S1| = |{i ∈ [m2] : |(g)j | ≤ ξ}| ≤ O(ξm
3/2
2 ) .

Now, for each j ∈ S1 such that xj 6= 0, we must have |xj | = |(g + g′1 + g′2)j | ≤ |(g′1)j |+ 2ξ
so we can calculate the `2 norm of x on S1:∑
i∈S1

|xj | ≤
∑
i∈S1

(|(g′1)i|+ 2ξ) ≤ 2ξ|S1|+
√
|S1|‖g′1‖ ≤ O(‖g′1‖2

√
ξm

3/4
2 + ξ2m

3/2
2 ) .

• We denote by S2 ⊆ [m2] \ S1 the index set of all j ∈ [m2] \ S1 where xj 6= 0. Using (C.26),
we have for each j ∈ S2:

|(g′1)j | ≥ |(g)j | − |(g′2)j | ≥ ξ − ‖g′2‖∞ ≥ ξ/2

This means |S2| ≤ 4‖g′1‖
2

ξ2 . Now, for each j ∈ S2 where xj 6= 0, we know that the signs of
(g + g′1 + g′2)j and (g)j are opposite. Therefore, we must have

|xj | = |(g + g′1 + g′2)j | ≤ |(g′1 + g′2)j | ≤ |(g′1)j |+ ξ/2 ≤ 2|(g′1)j |
and therefore ∑

j∈S2

|xj | ≤ 2
∑
j∈S2

|(g′1)j | ≤ 2
√
|S2|‖g′1‖ ≤ 4

‖g′1‖2

ξ

From above, we have ‖x‖0 ≤ |S1| + |S2| ≤ O
(
ξm

3/2
2 +

‖g′1‖
2

ξ2

)
. Choosing ξ =

max
{

2‖g′2‖∞,Θ(
‖g′1‖

2/3

m
1/2
2

)
}

we have the desired result on sparsity.

Combining the two cases, we have

‖x‖1 ≤ O
(‖g′1‖2

ξ
+ ‖g′1‖2

√
ξm

3/4
2 + ξ2m

3/2
2

)
≤ O

(‖g′1‖2
ξ

+ ξ2m
3/2
2

)
.

Choosing ξ = max
{

2‖g′2‖∞,Θ(
‖g′1‖

2/3

m
1/2
2

)
}

, we have the desired bound on Euclidean norm. �

Fact C.9. If Σ is a diagonal matrix with diagonal entries randomly drawn from {−1, 1}. Then,
given vectors x, y, with high probability

|x>Σy| ≤ Õ(‖x‖2 · ‖y‖∞)

C.2.2 Corollary 6.6: Existence After Coupling

Corollary 6.6 is a corollary to Lemma 6.2 with g(0) replaced with g(b,b). Recall that g(b,b) is different
from g(0) only by the diagonal signs, namely,

g(0)
r (x;W>, V >) = arDv,xV

>Dw,xW
>x

g(b,b)
r (x;W>, V >) = ar(Dv,x +D′v,x)V >(Dw,x +D′w,x)W>x

whereDv,x+D′v,x andDw,x+D′w,x are the diagonal sign matrices determined atW (0) +W ′+W ρ,
V (0) + V ′ + V ρ.

Corollary 6.6 (existence after coupling). In the same setting as Lemma 6.2, perturbation matrices
W ′, V ′ (that may depend on the randomness of the initialization and D) with

‖W ′‖2,4 ≤ τw, ‖V ′‖F ≤ τv .

Using parameter choices from Table 1, w.h.p. there exist W> and V > (independent of the random-
ness of W ρ, V ρ) satisfying

‖W>‖2,∞ = max
i
‖w>

i ‖2 ≤
C0

m1
, ‖V >‖2,∞ = max

i
‖v>i ‖2 ≤

√
m1

m2

57



E(x,y)∼D

[
k∑
r=1

∣∣∣f∗r (x)− g(b,b)
r (x;W>, V >)

∣∣∣] ≤ ε,
E(x,y)∼D

[
L(G(b,b)(x;W>, V >), y)

]
≤ OPT + ε.

Proof of Corollary 6.6. The idea to prove Corollary 6.6 is simple. First construct W> and V > from
Lemma 6.2, and then show that g(0) and g(b,b) are close using Lemma 6.5. By Lemma 6.5 and our
parameter choices Table 1, we know

‖D′w,x‖0 ≤ Õ(τ4/5
w m

6/5
1 )� O(m1)

‖D′v,x‖0 ≤ Õ
(
σvm

3/2
2 + τ2/3

v m2 + τ2/3
w m

1/6
1 m2

)
≤ Õ((ε/C0)Θ(1)m2)

Now, recall that Lemma 6.2 says ‖W>‖2,∞ ≤ τw,∞ and ‖V >‖2,∞ ≤ τv,∞ for τw,∞τv,∞ =
C0√
m1m2

. Therefore,

|arDv,xV
>D′w,xW

>x| =

∣∣∣∣∣∣
∑
j∈[m2]

ar,j(Dv,x)j,j〈v>j , D
′
w,xW

>x〉

∣∣∣∣∣∣ ≤ Õ(m2τv,∞)‖D′w,xW>x‖2

≤ Õ(m2τv,∞)
√
‖D′w,x‖0τw,∞ � ε

|arD′v,xV >Dw,xW
>x| =

∣∣∣∣∣∣
∑
j∈[m2]

ar,j(D
′
v,x)j,j〈v>j , Dw,xW

>x〉

∣∣∣∣∣∣ ≤ Õ(‖D′v,x‖0τv,∞)‖Dw,xW
>x‖2

≤ Õ(‖D′v,x‖0τv,∞) ·O(
√
m1τw,∞)� ε

In other words,

|g(b,b)(x;W>, V >)− g(0)(x;W>, V >)| ≤ 2ε . �

C.2.3 Lemma 6.9: Smoothed Real vs Pseudo Networks

Recall
Pρ,η := fr(x;W +W ρ + ηΣW ′′, V + V ρ + ηV ′′Σ)

= arDv,x,ρ,η

(
(V + V ρ + ηV ′′Σ)Dw,x,ρ,η ((W +W ρ + ηΣW ′′)x+ b1) + b2

)
P ′ρ,η := gr(x;W +W ρ + ηΣW ′′, V + V ρ + ηV ′′Σ)

= arDv,x,ρ

(
(V + V ρ + ηV ′′Σ)Dw,x,ρ ((W +W ρ + ηΣW ′′)x+ b1) + b2

)
.

Lemma 6.9 (smoothed real vs pseudo). There exists η0 = 1
poly(m1,m2) such that, for every η ≤ η0,

for every fixed x with ‖x‖2 = 1, for every W ′, V ′,W ′′, V ′′ that may depend on the randomness of
the initialization and x, with

‖W ′‖2,4 ≤ τw, ‖V ′‖2,2 ≤ τv, ‖W ′′‖2,∞ ≤ τw,∞, ‖V ′′‖2,∞ ≤ τv,∞
we have with high probability:

EWρ,V ρ

[ |Pρ,η − P ′ρ,η|
η2

]
= Õ

(
m1

τ2
w,∞

σw
+
m2τ

2
w,∞

σv
+
m2

m1

τ2
v,∞

σv

)
+Op(η).

where Op hides polynomial factor of m1,m2.

