
Appendices
A Performance degradation on train/test masks mismatch

We analyze the performance of NC as a function of the mismatch between train and test masks.
To this end, we report the RMSE between XR and X̂R on the UCI/Letter dataset.
We consider four different scenarios: (i) masks observed during training applied on train data, (ii)
masks observed during training applied on test data, (iii) masks unobserved during training applied
on train data, and (iv) masks unobserved during training applied on test data.
Table A that there is minimal performance degradation when using unobserved masks and/or
examples at test time showing the model’s ability to generalize accross conditional distributions and
examples.

Table 4: RMSE on UCI/Letter using train/test data/masks.

Masks/Data Train Test
Train .0891 ± .001 .0896 ± .001

Test .0897 ± .001 .0901 ± .001

13



B Experimental details

UCI datasets We use a two hidden layer MLP with ReLU activations and 1024 hidden units for
both the projector and the discriminator. The projector’s final layer is a sigmoid. Both networks are
initialized following [56].

Available and requested masks are encoded as Radamecher random variables. Furthermore, we
normalize the masks energy before feeding them to either the projector or the discriminator.

We train our model for 20000 iterations using Adam [31] with � = 1e � 4, �1 = 0 and �20.999 and
a batch size of 128.

SVHN The discriminator closely follows the architecture presented in [22]. The generator is
U-net[52] architecture where both the encoder and decoder consist of residual blocks. The details are
provided in the tables below.

Discriminator

Kernel size Stride Padding BN Output dim

Residual Block 3 2 1 ⇥ 128 ⇥ 16 ⇥ 16
Residual Block 3 2 1 ⇥ 128 ⇥ 8 ⇥ 8
Residual Block 3 1 1 ⇥ 128 ⇥ 8 ⇥ 8
Residual Block 3 1 1 ⇥ 128 ⇥ 8 ⇥ 8

Global mean pooling � � � ⇥ 128 ⇥ 1 ⇥ 1
Conv 1 1 0 ⇥ 1 ⇥ 1 ⇥ 1

Table 5: Discriminator’s architecture (SVHN)

Encoder (Projector)

Kernel size Stride Padding BN Output dim

Residual Block 3 2 1 ⇥ 128 ⇥ 16 ⇥ 16
Residual Block 3 2 1 X 128 ⇥ 8 ⇥ 8
Residual Block 3 2 1 X 128 ⇥ 4 ⇥ 4

Conv 4 1 0 ⇥ 128 ⇥ 1 ⇥ 1

Table 6: Encoder architecture (SVHN)

Decoder (Projector)

Kernel size Stride Padding BN Upsampling Output dim

Conv 1 1 0 ⇥ ⇥ 128 ⇥ 4 ⇥ 4

Residual Block 3 1 1 X Nearest 128 ⇥ 8 ⇥ 8
Residual Block 3 1 1 X Nearest 128 ⇥ 16 ⇥ 16
Residual Block 3 1 1 X Nearest 128 ⇥ 32 ⇥ 32

Conv 3 1 1 ⇥ ⇥ 3 ⇥ 32 ⇥ 32

We require available and requested masks to be non-overlapping and randomly cover 10% to 50%
of the total image area. We encode the masks as Radamecher random variables and normalize their
energy.

All the networks are initialized following [56]. We train our model for 100000 iterations using
Adam [31] with � = 2e � 4, �1 = 0 and �20.9 and a batch size of 128.

CelebA The discriminator closely follows the architecture presented in [22]. The generator is
U-net[52] architecture where both the encoder and decoder consist of residual blocks. The details are
provided in the table below.

14



Discriminator

Kernel size Stride Padding BN Output dim

Residual Block 3 2 1 ⇥ 64 ⇥ 32 ⇥ 32
Residual Block 3 2 1 ⇥ 128 ⇥ 16 ⇥ 16
Residual Block 3 2 1 ⇥ 256 ⇥ 8 ⇥ 8
Residual Block 3 1 1 ⇥ 512 ⇥ 4 ⇥ 4

Global mean pooling � � � ⇥ 512 ⇥ 1 ⇥ 1
Conv 1 1 0 ⇥ 1 ⇥ 1 ⇥ 1

Table 7: Discriminator’s architecture (CelebA)

Encoder (Projector)

Kernel size Stride Padding BN Output dim

Residual Block 3 2 1 ⇥ 64 ⇥ 32 ⇥ 32
Residual Block 3 2 1 X 128 ⇥ 16 ⇥ 16
Residual Block 3 2 1 X 256 ⇥ 8 ⇥ 8
Residual Block 3 2 1 X 512 ⇥ 4 ⇥ 4

Conv 4 1 0 ⇥ 128 ⇥ 1 ⇥ 1

Table 8: Encoder architecture (CelebA)

Decoder (Projector)

Kernel size Stride Padding BN Upsampling Output dim

Conv 1 1 0 ⇥ ⇥ 512 ⇥ 4 ⇥ 4

Residual Block 3 1 1 X Nearest 256 ⇥ 8 ⇥ 8
Residual Block 3 1 1 X Nearest 128 ⇥ 16 ⇥ 16
Residual Block 3 1 1 X Nearest 64 ⇥ 32 ⇥ 32
Residual Block 3 1 1 X Nearest 64 ⇥ 64 ⇥ 64

Conv 3 1 1 ⇥ ⇥ 3 ⇥ 64 ⇥ 64

We require available and requested masks to be non-overlapping and randomly cover 10% to 50%
of the total image area. We encode the masks as Radamecher random variables and normalize their
energy.

All the networks are initialized following [56]. We train our model for 100000 iterations using
Adam [31] with � = 2e � 4, �1 = 0 and �20.9 and a batch size of 128.

15



C Qualitative results

16



Figure 5: Denoising SVHN images corrupted with 50% missing pixels using a model trained on
square masks.

Figure 6: In-painting SVHN images using masks of size and shapes not seen during training.

Figure 7: Predicting partially-observed CelebA images. From left to right: x · a, x · r, x̂ · r, x̂,
(x · a+ x̂ · r), x. Saturation patterns happen only for pixels where a = 1.

17


