Supplement:
Gradient-based Adaptive Markov Chain Monte Carlo

A Gradient-based adaptive MCMC as Reinforcement Learning

A MDP is a tuple (X, Y, P, R) where X is the state space, ) is the action space, P is the transition
distribution with density p(x;41|xt, y:) that describes how the next state 2441 is generated given that
currently we are at state ; and we take action y;. Further, the reward function R(x,,y;) provides
some instantaneous or local signal about how good the action y; was when being at x;. Furthermore,
in a MDP we have also a policy 7(y;|x) which is a distribution over actions given states and it fully
describes the behaviour of the agent. Given that we start at o we wish to specify the policy so that to
maximise future reward, such as the expected accumulated discounted reward
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Suppose now a MCMC procedure targeting 7(x), where € X is the state vector. Consider a
proposal distribution ¢y (y|x), such that the standard Metropolis-Hastings algorithm accepts each
proposed state y; ~ qg(y¢|z+) with probability
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so that =41 = y,, while if the proposal is rejected, x;11 = ;. To reformulate MCMC as an MDP
we make the following correspondences. Firstly, both the state z; and the action y; will live in the
same space which will be the state space X’ of the target distribution. The MCMC proposal gy (y¢|z:)
will correspond to the policy 7 (y;|x:), while the environmental transition dynamics will be stochastic
and given by the two-component mixture,

p(regr|me ye) = @y, ye50)02, 1y, + (1 — (e, 4430)) 0201 a0 »

where J,, ,, denotes the delta function. This transition density simply says that the new state x;; with
probability a(z¢, yi; ) will be equal to the proposed action y;, while with the remaining probability
will be set to the previous state, i.e. 441 = x;. Notice that the standard MCMC transition kernel
Ko (xt,2¢41) is obtained by integrating out the action y, i.e.

Ko(xy, x441) = /p($t+1|55t7yt)Q@(yt|33t)dyt

= a(@s, Te41)q(Te1|2e) + (1 - /a(ﬂft,yt)Q9(yt$t)dyt> 0o 9)

The final ingredient we need to reformulate MCMC as MDP is the reward function R(z¢,y:). The
gradient-based adaptive MCMC method essentially assumes as reward

R(yt,xt; 9) = log a($t7 Yt 9) — Blog qe(yt\wt)7

which is an entropy-regularised reward that promotes high exploration with the entropic term
—log qo(yt|x+). Gradient-based adaptive MCMC essentially at each step stochastically maximises
the expected reward starting from state x, i.e.

/qe(ytlxt)R(yt,xtﬂ)dyt.

While the above reformulates MCMC as a reinforcement learning (RL) problem, there are clearly also
some differences with standard RL problems. Given that the reward R(y;, x¢; ) is very informative
(we are not facing the delayed-reward problem commonly encountered in standard RL) gradient-
based MCMC sets v = 0 in order to maximise immediate reward. Further, the transition dynamics
p(x41|2e, ye) are known in MCMC, while this typically is not the case in standard RL. Finally,
notice that the reward R(y;, x+; 0) as well as the transition dynamics p(z;1|z:, y¢) all depend on the
parameter 6 and the policy gy (y¢|z:), i.e. they depend on the MCMC proposal distribution.
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B Further details about the algorithms

For the standard adaptive MCMC method (AM) we implemented a computational efficient version that
requires no matrix decompositions (which are expensive due to the O(n?) scaling) by parametrising
the proposal as N (y|z, LLT) and updating the Cholesky factor in each iteration according to the
updates
p4= ot pe(Te — p),
L L4 pL [L7 (@41 — p) (i —p) LT = 1]

where p tracks the global mean of the state vector. Further details about this scheme can be found in
Section 5.1.1 in [3].

For our most efficient gadMALAT scheme the stochastic gradient in each iteration is

lower’

VFr(xt,€) = VLmin{O7 log (azt + (1/2)LL"Vlog m(x:) + Let) —log ()
1 n
— 5 (10/2LT [V10g (@) + Viogm(yo)] + el — [lesl|*) } + BYL D log Lus,
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where, as discussed in the main paper, V log 7(y;) is taken as constant w.r.t. L. Then the gradient of
the M-H log ratio (when this log ratio is negative, since otherwise its gradient is zero) simplifies as

1
Vi logm (a:t +(1/2)LLTV log m(x:) + Let) — 5VLll(1/2)LT [Viogm(ae) + Viegm(ys)] + |l
1 - T
=3 (Vlogw(xt) _v logﬂ(yt)) ((1/2)L [Vlogm(ze) — Vlog 7(ye)] + et)
and then take the lower triangular part. This is just an outer vector product that scales as O(n?).
Overall each iteration of the algorithm can be implemented (plus the extra overhead of a single
gradient evaluation V log 7(y; ) of the log target at the proposed state ;) by using at most four O(n?)

operations during adaptation and exactly two O(n?) operations after burn-in, as shown in the released
code.