Proof of Lemma 6.9. Since Pρ,η and P ′ρ,η only differ in the sign pattern, we try to bound the (ex-
pected) output difference Pρ,η − P ′ρ,η by analyzing these sign changes. We use the same proof
structure as Lemma 6.5, that is to first bound the sign changes in the first layer, and then the second
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layer. One can carefully verify
Pρ,η − P ′ρ,η = arDv,x,ρ(V + V ρ + ηV ′′Σ)

(
Dw,x,ρ,η −Dw,x,ρ

)
((W +W ρ + ηΣW ′′)x+ b1)︸ ︷︷ ︸

♣

+ ar
(
Dv,x,ρ,η −Dv,x,ρ

)(
(V + V ρ + ηV ′′Σ)Dw,x,ρ,η ((W +W ρ + ηΣW ′′)x+ b1) + b2

)
︸ ︷︷ ︸

♠

.

We call ♣ the output difference caused by sign change of the first layer; and ♠ that caused by the
sign change of the second layer.

Sign Change of First Layer. We write
z = Dw,x,ρ ((W +W ρ + ηΣW ′′)x+ b1)

z + z′ = Dw,x,ρ,η ((W +W ρ + ηΣW ′′)x+ b1) .

The first observation here is that, since ‖ηΣW ′′x‖∞ ≤ ητw,∞, when a coordinate i has sign change
(i.e. has z′i 6= 0), it has value at most |z′i| ≤ ητw,∞. In other words

‖z′‖∞ ≤ ητw,∞ .

Since ‖ηΣW ′′x‖∞ ≤ ητw,∞, and since each coordinate of W ρx is i.i.d. from N (0, σ2
w), we know

∀i ∈ [m1] : Pr
Wρ

[z′i 6= 0] ≤ Õ
(
ητw,∞
σw

)
. (C.27)

One consequence of (C.27) is Pr[‖z′‖0 ≥ 2] ≤ Op(η
2). When ‖z′‖0 ≥ 2, the contribution to ♣ is

Op(η). Multiplying them together, the total contribution to ♣ in expectation is at most Op(η3).

Thus, we only need to consider the case ‖z‖0 = 1. Let i be this coordinate so that z′i 6= 0. This
happens with probability at most O(ητw,∞/σw) for each i ∈ [m1]. The contribution of z′ to ♣ is

♣ = arDv,x,ρ(V + V ρ + ηV ′′)z′

and let us deal with the three terms separately:

• For the term arDv,x,ρηV
′′z′, it is of absolute value at most Op(η2). Since ‖z0‖0 = 1 happens

with probability Op(η), the total contribution to the expected value of ♣ is only Op(η3).

• For the term arDv,x,ρ(V + V ρ)z′, we first observe that with high probability ‖arDv,x,ρ(V +

V ρ)‖∞ ≤ Õ(‖ar‖2√
m2

) ≤ Õ(1) (for a proof see Footnote 26). Therefore, given ‖z′‖0 = 1 and

‖z′‖∞ ≤ ητw,∞, we have that ‖arDv,x,ρ(V + V ρ)z′‖ ≤ Õ(ητw,∞). Since this happens with
probability at most O(ητw,∞/σw) ×m1 —recall there are m1 many possible i ∈ [m1]— the

total contribution to the expected value of ♣ is Õ
(
η2m1

τ2
w

σw

)
+Op(η

3).

In sum, we have with high probability

EWρ,V ρ [|♣|] ≤ Õ
(
η2m1

τ2
w

σw

)
+Op(η

3)

Sign Change of Second Layer. Recall that the sign of the ReLU of the second layer is changed
from Dw,x,ρ to Dw,x,ρ,η . Let us compare the vector inputs of these two matrices before ReLU is
applied, that is

δ = ((V + V ρ + ηV ′′)Dw,x,ρ,η ((W +W ρ + ηW ′′)x+ b1) + b2)

− ((V + V ρ)Dw,x,ρ ((W +W ρ)x+ b1) + b2) .

This difference δ has the following four terms:

1. η(V + V ρ)Dw,x,ρΣW
′′x.

With ‖W ′′x‖∞ ≤ τw,∞ and ‖V ‖2 ≤ Õ(1), by Fact C.9 we know that w.h.p.

‖η(V + V ρ)Dw,x,ρΣW
′′x‖∞ ≤ η‖(V + V ρ)Dw,x,ρ‖2 · ‖W ′′x‖∞ · Õ(1) ≤ Õ(ητw,∞) .

2. (V + V ρ + ηV ′′Σ)z′.

This is non-zero with probabilityOp(η), and when it is non-zero, its Euclidean norm isOp(η).
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3. ηV ′′Σz.

Since ‖z‖∞ ≤ Õ(τw + σw + m
−1/2
1 ) = O(m

−1/2
1 ) owing to (C.25), by Fact C.9, we know

that w.h.p.

‖ηV ′′Σz‖∞ ≤ Õ(η) ·max
i
‖V ′′i ‖2 · ‖z‖∞ ≤ Õ(ητv,∞m

−1/2
1 ) .

4. η2V ′′ΣDw,x,ρΣW
′′x is at most Op(η2) in Euclidean norm.

In sum,

‖δ‖2 ≤
{
Op(η), w.p. ≤ Op(η);
Õ(

ητv,∞√
m1

+ ητw,∞) +Op(η
2), otherwise.

Since originally each coordinate of V ρz follows from N (0, σv‖z‖22) with ‖z‖2 = Ω̃(1), using a
similar argument as (C.27)27 we can bound the contribution to the expected value of ♠ by:

EWρ,V ρ [|♠|] ≤ m2 × Õ

(
η

(
1
√
m1

τv,∞ + τw,∞

)
× η

( 1√
m1
τv,∞ + τw,∞)

σv

)
+Op(η

3)

= Õ

(
η2
m2τ

2
v,∞

σvm1
+ η2

m2τ
2
w,∞

σv

)
+Op(η

3) .

�

C.2.4 Lemma 6.11: Stronger Coupling

We will need the following coupling lemma when Σ is used (for Algorithm 1).

Lemma 6.11 (stronger coupling). Given a fixed x, with high probability over the random initializa-
tion and over a random diagonal matrix Σ with diagonal entries i.i.d. generated from {−1, 1},
it satisfies that for every W ′, V ′ (that can depend on the initialization and x but not Σ) with
‖V ′‖2 ≤ τv, ‖W ′‖2,4 ≤ τw for τv ∈ [0, 1] and τw ∈

[
1

m
3/4
1

, 1

m
9/16
1

]
, we have

fr(x;W (0) + ΣW ′, V (0) + V ′Σ) = arDv,x(V (0)Dw,x(W (0)x+ b1) + b2) + arDv,xV
′Dw,xW

′x

± Õ
(
τ8/5
w m

9/10
1 + τ16/5

w m
9/5
1

√
m2 +

√
m2√
m1

τv

)
.

Under parameter choices Table 1, the last error term is at most ε/k.

Proof of Lemma 6.11. For notation simplicity, let us do the proof without the bias term b1 and b2.
The proof with them are analogous.

We use D(0)
w,x and D(0)

v,x to denote the sign matrices at random initialization W (0), V (0), and we let
D

(0)
w,x +D′w,x and D(0)

v,x +D′v,x be the sign matrices at W (0) + ΣW ′, V (0) + V ′Σ. Define

z = D(0)
w,xW

(0)x

z1 = D(0)
w,xΣW

′x

z2 = D′w,x(W (0)x+ ΣW ′x).

