
A Special Cases

In the appendix we will be considering the IWHVI bound it its full generality by assuming a
hierarchical prior p(z) =

∫
p(z, ζ)dζ:

log p(x) ≥ E
q(z|x)

log
p(x, z)

q(z | x)
≥ E
q(z,ψ0|x)

E
τ(ψ1:K |z,x)

E
ρ(ζ1:L|z)

log
p(x | z) 1

L

∑L
k=1

p(z,ζl)
ρ(ζl|z)

1
K+1

∑K
k=0

q(z,ψk|x)
τ(ψk|z,x)

(6)

This bound is obtained by a simple application of the IWAE bound to log p(z) term. Many previously
known methods can be seen as special cases of this version of the bound. In particular:

• For an arbitrary K,L, τ(ψ | z, x) = q(ψ | x) (the hyperprior on ψ under q) and ρ(ζ | z) =
p(ζ) we recover the DSIVI bound (Molchanov et al., 2018)

log p(x) ≥ E
q(z,ψ0|x)

E
q(ψ1:K |x)

E
p(ζ1:K)

log
p(x | z) 1

L

∑L
l=1 p(z | ζl)

1
K+1

∑K
k=0 q(z | ψk, x)

• For an arbitrary K, τ(ψ | z, x) = q(ψ | x) and an explicit prior p(z) (equivalently,
ρ(ζ | z) = p(ζ | z)) we recover the SIVI bound (Yin and Zhou, 2018)

log p(x) ≥ E
q(z,ψ0|x)

E
q(ψ1:K |x)

log
p(x, z)

1
K+1

∑K
k=0 q(z|ψk, x)

• For K = 0, arbitrary τ(ψ | z, x) and explicit prior p(z) (equivalently, ρ(ζ | z) = p(ζ | z))
we recover the HVM bound (Ranganath et al., 2016), also known as auxiliary variables
bound (Agakov and Barber, 2004; Salimans et al., 2015; Maaløe et al., 2016)

log p(x) ≥ E
q(z,ψ0|x)

log
p(x, z)
q(z,ψ0|x)
τ(ψ0|z,x)

• For K = 0, τ(ψ | z, x) = p(ψ | z, x) and structurally similar to q(z | x) prior p(z) =∫
p(z, ψ)dψ we recover the joint bound (Louizos et al., 2017)

log p(x) ≥ E
q(z,ψ0|x)

log
p(x | z)p(z, ψ0)

q(z, ψ0 | x)

• For an arbitrary K, factorized inference and prior models q(z, ψ | x) = q(z | x)q(ψ | x),
p(z, ζ) = p(z)p(ζ), optimal τ(ψ | z, x) = q(ψ | x) and ρ(ζ | z) = p(ζ) we recover the
standard ELBO

log p(x) ≥ E
q(z|x)

log
p(x, z)

q(z | x)

So even if there’s no hierarchical structure, the bound still works.

B Sandwich Bounds on KL divergence between hierarchical models

Plain application of the bounds UK and LL to hierarchical q(z) and p(z) gives us the following upper
bound on the KL divergence:

DKL(q(z) || p(z)) ≤ E
q(z,ψ0)

E
τ(ψ1:K |z)

E
ρ(ζ1:L|z)

[
log

1
K+1

∑K
k=0

q(z,ψk)
τ(ψk|z)

1
L

∑L
l=1

p(z,ζl)
ρ(ζl|z)

]
(7)

Similarly to (7) we can give a lower bound on KL divergence:

DKL(q(z) || p(z)) ≥ E
q(z)

E
τ(ψ1:K |z)

E
p(ζ0|z)

E
ρ(ζ1:L|z)

[
log

1
K

∑K
k=1

q(z,ψk)
τ(ψk|z)

1
L+1

∑L
l=0

p(z,ζl)
ρ(ζl|z)

]
(8)

Unfortunately, this lower bound requires sampling from the true inverse p(ζ|z) and does not allow
the same trick as (7), leaving us with expensive posterior sampling techniques. However, unlike the
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previously suggested Fenchel conjugate based lower bound (Nowozin et al., 2016; Molchanov et al.,
2018), the bound eq. (8) not only uses samples from z, but also makes use of its underlying density
and can be made increasingly tighter by increasing K and L.