C Extra results on the Neal’s Gaussian target

Figure 3 shows trace plot for the log density of the target for all different algorithms.

12



-20

Log-target

Log-target

Log-target

Log-target

RWM

0.5 1 15 2
x10*

Log-target

Log-target

Log-target

-20

MALA

AM

Log-target

gadMALAe

gadMALAf

Log-target

80

-100

x10*

x10*

Log-target

x10*

x10*

Figure 3: The evolution of the log-target across iterations for all algorithms in Neal’s Gaussian example.

Table 2: Comparison of sampling methods in Australian Credit dataset consisted of 690 data points. The size of
the state/parameter vector from which we draw samples was n = 15.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
gadMALAf 8.1 0.569 (3485.9, 4262.9, 4784.0) 443.97 (76.13)
gadMALAe 13.5 0.540 (3034.9, 4234.3, 4836.3) 227.61 (29.87)
gadRWM 7.7 0.253 (288.0, 423.0, 515.0) 38.68 (9.53)

AM 4.4 0.261 (310.9, 410.1, 507.2) 70.21 (6.23)
RWM 34 0.252 (31.3, 312.6, 495.2) 9.16 (3.12)
MALA 7.0 0.524 (138.4, 2388.1, 3818.8) 20.22 (5.14)
HMC-5 37.0 0.700 (1048.1, 3510.3, 14809.7)  28.06 (11.69)
NUTS 41.3 >0.7 (2995.2, 20000.0, 20000.0)  72.86 (7.31)

D Extra results on the binary classification datasets

Tables 2-6 show the results for the remaining five binary classification datasets not reported in the
main article. Figures 4 and 5 show trace plot of log density of the target acrorss all different algorithms
for the German Credit and Caravan datasets. For the remaining datasets the corresponding plots are

similar.

13



Table 3: Comparison of sampling methods in Ripley dataset consisted of 250 data points. The size of the
state/parameter vector from which we draw samples was n = 3.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
gadMALAf 3.3 0.536 (8328.4,8913.2, 9442.4) 2506.04 (143.47)
gadMALAe 4.9 0.543 (8446.7, 9006.6, 9595.6) 1713.44 (44.91)
gadRWM 3.1 0.068 (638.0, 736.9, 803.2) 205.99 (17.85)
AM 3.0 0.257 (1702.8, 1792.2, 1902.0) 570.19 (49.32)
RWM 2.1 0.252 (1129.2, 1627.8, 1979.8) 534.21 (43.54)
MALA 2.8 0.542 (2976.0, 5683.0, 9726.5) 1046.48 (54.86)
HMC-5 14.7 0.678 (9205.3, 10818.1, 16136.5)  626.55 (196.48)
NUTS 7.5 >0.7 (9436.2, 17463.5, 20000.0) 1265.99 (73.01)

Table 4: Comparison of sampling methods in Pima Indian dataset consisted of 532 data points. The size of the
state/parameter vector from which we draw samples was n = 8.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
gadMALAf 4.6 0.545 (5407.6, 5810.3, 6467.6) 1176.12 (79.54)
gadMALAe 6.8 0.547 (5469.6, 5963.6, 6421.1) 801.03 (16.07)
gadRWM 42 0.267 (635.6, 760.0, 866.2) 150.70 (9.73)

AM 4.1 0.273 (612.7,729.1, 854.8) 149.18 (10.40)
RWM 32 0.246 (354.6, 496.4, 709.6) 111.81 (6.16)
MALA 4.0 0.509 (1524.9, 2457.2, 3853.6) 377.17 (25.80)
HMC-5 20.3 0.711 (7295.7, 12798.7, 18267.4)  359.22 (103.55)
NUTS 15.2 >0.7 (15343.3, 18606.0, 20000.0)  1008.97 (42.33)

Table 5: Comparison of sampling methods in Heart dataset consisted of 270 data points. The size of the
state/parameter vector from which we draw samples was n = 14.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
gadMALAf 4.1 0.551 (3892.9, 4362.7,4784.2) 946.98 (56.10)
gadMALAe 6.4 0.560 (3832.4, 4372.3, 4845.6) 599.51 (30.00)
gadRWM 3.8 0.288 (342.5, 440.9, 536.1) 88.94 (10.29)