Since w.h.p. each coordinate of z has ‖z‖∞ = Õ(m
−1/2
1 ), using Fact C.9 (so using the randomness

of Σ), we know with high probability

‖V ′Σz‖22 =
∑
i∈[m2]

〈v′i,Σz〉2 ≤
∑
i∈[m2]

Õ
(
‖v′i‖22 · ‖z‖2∞

)
≤ Õ(m−1

1 )
∑
i∈[m1]

‖v′i‖22 = Õ(τ2
vm
−1
1 )

(C.28)

27Namely, to first show that each coordinate i ∈ [m2] satisfies (Dv,x,ρ,η −Dv,x,ρ)i,i 6= 0 with probability

Õ
(
η

( 1√
m1

τv,∞+τw,∞)

σv

)
. Then, since we can ignoring terms of magnitude Op(η3), it suffices to consider the

case of ‖Dv,x,ρ,η − Dv,x,ρ‖0 = 1, which occurs with probability at most m2 × Õ
(
η

( 1√
m1

τv,∞+τw,∞)

σv

)
by

union bound. Finally, each coordinate changes by at most Õ
(
η
(

1√
m1
τv,∞ + τw,∞

))
by the argument above.
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Thus we have: ‖V ′Σz‖2 ≤ Õ(τvm
−1/2
1 ).

On the other hand, applying Lemma 6.5 with W ′′ = 0 and V ′′ = 0, we have ‖z2‖0 ≤ s =

Õ(τ
4/5
w m

6/5
1 ). Therefore, using the same derivation as (C.24), we can bound its Euclidean norm

‖z2‖2 = ‖D′w,x(W (0) + ΣW ′)x‖2 ≤
√ ∑
i,(D′w,x)i,i 6=0

(ΣW ′x)2
i

≤
√√√√√s · ∑

i,(D′w,x)i,i 6=0

(W ′x)4
i ≤ O

(
s1/4τw

)
= Õ

(
τ6/5
w m

3/10
1

)
Using the same derivation as (C.28), we also have w.h.p

‖V ′Σz2‖2 ≤ Õ
(
‖V ′‖F ‖z2‖∞

)
≤ Õ

(
‖V ′‖F ‖z2‖2

)
≤ Õ

(
τvτ

6/5
w m

3/10
1

)
.

Now, recall using Cauchy-Shwartz and the 1-Lipschitz continuity of the ReLU function, we have
for every (xi, yi)i∈[m2], with high probability (over a):∑

i∈[m2]

ai,r(σ(xi + yi)− σ(xi)) ≤ Õ(
√
m2)‖(σ(xi + yi)− σ(xi))i∈[m2]‖2 ≤ Õ(

√
m2)‖y‖2.

Therefore, we can bound that
fr(x;W (0) + ΣW ′, V (0) + V ′Σ)

=
∑
i∈[m2]

ai,rσ
(
〈v(0)
i + Σv′i, z + z1 + z2

)
=
∑
i∈[m2]

ai,rσ
(
〈v(0)
i , z + z1 + z2〉+ 〈Σv′i, z1〉

)
︸ ︷︷ ︸

¬

±Õ
(√

m2√
m1

τv +
√
m2τvτ

6/5
w m

3/10
1

)
(C.29)

To bound ¬, we consider the difference between

¬ = ar(D
(0)
v,x +D′′v,x)

(
V (0)(z + z1 + z2) + V ′D(0)

w,xW
′x
)

 = arD
(0)
v,x

(
V (0)(z + z1 + z2) + V ′D(0)

w,xW
′x
)

where D′′v,x is the diagonal sign change matrix due to moving input from V (0)z to V (0)(z + z1 +

z2) + V ′D
(0)
w,xW ′x. This difference has the following three terms.

• V (0)z1 = V (0)D
(0)
w,xΣW ′x. Since ‖W ′x‖2 ≤ τwm

1/4
1 and maxi ‖V (0)

i ‖∞ ≤ Õ( 1√
m2

), by

Fact C.9 (thus using the randomness of Σ), we know that w.h.p. ‖V (0)z1‖∞ ≤ Õ
(
τw

m
1/4
1√
m2

)
.

• V (0)z2. Using the sparsity of z2 we know w.h.p. ‖V (0)z2‖∞ ≤ Õ(‖z2‖2
√
sm
−1/2
2 ) ≤

Õ

(
τ8/5
w m

9/10
1√

m2

)
• ‖V ′D(0)

w,xW ′x‖2 ≤ ‖V ′‖F · ‖W ′x‖2 ≤ τwm1/4
1 τv .

Together, using ‖ar‖∞ ≤ Õ(1) and invoking Claim C.8, we can bound it by:

|¬−| ≤ Õ

(τwm1/4
1√
m2

+
τ

8/5
w m

9/10
1√

m2

)2

m
3/2
2 + (τwm

1/4
1 τv)

4/3m
1/2
2

 (C.30)

(When invoking Claim C.8, we need τw ≤ m−9/16
1 and τwm

1/4
1 τv ≤ 1.)

Finally, from  to our desired goal

® = arD
(0)
v,xV

(0)D(0)
w,xW

(0)x+ arD
(0)
v,xV

′D(0)
w,xW

′x = arD
(0)
v,x

(
V (0)z + V ′D(0)

w,xW
′x
)

there are still two terms:
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• Since w.h.p. ‖arD(0)
v,xV (0)‖∞ = Õ(1) and z2 is s sparse, we know that w.h.p.

|arD(0)
v,xV

(0)z2| ≤ Õ(‖z2‖2
√
s) ≤ Õ

(
τ8/5
w m

9/10
1

)
• Since ‖W ′x‖2 ≤ τwm

1/4
1 and w.h.p. ‖arD(0)

v,xV (0)D
(0)
w,x‖∞ ≤ Õ(1) (see Footnote 26), by

Fact C.9,

|arD(0)
v,xV

(0)z1| = |arD(0)
v,xV

(0)D(0)
w,xΣW

′x| ≤ Õ(‖arD(0)
v,xV

(0)D(0)
w,x‖∞ · ‖W ′x‖2) ≤ Õ

(
τwm

1/4
1

)
In other words

|−®| ≤ Õ
(
τ8/5
w m

9/10
1 + τwm

1/4
1

)
(C.31)

Putting together (C.29), (C.30), (C.31), one can carefully verify that

fr(x;W (0) + ΣW ′, V (0) + V ′Σ) = ¬± Õ
(√

m2√
m1

τv +
√
m2τvτ

6/5
w m

3/10
1

)
= arD

(0)
v,xV

(0)D(0)
w,xW

(0)x+ arD
(0)
v,xV

′D(0)
w,xW

′x

± Õ
(
τ8/5
w m

9/10
1 + τwm

1/4
1

)
± Õ

(τwm1/4
1√
m2

+
τ

8/5
w m

9/10
1√

m2

)2

m
3/2
2 + (τwm

1/4
1 τv)

4/3m
1/2
2


± Õ

(√
m2√
m1

τv +
√
m2τvτ

6/5
w m

3/10
1

)
= arD

(0)
v,xV

(0)D(0)
w,xW

(0)x+ arD
(0)
v,xV

′D(0)
w,xW

′x

± Õ
(
τ8/5
w m

9/10
1 + τ16/5

w m
9/5
1

√
m2 +

√
m2√
m1

τv

)
Above, we have used our parameter choices τv ∈ [0, 1] and τw ∈ [ 1

m
3/4
1

, 1

m
9/16
1

]. �

C.3 Optimization

Recall in the first variant of SGD,

L′(λt,Wt, Vt) = EWρ,V ρ,(x,y)∼Z

[
L
(
λtF

(
x;W (0) +W ρ +Wt, V

(0) + V ρ + Vt

)
, y
)]

+R(
√
λtWt,

√
λtVt)

C.3.1 Lemma 6.7: Descent Direction

Lemma 6.7 (descent direction). For every ε0 ∈ (0, 1) and ε = ε0
kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2

, for
every constant γ ∈ (0, 1/4], consider the parameter choices in Table 1, and consider any λt,Wt, Vt
(that may depend on the randomness of W (0), b(0), V (0), b(1) and Z) with

λt ∈
(
(ε/ log(m1m2))Θ(1), 1

]
and L′(λt,Wt, Vt) ∈ [(1 + γ)OPT + Ω(ε0/γ), Õ(1)]

With high probability over the random initialization, there exists W>, V > with ‖W>‖F , ‖V >‖F ≤
1 such that for every η ∈

[
0, 1

poly(m1,m2)

]
:

min
{
EΣ

[
L′
(
λt,Wt +

√
ηΣW>, Vt +

√
ηV >Σ

) ]
, L′
(
(1− η)λt,Wt, Vt

)}
≤ (1− ηγ/4)(L′(λt,Wt, Vt)) ,

where Σ ∈ Rm1×m1 is a diagonal matrix with each diagonal entry i.i.d. uniformly drawn from
{±1}.