Analyzing the gaps between the log marginal density log qφ(z | x) and the upper bound UK (Theo-
rem C.1) and the lower bound LK (Domke and Sheldon, 2018), we see that by maximizing LK or
minimizing UK we optimize different objectives w.r.t. τ (see Lemma C.2 for the definition of ω):

τ∗ = arg min
τ∈F

UK = arg min
τ∈F

DKL(q(ψ0 | z)τ(ψ1:K | z) || ωτ (ψ0:K | z))

τ∗− = arg max
τ∈F

LK = arg min
τ∈F

DKL(ωτ (ψ0:K | z) || q(ψ0 | z)τ(ψ1:K | z))

In case K = 0 we have ωτ (ψ0:K | x, z) = τ(ψ0 | x, z), and the gaps become simple forward and
reverse KL divergences between τ(ψ | x, z) and the true inverse model q(ψ | z, x). Thus unless τ
(or ρ) is able to represent the true inverse model exactly, one should avoid using the same distribution
in both log marginal density bounds and KL bounds (7) and (8).

C Proofs

Theorem C.1 (Log marginal density upper bound). For any q(z, ψ), K ∈ N0 and τ(ψ | z) such that
for any ψ s.t. τ(ψ | z) = 0 we have q(ψ, z) = 0, consider

UK = E
q(ψ0|z)

E
τ(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

q(z, ψk)

τ(ψk | z)

)

where we write τ(ψ1:K | z) =
∏K
k=1 τ(ψk | z) for brevity. Then the following holds:

1. UK ≥ log q(z)

2. UK ≥ UK+1

3. lim
K→∞

UK = log q(z).

Proof. 1. First, we note that an analogous proof of Molchanov et al. (2018) for Semi-Implicit
VI can not be applied in our case as the argument of the log is no longer a valid mixture
density in the case of arbitrary density τ .

Consider a gap between the proposed bound at the log marginal density:

Gap = E
q(ψ0|z)

E
τ(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

q(z, ψk)

τ(ψk | z)

)
− log q(z)

= E
q(ψ0|z)

E
τ(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

q(ψk | z)
τ(ψk | z)

)

= E
q(ψ0|z)

E
τ(ψ1:K |z)

log

(
q(ψ0 | z)τ(ψ1:K | z)
ωq,τ (ψ0:K | z)

)
= DKL(q(ψ0 | z)τ(ψ1:K | z) || ωq,τ (ψ0:K | z)) ≥ 0

Where the last line holds due to ωq being a normalized density function (see Lemma C.2):

ωq,τ (ψ0:K | z) =
q(ψ0 | z)τ(ψ1:K | z)

1
K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

2. Now we will prove the second claim.

15



UK − UK+1 = E
q(ψ0|z)

E
τ(ψ1:K+1|z)

log

1
K+1

∑K
k=0

q(z,ψk)
τ(ψk|z)

1
K+2

∑K+1
k=0

q(z,ψk)
τ(ψk|z)

= E
q(ψ0|z)

E
τ(ψ1:K+1|z)

log
q(ψ0 | z)τ(ψ1:K+1 | z)

νq,τ (ψ0:K+1 | z)
= DKL (q(ψ0 | z)τ(ψ1:K+1 | z) || νq,τ (ψ0:K+1 | z)) ≥ 0

Where we used the fact that νq,τ (ψ0:K+1 | z) is normalized density due to Lemma C.3

νq,τ (ψ0:K+1 | z) = ωq,τ (ψ0:K | z)τ(ψK+1 | z)
1

K + 2

K+1∑
k=0

q(ψk | z)
τ(ψk | z)

3. For the last claim we follow (Burda et al., 2015). Consider

MK =
1

K + 1

K∑
k=0

q(z, ψk)

τ(ψk | z)
=

AK︷ ︸︸ ︷
1

K + 1

q(z, ψ0)

τ(ψ0 | z)
+

BK︷ ︸︸ ︷
K

K + 1

XK︷ ︸︸ ︷
1

K

K∑
k=1

q(z, ψk)

τ(ψk | z)

Due to Law of Large Numbers we have

AK
a.s.−−−−→
K→∞

0, XK
a.s.−−−−→
K→∞

E
τ(ψ|z)

q(z, ψ)

τ(ψ | z)
= q(z), BK

a.s.−−−−→
K→∞

1

Thus
MK

a.s.−−−−→
K→∞

q(z), UK = E
τ(ψ0:K |z)

logMK −−−−→
K→∞

log q(z)

Lemma C.2 (ωq,τ distribution, following Domke and Sheldon (2018)). Given z, consider a following
generative process:

• Sample K + 1 i.i.d. samples from ψ̂k ∼ τ(ψ | z)

• For each sample compute its weight wk = q(ψ̂k,z)

τ(ψ̂k|z)

• Sample h ∼ Cat
(

w0∑K
k=0 wk

, . . . , wK∑K
k=0 wk

)
• Put h-th sample first, and then the rest: ψ0 = ψ̂h, ψ1:K = ψ̂\h

Then the marginal density of ψ0:K

ωq,τ (ψ0:K | z) =
q(ψ0 | z)τ(ψ1:K | z)