AM 32 0.238 (342.5,425.5,535.4) 106.97 (7.18)
RWM 2.3 0.266 (196.9, 314.3, 472.7) 86.57 (11.33)
MALA 35 0.530 (1429.7, 2310.6, 3260.4) 404.96 (18.57)
HMC-5 18.4 0.699 (1913.2, 5600.3, 11883.0) 103.81 (39.38)
NUTS 15.4 >0.7 (20000.0, 20000.0, 20000.0)  1295.13 (15.74)

Table 6: Comparison of sampling methods in German Credit dataset consisted of 1000 data points. The size of
the state/parameter vector from which we draw samples was n = 25.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
gadMALAf 11.0 0.560 (2734.9, 3414.5, 3928.6) 252.91 (37.86)
gadMALAe 224 0.549 (2808.2, 3384.9, 3883.5) 126.00 (14.68)
gadRWM 104 0.248 (179.1, 252.5, 323.1) 17.92 (4.18)

AM 12.6 0.262 (121.9, 207.6, 308.0) 9.72 (1.25)

RWM 8.4 0.233 (45.0, 153.8, 298.7) 5.48 (1.83)
MALA 9.2 0.535 (420.1, 1313.2, 2573.7) 47.37 (10.22)
HMC-5 434 0.706 (3020.2, 10294.4, 20000.0)  71.62 (49.62)
NUTS 474 >0.7 (7737.2, 20000.0, 20000.0)  166.93 (30.57)
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Figure 4: The evolution of the log-target across iterations for all algorithms in German Credit dataset.

E Results on a higher dimensional example

We all tried a much larger Bayesian binary classification problem by taking all 11339 training
examples of "5" and "6" MNIST digits which are 28 x 28 images and therefore the dimensionality of
the parameter vector w was 785 (the plus one accounts for the bias term). For this larger example
from the baselines we applied the gradient-based schemes, MALA, HMC and NUTS since the
other methods become very inefficient. From the proposed schemes we applied the most efficient
algorithm which is gadMALAf. Also because of the much higher dimensionality of this problem,
which makes the stochastic optimisation over L harder, we had to decrease the baseline learning rate
in the RMSprop schedule from 0.00015 to 0.00001. We also considered a larger adaptation phase
consisted of 5 x 10% instead of 2 x 10%. All other algorithms use the same experimental settings as
described in the main paper. Figure 7 shows the evolution of the log-target densities for all sampling
schemes while Table 7 gives ESS, computation times and other statistics.

We can observe that the performance of gadMALA(f is reasonably good: it outperforms all methods
apart form NUTS. NUTS is better in this example, but it takes around 22 hours to run (since it
performs on average 550 gradient evaluations per sampling iteration). Finally, to visualise some part
of the learned L found by gadMALAf, Figure 7 depicts the 784 diagonal elements of L as an 28 x 28
grey-scale image. Clearly, gadMALAf manages to perform a sort of feature selection, i.e. to discover
that the border pixels in MNIST digits do not really take part in the classification, so it learns a much
higher variance for those dimensions (close to the variance of the prior).
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Figure 5: The evolution of the log-target across iterations for all algorithms in Caravan dataset.
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Figure 6: The evolution of the log-target across iterations for all algorithms in binary MNIST classification over
"5" versus "6".
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Table 7: Comparison of sampling methods in binary MNIST dataset, of "5" versus "6", consisted of 11339 data
points. The size of the state/parameter vector from which we draw samples was n = 785. All numbers are
averages across five repeats where also one-standard deviation is given for the Min ESS/s score.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
gadMALAf 779.3 0.575 (46.0, 128.7, 282.8) 0.059 (0.00)
MALA 311.8 0.530 (2.8,5.9,28.4) 0.009 (0.00)
HMC-5 18474  0.733 (4.5,23.1, 162.7) 0.002 (0.00)
HMC-10 3381.3 0.589 (13.9, 66.5, 576.0) 0.004 (0.00)
HMC-20 6449.1 0.666 (77.8, 240.1, 2060.9) 0.012 (0.00)
NUTS 83232.1 >0.7 (18514.1, 20000.0, 20000.0)  0.223 (0.01)

51 1

Figure 7: The first 784 diagonal elements (i.e. excluding the bias component of x) of the full 785 x 785
Cholesky factor L found after 5 x 10* adapting iterations by gadMALAf. Brighter/white colour means larger
values.
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