Proof of Lemma 6.7. For each output r ∈ [k],

• Define the “pseudo function” for every W ′, V ′ as

gr(x;W ′, V ′) = arDv,x,ρ,t[(V
(0) + V ρ + V ′)Dw,x,ρ,t[(W

(0) +W ρ +W ′)x+ b1] + b2]
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whereDv,x,ρ,t andDw,x,ρ,t are the diagonal sign matrices at weightsW (0)+W ρ+Wt, V
(0)+

V ρ + Vt.

• Recall the real network as
fr(x;W ′, V ′) = arDv,x,ρ,V ′ [(V

(0) + V ρ + V ′)Dw,x,ρ,W ′ [(W
(0) +W ρ +W ′)x+ b1] + b2]

where Dv,x,ρ,V ′ and Dw,x,ρ,W ′ are the diagonal sign matrices at weights W (0) + W ρ +

W ′, V (0) + V ρ + V ′.

• G(x;W ′, V ′) = (g1, . . . , gk) and F (x;W ′, V ′) = (f1, . . . , fk).

As a sanity check, we have G(x;Wt, Vt) = F (x;Wt, Vt). (Here we slightly override the notation
and use fr(x;W ′, V ′) to denote fr(x;W (0) +W ρ +W ′, V (0) + V ρ + V ′).)

By our regularizer parameters λw, λv in Table 1, as long as L′(λt,Wt, Vt) ≤ Õ(1), we know

R(
√
λtWt,

√
λtVt) ≤ Õ(1) =⇒ ‖

√
λtWt‖2,4 ≤ Õ(τ ′w) and ‖

√
λtVt‖2,2 ≤ Õ(τ ′v)

=⇒ ‖Wt‖2,4 ≤ τw and ‖Vt‖2,2 ≤ τv (C.32)

Applying Corollary 6.6 (but scaling up the target F ∗ by 1
λt

), we know that there exists W>, V >

with (here we have scaled up W> and scaled down V > both by m0.005
1 )

‖
√
λtW

>‖2,∞ ≤
C0

m1−0.005
1

, ‖
√
λtV

>‖2,∞ ≤
m

1/2−0.005
1

m2
and (C.33)

‖ 1

λt
F ∗(x)−G∗(x)‖2 ≤ ε where G∗(x) :=

(
a>r Dv,x,ρ,tV

>Dw,x,ρ,tW
>x
)
r∈[k]

. (C.34)

By our parameter choices in Table 1, this implies

λw‖
√
λtW

>‖42,4 ≤ ε0 and λv‖
√
λtV

>‖2F ≤ ε0

‖W>‖F � 1 and ‖V >‖F � 1 .

Let us study an update direction

Ŵ = Wt +
√
ηΣW>, V̂ = Vt +

√
ηV >Σ.

Change in Regularizer. We first consider the change of the regularizer. We know that

EΣ

[∥∥Vt +
√
ηV >Σ

∥∥2

F

]
= ‖Vt‖2F + η‖V >‖2F .

On the other hand,

E
[∥∥Wt +

√
ηΣW>∥∥4

2,4

]
=
∑
i∈[m1]

E
[∥∥wt,i +

√
ηΣw>

i

∥∥4

2

]
For each term i ∈ [m1], we can bound

‖wt,i +
√
ηΣw>

i ‖
2
2 = ‖wt,i‖22 + η‖w>

i ‖
2
2 + 2

√
η〈wt,i, w>

i 〉(Σ)i,i

and therefore

E
[∥∥wt,i +

√
ηΣw>

i

∥∥4

2

]
= ‖wt,i‖42 + 4η〈wt,i, w>

i 〉
2 + η2‖w>

i ‖
4
2 + 2η‖wt,i‖22‖w>

i ‖
2
2

≤ ‖wt,i‖42 + 6η‖wt,i‖22‖w>
i ‖

2
2 +Op(η

2) .

(Recall we use Op(·) to hide polynomial factors in m1 and m2.) By Cauchy-Schwarz,

∑
i∈[m1]

‖wt,i‖22‖w>
i ‖

2
2 ≤

√√√√√
 ∑
i∈[m1]

‖wt,i‖42

 ∑
i∈[m1]

‖w>
i ‖42

 ≤ ‖Wt‖22,4‖W>‖22,4

and therefore

E
[∥∥Wt +

√
ηΣW>∥∥4

2,4

]
≤ ‖Wt‖42 + 6η‖Wt‖22,4‖W>‖22,4 +Op(η

2)

By λv‖
√
λtV

>‖2F ≤ ε0, λw‖
√
λtW

>‖42,4 ≤ ε0, and λw‖
√
λtWt‖42,4 ≤ R(

√
λtWt,

√
λtVt), we

know that

E[R(
√
λtŴ ,

√
λtV̂ )] ≤ R(

√
λtWt,

√
λtVt) + 4ηε0 + 6η

√
ε0 ·

√
R(
√
λtWt,

√
λtVt)
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≤ R(
√
λtWt,

√
λtVt) + 10ηε0 +

1

4
ηR(

√
λtWt,

√
λtVt) . (C.35)

Change in Objective. We now consider the change in the objective value. Recall from (C.33)
the construction of good network W>, V > satisfies τv,∞ ≤ 1

m
999/2000
1

and τw,∞ ≤ 1

m
999/1000
1

. For

polynomially small η, by Lemma 6.9 (replacing its η with
√
η), we have:

EWρ,V ρ

∣∣∣gr(x; Ŵ , V̂ )− fr(x; Ŵ , V̂ )
∣∣∣ ≤ O(εη) +Op(η

1.5). (C.36)

First we focus on G(x; Ŵ , V̂ ). Since ‖Wt‖2,4 ≤ τw and ‖Vt‖2,2 ≤ τv from (C.32), we can apply
Lemma 6.5 to get

G(x; Ŵ , V̂ ) = G(x;Wt, Vt) +
√
ηG′(x) + ηG∗(x)

= F (x;Wt, Vt) +
√
ηG′(x) + ηG∗(x) (C.37)

where G′(x) is from Lemma 6.5 and satisfies EΣ[G′(x)] = 0 and w.h.p. ‖G′(x)‖2 ≤ ε; and G∗(x)
is from (C.34).

Combining (C.36) and (C.37), we know that for every fixed x, y in the support of distribution Z:

EWρ,V ρ,Σ[L(λtF (x; Ŵ , V̂ ), y)]

≤ EWρ,V ρ,Σ[L(λtG(x; Ŵ , V̂ ), y)] +O(ηε) +Op(η
1.5).

¬
≤ EWρ,V ρ

[
L(λtEΣ[G(x; Ŵ , V̂ ), y])

]
+ EWρ,V ρ,Σ ‖

√
ηG′(x)‖2 +O(ηε) +Op(η

1.5).


≤ EWρ,V ρL (λtG(x;Wt, Vt) + λtηG

∗(x), y) +O(ηε) +Op(η
1.5).

®
≤ EWρ,V ρL (λtG(x;Wt, Vt) + ηF ∗(x), y) +O(ηε) +Op(η

1.5).

= EWρ,V ρL (λtF (x;Wt, Vt) + ηF ∗(x), y) +O(ηε) +Op(η
1.5). (C.38)

Above, ¬ uses the 1-Lipschitz smoothness of L which implies
E[L(v)] ≤ L(E[v]) + E[‖v − E[v]‖2]

and EΣ[G(Ŵ , V̂ , x)] = G(Wt, Vt, x) + ηG∗(x). Inequality  also uses EΣ[G(x; Ŵ , V̂ )] =
G(x;Wt, Vt) + ηG∗(x). Inequality ® uses (C.34) and the 1-Lipschitz continuity of L.

Next, by convexity of the loss function, we have
L (λtF (x;Wt, Vt) + ηF ∗(x), y) = L

(
(1− η)(1− η)−1λtF (x;Wt, Vt) + ηF ∗(x), y

)
≤ (1− η)

(
L((1− η)−1λtF (x;Wt, Vt), y)

)
+ ηL(F ∗(x), y)

(C.39)

For sufficiently small η, we know that
L((1− η)−1λtF (x;Wt, Vt), y) + L((1− η)λtF (x;Wt, Vt), y) ≤ 2L (λtF (x;Wt, Vt), y) +Op(η

2)

Putting this into (C.39), we have
L (λtF (x;Wt, Vt) + ηF ∗(x), y)

≤ (1− η) (2L (λtF (x;Wt, Vt), y)− L((1− η)λtF (x;Wt, Vt), y)) + ηL(F ∗(x), y) +Op(η
2)

(C.40)

Putting All Together. Let us denote

c1 = EWρ,V ρ,Σ,(x,y)∼Z [L(λtF (x; Ŵ , V̂ ), y)]

c2 = EWρ,V ρ,(x,y)∼Z [L((1− η)λtF (x;Wt, Vt), y)]

c3 = EWρ,V ρ,(x,y)∼Z [L(λtF (x;Wt, Vt), y)]

c′1 = EΣ

[
L′
(
λt, Ŵ , V̂

)]
= c1 + EΣ[R(

√
λtŴ ,

√
λtV̂ )]

c′2 = L′ ((1− η)λt,Wt, Vt) = c2 +R(
√

(1− η)λtWt,
√

(1− η)λtVt)

c′3 = L′ (λt,Wt, Vt) = c3 +R(
√
λtWt,

√
λtVt)
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The objective growth inequalities (C.38) and (C.40) together imply
c1 ≤ (1− η) (2c3 − c2) + η(OPT +O(ε)) +Op(η

1.5) (C.41)
The regularizer growth inequality (C.35) implies

c′1 − c1 ≤ (1 +
ηγ

4
)(c′3 − c3) +O(ηε0/γ)

and therefore
c′1 − c1 − ((1− η) (2(c′3 − c3)− (c′2 − c2))) ≤ c′1 − c1 − ((1− η) (2(c′3 − c3)− (1− η)(c′3 − c3)))

≤ c′1 − c1 −
(
1− η2

)
(c′3 − c3)

≤ ηγ

4
c′3 +O(ηε0/γ) +O(η2) . (C.42)

Putting (C.41) and (C.42) together we have

c′1 ≤ (1− η) (2c′3 − c′2) +
ηγ

4
c′3 + η(OPT +O(ε0/γ)) +Op(η

1.5)

Multiplying 1
2(1−η) on both sides, we have:

1

2
(1− η)−1c′1 +

1

2
c′2 ≤ c′3 +

ηγ

8
c′3 + η

1

2
OPT +O(ηε0/γ) +Op(η

1.5)

Therefore,(
1

2
(1− η)−1 +

1

2

)
min{c′1, c′2} ≤

(
1 +

ηγ

8

)
c′3 + η

1

2
OPT +O(ηε0/γ) +Op(η

1.5)

and this implies that

min{c′1, c′2} ≤
(

1− η 1

2
+
ηγ

8

)
c′3 + η

1

2
OPT +O(ηε0/γ) +Op(η

1.5)

Therefore, as long as c′3 ≥ (1 + γ)OPT + Ω(ε0/γ) and γ ∈ [0, 1], we have:
min{c′1, c′2} ≤ (1− ηγ/4)c′3

This completes the proof. �

C.3.2 Lemma 6.8: Convergence

Lemma 6.8 (convergence). In the setting of Theorem 3, with probability at least 99/100,
Algorithm 2 (the first SGD variant) converges in TTw = poly (m1,m2) iterations to a point

L′(λT ,WT , VT ) ≤ (1 + γ)OPT + ε0.

Proof of Lemma 6.8. For the first variant of SGD, note that there are T = Θ(η−1 log log(m1m2)
ε0

)

rounds of weight decay, which implies that λt ≥ (ε/ log(m1m2))O(1) is always satisfied (because
γ is a constant). By Lemma 6.7, we know that as long as L′ ∈ [(1 +γ)OPT+ Ω(ε0/γ), Õ(1)], then
there exists ‖W>‖F , ‖V >‖F ≤ 1 such that either

EΣ

[
L′
(
λt−1,Wt +

√
ηΣW>, Vt +

√
ηV >Σ

)]
≤ (1− ηγ/4)(L′(λt−1,Wt, Vt))

or
L′((1− η)λt−1,Wt, Vt) ≤ (1− ηγ/4)(L′(λt−1,Wt, Vt))

In the first case, recall L′ is B = poly(m1,m2) second-order smooth,28 by Fact A.8, it satisfies
(λt−1 is fixed and the Hessian is with respect to W and V ):

λmin

(
∇2L′(λt−1,Wt, Vt)

)
< −1/(m1m2)8 .

On the other hand, for every t ≥ 1, since Wt is the output of noisy SGD, by the escape saddle
point theorem of [19] (stated in Lemma A.9), we know with probability at least 1 − p it satisfies
λmin

(
∇2L′(λt−1,Wt, Vt)

)
> −1/(m1m2)8 . Choosing p = 1

1000T , we know with probability at

28When convoluted with Gaussian noise∇(f∗g) = f∗∇g, every bounded function f becomes infinite-order
differentiable with parameter B inversely-polynomially dependent on the noise level g.
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least 0.999, this holds for all rounds t = 1, 2, . . . , T . In other words, for all rounds t = 1, 2, . . . , T ,
the first case cannot happen and therefore as long as L′ ≥ (1 + γ)OPT + Ω(ε0/γ),

L′((1− η)λt−1,Wt, Vt) ≤ (1− ηγ/4)(L′(λt−1,Wt, Vt)).

On the other hand, for each round t = 0, 1, . . . , T − 1, as long as L′ ≤ Õ(1), by Lemma A.9, it
holds that

L′(λt,Wt+1, Vt+1) ≤ L′(λt,Wt, Vt) + (m1m2)−1 .

Since initially, L′(λ1,W0, V0) ≤ Õ(1) w.h.p., we have w.h.p. L′ ≤ Õ(1) throughout the process.
Since γ is a constant, after T = Θ(η−1 log logm

ε0
) rounds of weight decay, we have L′ ≤ (1 +

γ)OPT + O(ε0/γ). Since γ is a constant, re-scaling ε0 down by a constant factor finishes the
proof. �

Remark C.10. For the second variant of the SGD, note that
Σ1Wt +

√
ηΣ1ΣW

>, VtΣ1 +
√
ηV >Σ1Σ

satisfies that Σ1Σ is still a diagonal matrix with each diagonal entry i.i.d. {±1}. Thus, the conver-
gence results from Lemma 6.7 and Lemma 6.8 still apply, if we replace L′ with

L′′(λt,Wt, Vt) = EWρ,V ρ,Σ,(x,y)∼Z

[
L
(
λtF

(
x;W (0) +W ρ + ΣWt, V

(0) + V ρ + VtΣ
)
, y
)]

+R(
√
λtWt,

√
λtVt).

C.4 Generalization

C.4.1 Lemma 6.10: Generalization For LR = L1

We derive a very crude Rademacher complexity bound for our three-layer neural network. We have
not tried to tighten the polynomial dependency in m1 and m2.

Lemma 6.10 (generalization for LR = L1). For every τ ′v, τ
′
w ≥ 0, every σv ∈ (0, 1/

√
m2], w.h.p.

for every r ∈ [k] and every N ≥ 1, the empirical Rademacher complexity is bounded by

1

N
Eξ∈{±1}N

 sup
‖V ′‖F≤τ ′v,‖W ′‖2,4≤τ ′w

∑
i∈[N ]

ξifr(xi;W
(0) +W ρ +W ′, V (0) + V ρ + V ′)


≤ Õ

(
τ ′wm1

√
m2 + τ ′vm2√
N

+
τ ′v
√
m1m2τ ′w(1/

√
m1 + τ ′w)

N1/4

)
.

Proof. Let W = W (0) + W ρ and V = V (0) + V ρ for notation simplicity. Recall the input to the
j-th neuron on the second layer is

nj(x;W +W ′, V + V ′) =
∑
i∈[m1]

(vj,i + v′j,i)σ
(
〈wi + w′i, x〉+ b

(0)
1,i

)
+ b

(0)
2,j

For analysis purpose, let us truncate V ′ by zeroing out all of its large coordinates. Namely, V ′′ ∈
Rm2×m1 is defined so that V ′′i,j = V ′i,j if |V ′i,j | ≤ δ and V ′′i,j = 0 otherwise. At most (τ ′v)

2/δ2

coordinates will be zeroed out because ‖V ′‖F ≤ τ ′v . Since for each x in the training set, we have
with high probability |σ

(
〈wi + w′i, x〉 + b

(0)
1,i

)
| ≤ Õ( 1√

m1
+ ‖w′i‖2) ≤ Õ( 1√

m1
+ τ ′w), and since

‖ar‖∞ ≤ Õ(1), it satisfies

|fr(x;W +W ′, V + V ′)− fr(x;W +W ′, V + V ′′)| ≤ Õ(
1
√
m1

+ τ ′w)× (τ ′v)
2

δ
. (C.43)

We now bound the Rademacher complexity of fr(xi;W + W ′, V + V ′′) in the following simple
steps.

• {x 7→ 〈w′i, x〉 | ‖w′i‖2 ≤ τ ′w} has Rademacher complexity O(
τ ′w√
N

) by Proposition A.12a.
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• {x 7→ 〈wi+w′i, x〉+bi | ‖w′i‖2 ≤ τ ′w} has Rademacher complexityO(
τ ′w√
N

) because singleton
class has zero complexity and adding it does not affect complexity by Proposition A.12c.

• {x 7→ nj(x;W + W ′, V + V ′′) | ‖W ′‖2,∞ ≤ τ ′w ∧ ‖v′′j ‖1 ≤
√
m1τ

′
v ∧ ‖v′′j ‖∞ ≤ δ}

has Rademacher complexity O(
τ ′w√
N

) · Õ( m1√
m2

+ δm1) + Õ(
τ ′v√
N

). This is because w.h.p.

‖vj‖1 ≤ Õ( m1√
m2

) so we can apply Proposition A.12e, and because ‖v′′j ‖1 ≤
√
m1τ

′
v and

‖v′′j ‖∞ ≤ δ so we can apply Proposition A.12f by choosing f (0)
i (x) = 〈wi, x〉 + bi which

satisfies |f (0)
i (x)| ≤ Õ( 1√

m1
) w.h.p.

• {x 7→ fr(x;W + W ′, V + V ′′) | ‖W ′‖2,∞ ≤ τ ′w ∧ ∀j ∈ [m2], ‖v′′j ‖1 ≤
√
m1τ

′
v} has

Rademacher complexity
(
O(

τ ′w√
N

) · Õ( m1√
m2

+ δm1) + Õ(
τ ′v√
N

)
)
· Õ(m2) because w.h.p.

‖ar‖1 ≤ Õ(m2) and Proposition A.12e.

Finally, noticing that ‖W ′‖2,4 ≤ τ ′w implies ‖W ′‖2,∞ ≤ τ ′w and ‖V ′′‖F ≤ τ ′v implies ‖v′′j ‖1 ≤√
m1‖v′′j ‖2 ≤

√
m1τ

′
v , we finish the proof that the Rademacher complexity of fr(xi;W +W ′, V +

V ′′) is at most

Õ

(
τ ′wm1

√
m2 + τ ′vm2√
N

+
τ ′wm1m2δ√

N

)
.

Combining this with (C.43), and tuning the best choice of δ gives the desired result. �

C.4.2 Lemma 6.12: Generalization For LR = L2

Lemma 6.12 (generalization for LR = L2). For every τ ′v ∈ [0, 1], τ ′w ∈
[

1

m
3/4
1

, 1

m
9/16
1

]
, every

σw ∈ [0, 1/
√
m1] and σv ∈ [0, 1/

√
m2], w.h.p. for every r ∈ [k] and every N ≥ 1, we have by our

choice of parameters in Lemma 6.7, the empirical Rademacher complexity is bounded by

1

N
Eξ∈{±1}N

 sup
‖V ′‖F≤τ ′v,‖W ′‖2,4≤τ ′w

∣∣∣∣∣∣
∑
i∈[N ]

ξiEΣ[fr(xi;W
(0) +W ρ + ΣW ′, V (0) + V ρ + V ′Σ)]

∣∣∣∣∣∣


≤ Õ

(
τ ′wτ

′
vm

1/4
1

√
m2√

N
+

(
(τ ′w)8/5m

9/10
1 + (τ ′w)16/5m

9/5
1

√
m2 +

√
m2√
m1

τ ′v

))
.

Under parameter choices in Table 1, this is at most Õ
( τ ′wτ ′vm1/4

1

√
m2√

N

)
+ ε/k.

Proof of Lemma 6.12. Let W = W (0) +W ρ and V = V (0) +V ρ for notation simplicity. Applying
Lemma 6.11 (with τw chosen as τ ′w), we know that by our choice of parameters,
fr(x;W + ΣW ′, V + V ′Σ) = arDv,x (V Dw,x(Wx+ b1) + b2) + arDv,xV

′Dw,xW
′x±B

for B = Õ
(
(τ ′w)8/5m

9/10
1 + (τ ′w)16/5m

9/5
1

√
m2 +

√
m2√
m1
τ ′v
)
.

We bound the Rademacher complexity of the right hand side. It consists of three terms and the
Rademacher complexity is the summation of the three (recall Proposition A.12c).

The first term does not depend on W ′ or V ′ so has Rademacher complexity zero.

The third term has Rademacher complexity at most B.

The second term corresponds to the function class
F = {x 7→ arDv,xV

′Dw,xW
′x | ‖V ′‖F ≤ τ ′v, ‖W ′‖2,4 ≤ τ ′w}

We calculate its Rademacher complexity as follows.

sup
‖W ′‖2,4≤τ ′w,‖V ′‖F≤τ ′v

∣∣∣∣∣∣
∑
j∈[N ]

ξjarDv,xjV
′Dw,xjW

′xj

∣∣∣∣∣∣
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= sup
‖W ′‖2,4≤τ ′w,‖V ′‖F≤τ ′v

∣∣∣∣∣∣Tr(
∑
j∈[N ]

ξjxjarDv,xjV
′Dw,xjW

′)

∣∣∣∣∣∣
≤ sup
‖W ′‖2,4≤τ ′w,‖V ′‖F≤τ ′v

∥∥∥∥∥∥
∑
j∈[N ]

ξjxjarDv,xjV
′Dw,xj

∥∥∥∥∥∥
F

‖W ′‖F

≤ τ ′wm
1/4
1 sup
‖V ′‖F≤τ ′v

∥∥∥∥∥∥
∑
j∈[N ]

ξjxjarDv,xjV
′Dw,xj

∥∥∥∥∥∥
F

Let us bound the last term entry by entry. Let [Dw,xj ]q denote the q-th column of Dw,xj , [V ′]q the
q-th column of V ′.

∥∥∥∥∥∥
∑
j∈[N ]

ξjxjarDv,xjV
′Dw,xj

∥∥∥∥∥∥
F

=

√√√√√ ∑
p∈[d],q∈[m1]

∑
j∈[N ]

ξjxj,parDv,xjV
′[Dw,xj ]q

2

=

√√√√√ ∑
p∈[d],q∈[m1]

∑
j∈[N ]

ξj [Dw,xj ]q,qxj,parDv,xj [V
′]q

2

≤

√√√√√ ∑
p∈[d],q∈[m1]

∥∥∥∥∥∥
∑
j∈[N ]

ξj [Dw,xj ]q,qxj,parDv,xj

∥∥∥∥∥∥
2

‖[V ′]q‖2

For random ξj , we know that w.h.p. over the randomness of ξj (notice that we can do so because
Dw,xj only depends on W (0) but not on W ′, so we can take randomness argument on ξ),∥∥∥∥∥∥

∑
j∈[N ]

ξj [Dw,xj ]q,qxj,parDv,xj

∥∥∥∥∥∥
2

≤ Õ

‖ar‖22 ∑
j∈[N ]

x2
j,p

 ,

Thus,

Eξ sup
‖V ′‖F≤τ ′v

√√√√√ ∑
p∈[d],q∈[m1]

∥∥∥∥∥∥
∑
j∈[N ]

ξj [Dw,xj ]q,qxj,parDv,xj

∥∥∥∥∥∥
2

‖[V ′]q‖2

≤ Õ

 sup
‖V ′‖F≤τ ′v

‖ar‖2
√ ∑
p∈[d],q∈[m1]

∑
j∈[N ]

x2
j,p‖[V ′]q‖2


≤ Õ

‖ar‖2 sup
‖V ′‖F≤τ ′v

√ ∑
q∈[m1]

∑
j∈[N ]

‖[V ′]q‖2


≤ Õ

(
τ ′v
√
m2N

)
.

This implies R̂(X ;F) ≤ Õ
( τ ′wτ ′vm1/4

1

√
m2√

N

)
and finishes the proof. �

C.5 Final Theorems

C.5.1 Theorem 3: First SGD Variant

Theorem 3. Consider Algorithm 2. For every constant γ ∈ (0, 1/4], every ε0 ∈ (0, 1/100], every
ε = ε0

kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2
, there exists

M = poly

(
Cε(Φ,

√
p2Cε(φ, 1)),

1

ε

)
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such that for every m2 = m1 = m ≥M , and properly set λw, λv, σw, σv in Table 1, as long as

N ≥ Ω̃(Mm3/2)

there is a choice η = 1/poly(m1,m2) and T = poly(m1,m2) such that with probability≥ 99/100,

E(x,y)∼DL(λTF (x;W
(out)
T , V

(out)
T ), y) ≤ (1 + γ)OPT + ε0.

Proof of Theorem 3. For notation simplicity let LF (z;λ,W, V ) := L(λF (x;W,V ), y) for z =
(x, y). For the first SGD variant, recall from Lemma 6.8 that

Ez∼Z,Wρ,V ρLF (z;λT ,W
(0) +WT +W ρ, V (0) + VT + V ρ) +R(

√
λTWT ,

√
λTVT ) ≤ (1 + γ)OPT + ε0.

Since LF (z;λT ,W
(0) + WT + W ρ, V (0) + VT + V ρ) ∈ [0, Õ(1)] w.h.p., by randomly sampling

Õ(1/ε2
0) many W ρ,j , V ρ,j , we know w.h.p. there exists one j∗ with

Ez∈ZLF (z;λT ,W
(0) +W ρ,j∗ +WT , V

(0) + V ρ,j
∗

+ VT ) ≤ (1 + γ)OPT + 2ε0

Now, recall that

‖
√
λTWT ‖2,4 ≤ τ ′w and ‖

√
λTVT ‖F ≤ τ ′v

due to our regularizer (see (C.32)). By simple spectral norm bound, we also know w.h.p. for every
(x, y) ∼ D and j,29∣∣LF (z;λT ,W

(0) +W ρ,j +WT , V
(0) + V ρ,j + VT )

∣∣ ≤ Õ(
√
km2) .

Therefore, we can plug in the Rademacher complexity from Lemma 6.10 and b = Õ(
√
km2) into

standard generalization statement Corollary A.11. Using our choices of τ ′w and τ ′v from Table 1
as well as m1 = m2, this bound implies as long as N ≥ Õ(M(m2)3/2), w.h.p. for every pair
W ρ,j , V ρ,j , it holds

Ez∈DLF (z;λT ,W
(0) +W ρ,j +WT , V

(0) + V ρ,j + VT )

≤ Ez∈ZLF (z;λT ,W
(0) +W ρ,j +WT , V

(0) + V ρ,j + VT ) + ε0

Together, we have

Ez∈DLF (z;λT ,W
(0) +W ρ,j∗ +WT , V

(0) + V ρ,j
∗

+ VT ) ≤ (1 + γ)OPT + 3ε0

�

C.5.2 Theorem 2: Second SGD Variant

Theorem 2. Consider Algorithm 1. For every constant γ ∈ (0, 1/4], every ε0 ∈ (0, 1/100], every
ε = ε0

kp1p22Cs(Φ,p2Cs(φ,1))Cs(φ,1)2
, there exists

M = poly

(
Cε(Φ,

√
p2Cε(φ, 1)),

1

ε

)
such that for every m2 = m1 = m ≥M , and properly set λw, λv, σw, σv in Table 1, as long as

N ≥ Ω̃

((Cε(Φ,√p2Cε(φ, 1)) · Cε(φ, 1) · √p2p1k
2

ε0

)2
)

there is a choice η = 1/poly(m1,m2) and T = poly(m1,m2) such that with probability≥ 99/100,

E(x,y)∼DL(λTF (x;W
(out)
T , V

(out)
T ), y) ≤ (1 + γ)OPT + ε0.

29Indeed, with our parameter choices in Table 1, the spectral norms
√
λT ‖W (0) +W ρ,j +WT ‖2 ≤ O(1)+

‖
√
λTWT ‖F ≤ O(1 + m

1/4
1 τ ′w) ≤ O(1) and

√
λT ‖V (0) + V ρ,j + VT ‖2 ≤ O(1) + ‖

√
λTVT ‖F ≤

O(1 + τ ′v) ≤ O(1). Therefore, the network output λTF (x;W (0) +W ρ,j +WT , V
(0) + V ρ,j + VT ) must be

bounded by Õ(
√
km2) in Euclidean norm. By the assumption that L(0, y) ∈ [0, 1] and L(·, y) is 1-Lipschitz

continuous in the first variable, we have that LF is bounded as stated.
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Proof of Theorem 2. For notation simplicity let LF (z;λ,W, V ) := L(λF (x;W,V ), y) for z =
(x, y). Recall from Remark C.10 that Lemma 6.8 still works in this setting, so we have

EWρ,V ρ,Σ,z∼Z

[
LF

(
z;λT ,W

(0) +W ρ + ΣWT , V
(0) + V ρ + VTΣ

)]
+R(

√
λTWT ,

√
λTVT ) ≤ (1 + γ)OPT + ε0 .

For the same reason as the proof of Theorem 3, we know w.h.p. among Õ(1/ε2
0) choices of j,

min
j

{
EΣ,z∈ZLF (z;λT ,W

(0) +W ρ,j + ΣWT , V
(0) + V ρ,j + VTΣ)

}
≤ (1 + γ)OPT + 2ε0

(C.44)

Without loss of generality, in the remainder of the proof we assume OPT ≤ O(ε0). This can be
done because is ε0 is too small we can increase it to ε0 = Θ(OPT). By our regularizer parameters
λw, λv in Table 1, we know

R(
√
λTWT ,

√
λTVT ) ≤ (1 + γ)OPT + ε0 ≤ O(ε0)

=⇒ ‖
√
λTWT ‖2,4 ≤ O(τ ′wε

1/4
0 ) and ‖

√
λTVT ‖2,2 ≤ O(τ ′vε

1/2
0 ) (C.45)

By Lemma 6.11 (but viewing V (0) + V ρ as V (0) and viewing W (0) + W ρ as W (0)), we know for
every (x, y), w.h.p. over W (0), V (0),W ρ, V ρ,Σ

fr(x;W (0) +W ρ + ΣWT , V
(0) + V ρ + VTΣ)

= arDv,x,ρ

(
(V (0) + V ρ)Dw,x,ρ

(
(W (0) + V ρ)x+ b1

)
+ b2

)
+ arDv,x,ρVTDw,x,ρWTx± ε

= fr(x;W (0) +W ρ, V (0) + V ρ) + g(b,b)
r (x;WT , VT )± ε/k

whereDv,x,ρ andDw,x,ρ are the diagonal sign indicator matrices at weightsW (0) +W ρ, V (0) +V ρ,
and we denote by g(b,b)

r (x;W ′, V ′) := arDv,x,ρV
′Dw,x,ρW

′x the output of the pseudo network.
This immediately implies for every (x, y) and every j, w.h.p. over W (0), V (0),W ρ,j , V ρ,j ,Σ

fr(x;W (0) +W ρ,j + ΣWT , V
(0) + V ρ,j + VTΣ)

= fr(x;W (0) +W ρ,j , V (0) + V ρ,j) + g(b,b)
r (x;WT , VT )± ε/k (C.46)

Using the 1-Lipschitz continuity of L together with (C.45) and (C.46), it is not hard to derive that
for every j, with high probability over (x, y) ∼ D,W (0), V (0),W ρ,j , V ρ,j30∣∣EΣLF (z;λT ,W

(0) +W ρ,j + ΣWT , V
(0) + V ρ,j + VTΣ)

∣∣ ≤ Õ(C0) .

Therefore, we can plug in the Rademacher complexity from Lemma 6.12 with b = Õ(C0) into
standard generalization statement Corollary A.11.31 Using our choices of τ ′w and τ ′v from Table 1 as
well as m1 = m2, the Rademacher complexity is dominated by

λT
m

1/2
2 m

1/4
1 ‖WT ‖2,4‖VT ‖2,2√

N
≤ ε

3/4
0 m

1/2
2 m

1/4
1 τ ′vτ

′
w√

N
≤ C0√

N

In other words, as long as N ≥ (kC0/ε0)2, the Rademacher complexity of a single output is at most
ε0
k , so the generalization error is at most ε0 by Corollary A.11. Or, in symbols, for every j, w.h.p.

over W (0), V (0),W ρ,j , V ρ,j ,

EΣ,z∈DLF (z;λT ,W
(0) +W ρ,j + ΣWT , V

(0) + V ρ,j + VTΣ)

≤ EΣ,z∈ZLF (z;λT ,W
(0) +W ρ,j + ΣWT , V

(0) + V ρ,j + VTΣ) + ε0 (C.47)
Putting this into (C.44), we have

min
j

{
EΣ,z∈DLF (z;λT ,W

(0) +W ρ,j + ΣWT , V
(0) + V ρ,j + VTΣ)

}
≤ (1 + γ)OPT + 3ε0

(C.48)

30Indeed, |fr(x;W (0) +W ρ,j , V (0) + V ρ,j)| ≤ Õ(1) with high probability, and λT |g(b,b)r (x;WT , VT )| ≤
Õ(
√
m2‖
√
λTVT ‖2‖

√
λTWT ‖2) ≤ Õ(

√
m2‖
√
λTVT ‖F ‖

√
λTWT ‖F ) ≤ Õ(ε

3/4
0

√
m2m

1/4
1 τ ′wτ

′
v) ≤

Õ(C0) by spectral norm bounds.
31Strictly speaking, Corollary A.11 requires an absolute value bound b as opposed to a high probability

bound. It is a simple exercise to deal with this issue, see for instance Remark B.6 in our two-layer proof.
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Next, let us take expectation over z ∼ D for (C.46) (strictly speaking, this needs one to carefully
deal with the tail bound and apply the 1-Lipschitz continuity of L). We have for every j, w.h.p over
W (0), V (0),W ρ,j , V ρ,j ,Σ

E(x,y)∼D

[
L
(
λTF

(
x;W (0) +W ρ,j + ΣWT , V

(0) + V ρ,j + VTΣ
)
, y
)]

= E(x,y)∼D

[
L
(
λTF

(
x;W (0) +W ρ,j , V (0) + V ρ,j

)
+ λTG

(b,b) (x;WT , VT ) , y
)]
± 2ε

Since the right hand side (except the ±2ε term) does not depend on the randomness of Σ, we know
that the left hand side with respect to a random sample Σ̂ must stay close to its expectation with
respect to Σ. Or, in symbols, for every j, w.h.p over W (0), V (0),W ρ,j , V ρ,j

E(x,y)∼D

[
L
(
λTF

(
x;W (0) +W ρ,j + Σ̂WT , V

(0) + V ρ,j + VT Σ̂
)
, y
)]

= EΣ,(x,y)∼D

[
L
(
λTF

(
x;W (0) +W ρ,j + ΣWT , V

(0) + V ρ,j + VTΣ
)
, y
)]
± 4ε . (C.49)

For similar reason, replacing D with Z , we have

E(x,y)∼Z

[
L
(
λTF

(
x;W (0) +W ρ,j + Σ̂WT , V

(0) + V ρ,j + VT Σ̂
)
, y
)]

= EΣ,(x,y)∼Z

[
L
(
λTF

(
x;W (0) +W ρ,j + ΣWT , V

(0) + V ρ,j + VTΣ
)
, y
)]
± 4ε . (C.50)

These imply two things.

• Putting (C.50) into (C.44), we have

Ez∈ZLF (z;λT ,W
(0) +W ρ,j∗ + Σ̂WT , V

(0) + V ρ,j
∗

+ VT Σ̂) (C.51)

= min
j

{
Ez∈ZLF (z;λT ,W

(0) +W ρ,j + Σ̂WT , V
(0) + V ρ,j + VT Σ̂)

}
≤ (1 + γ)OPT + 3ε0 .

• Putting (C.50) and (C.49) into (C.47), we have

Ez∈DLF (z;λT ,W
(0) +W ρ,j + Σ̂WT , V

(0) + V ρ,j + VT Σ̂)

≤ Ez∈ZLF (z;λT ,W
(0) +W ρ,j + Σ̂WT , V

(0) + V ρ,j + VT Σ̂) + 2ε0 (C.52)

Combining (C.51) and (C.52), we immediately have

E(x,y)∼D

[
L
(
λTF

(
x;W (0) +W ρ,j∗ + Σ̂WT , V

(0) + V ρ,j
∗

+ VT Σ̂
)
, y
)]
≤ (1 + γ)OPT + 5ε0

as desired. Scaling down ε0 by constant finishes the proof. �
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