1
K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

Proof. The joint density for the generative process described above is

ωq,τ (ψ̂0:K , h, ψ0:K | z) = τ(ψ̂0:K | z) wh∑K
k=0 wk

δ(ψ0 − ψ̂h)δ(ψ1:K − ψ̂\h)

One can see that this is indeed a normalized density∫ K∑
h=0

(∫
ωτ (ψ̂0:K , h, ψ0:K | z)dψ0:K

)
dψ̂0:K =

∫ K∑
h=0

τ(ψ̂0:K | z) wh∑K
k=0 wk

dψ̂0:K

=

∫
τ(ψ̂0:K | z)

K∑
h=0

wh∑K
k=0 wk

dψ̂0:K =

∫
τ(ψ̂0:K | z)dψ̂0:K = 1
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The marginal density ωq,τ (ψ0:K | z) then is

ωq,τ (ψ0:K | z) =

∫ K∑
h=0

τ(ψ̂0:K | z) wh∑K
k=0 wk

δ(ψ0 − ψ̂h)δ(ψ1:K − ψ̂\h)dψ̂0:K

= (K + 1)

∫
τ(ψ̂0:K | z) w0∑K

k=0 wk
δ(ψ0 − ψ̂0)δ(ψ1:K − ψ̂1:K)dψ̂0:K

=

∫
τ(ψ̂1:K | z) q(z,ψ̂0)

1
K+1

∑K
k=0 wk

δ(ψ0 − ψ̂0)δ(ψ1:K − ψ̂1:K)dψ̂0:K

= τ(ψ1:K | z) q(z,ψ0)

1
K+1

∑K
k=0

q(ψk,z)
τ(ψk|z)

= q(ψ0|z)τ(ψ1:K |z)
1

K+1
∑K
k=0

q(ψk|z)
τ(ψk|z)

Where on the second line we used the fact that integrand is symmetric under the choice of h.

While the derivations above show a generative process underlying the distribution, one could also
show directly that ωq,τ (ψ0:K | z) integrates to 1:

∫
ωq,τ (ψ0:K | z)dψ0:K =

∫
q(ψ0 | z)τ(ψ1:K | z)

1
K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

dψ0:K =

∫ q(ψ0|z)
τ(ψ0|z)τ(ψ0:K | z)
1

K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

dψ0:K

=

∫ q(ψj |z)
τ(ψj |z)τ(ψ0:K | z)
1

K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

dψ0:K = 1
K+1

K∑
j=0

∫ q(ψj |z)
τ(ψj |z)τ(ψ0:K | z)
1

K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

dψ0:K

=

∫ 1
K+1

∑K
j=0

q(ψj |z)
τ(ψj |z)τ(ψ0:K | z)

1
K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

dψ0:K =

∫
τ(ψ0:K | z)dψ0:K = 1

Where in the 3rd inequality we’ve exchanged ψ0 and ψj , and in the 4th equality we’ve used the fact
that different choices of j lead to the same integral.

Lemma C.3. Let

νq,τ (ψ0:K+1 | z) = ωq,τ (ψ0:K | z)τ(ψK+1 | z)
1

K + 2

K+1∑
k=0

q(ψk | z)
τ(ψk | z)

Then νq,τ (ψ0:K+1 | z) is a normalized density.

Proof. νq,τ (ψ0:K+1 | z) is non-negative due to all the terms being non-negative. Now we’ll show it
integrates to 1 (colors denote corresponding terms):

∫
ωq,τ (ψ0:K | z)τ(ψK+1 | z)

1

K + 2

K+1∑
k=0

q(ψk | z)
τ(ψk | z)

dψ0:K+1

=
1

K + 2

∫
ωq,τ (ψ0:K | z)

[
K∑
k=0

q(ψk | z)
τ(ψk | z)

+

∫
τ(ψK+1 | z)

q(ψK+1 | z)
τ(ψK+1 | z)

dψK+1

]
dψ0:K

=
1

K + 2

∫ q(ψ0 | z)τ(ψ1:K | z)
1

K+1

∑K
k=0

q(ψk|z)
τ(ψk|z)

K∑
k=0

q(ψk | z)
τ(ψk | z)

dψ0:K + 1

 =
K + 1 + 1

K + 2
= 1
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Theorem C.4 (DIWHVI Evidence Lower Bound).

log p(x) ≥ E log

 1

M

M∑
m=1

p(x | zm) 1
K

∑K
k=1

p(zm,ζm,k)
ρ(ζm,k|zm)

1
K+1

∑K
k=0

q(zm,ψm,k|x)
τ(ψm,k|zm,x)

 (9)

Where the expectation is taken over the following generative process:

1. Sample ψm,0 ∼ q(ψ | x) for 1 ≤ m ≤M

2. Sample zm ∼ q(z | xn, ψm,0) for 1 ≤ m ≤M

3. Sample ψm,k ∼ τ(ψ | zm, x) for 1 ≤ m ≤M and 1 ≤ k ≤ K

4. Sample ζm,k ∼ ρ(ζ | zm) for 1 ≤ m ≤M and 1 ≤ k ≤ K

Proof. Consider a random variable

XM =
1

M

M∑
m=1

p(x | zm) 1
K

∑K
k=1

p(zm,ζm,k)
ρ(ζm,k|zm)

1
K+1

∑K
k=0

q(zm,ψm,k|x)
τ(ψm,k|zm,x)

We’ll show it’s an unbiased estimate of p(x) (colors denote corresponding terms) and then just invoke
Jensen’s inequality:

EXM =

∫ [( M∏
m=1

q(ψm,0 | x)q(zm | ψm,0, x)τ(ψm,1:K | zm, x)ρ(ζm,1:K | zm)

)

1

M

M∑
m=1

p(x | zm) 1
K

∑K
k=1

p(zm,ζm,k)
ρ(ζm,k|zm)

1
K+1

∑K
k=0

q(zm,ψm,k|x)
τ(ψm,k|zm,x)

]
dψ1:M,0:Kdζ1:M,1:Kdz1:M

First, we move in the integral w.r.t. ζ into the numerator:

=

∫ (
1

M

M∑
m=1

p(x | zm) E
ρ(ζm,1:K |zm)

1
K

K∑
k=1

p(zm,ζm,k)
ρ(ζm,k|zm)

1
K+1

K∑
k=0

q(zm,ψm,k|x)
τ(ψm,k|zm,x)

M∏
m=1

q(ψm,0 | x)q(zm | ψm,0, x)τ(ψm,1:K | zm, x)dψ

)
dz

Next, we leverage zm’s independence:

=

∫ [( M∏
m=1

q(ψm,0 | x)q(zm | ψm,0, x)τ(ψm,1:K | zm, x)

)
1

M

M∑
m=1

p(x | zm)p(zm)
1

K+1

∑K
k=0

q(zm,ψm,k|x)
τ(ψm,k|zm,x)

]
dψ1:M,0:Kdz1:M

=
1

M

M∑
m=1

∫
p(x, zm)

q(zm, ψm,0 | x)τ(ψm,1:K | zm)
1

K+1

∑K
k=0

q(zm,ψm,k|x)
τ(ψm,k|zm,x)

dψm,0:Kdzm

=
1

M

M∑
m=1

∫
p(x, zm)ωq,τ (ψm,0:K | zm, x)dψm,0:Kdzm

=
1

M

M∑
m=1

∫
p(x, zm)dzm = p(x)
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Where ωq,τ (ψm,0:K | zm, x) is a density from the Lemma C.2. Now the rest follows from the
Jensen’s inequality due to logarithm’s concavity:

log p(x) = logEXM ≥ E logXM

Corollary C.4.1. All statements of Theorem 1 of (Burda et al., 2015) apply to this bounds as well.

D Signal-to-Noise Ratio Study

In this section we provide additional details to section 4.2.

D.1 Doubly Reparametrized Gradient Derivation

Consider a VAE setup with multisample bound (5). Learning in such a model is equivalent to
maximizing the following objective w.r.t. generative model’s parameters θ, inference network’s
parameters φ, and auxiliary inference network τ ’s parameters η:

L(θ, φ, η) = E
qφ(ψ1:M,0,z1:M |x)
τη(ψ1:M,1:K |x,z1:M )

log
1

M

M∑
m=1

pθ(x, zm)
1

K+1

∑K
k=0

qφ(zm,ψm,k|x)
τη(ψm,k|x,zm)

= E
qφ(ψ1:M,0,z1:M |x)
τη(ψ1:M,1:K |x,z1:M )

M

LΣE
m=1

αm︷ ︸︸ ︷log pθ(x | zm)−
K

LΣE
k=0

(
log

qφ(zm,ψm,k|x)
pθ(zm)τη(ψm,k|x,zm)

)
︸ ︷︷ ︸

βmk

+const

Where LΣE is a shorthand for the log-sum-exp operator, and the omitted constant is log K+1
M . We

will now consider a reparametrized gradient w.r.t. τ ’s parameters ∇ηL, notice the REINFORCE-like
term still sitting inside, and carve it out by applying the reparametrization the second time in the
same way as in (Tucker et al., 2019). In the derivation we’ll use σ notation to mean the softmax

1
1+exp(−x) function, and ∇ηψ is a shorthand for (∇ηg(ε, η))|ε=g−1(ψ,η) where g is τη(ψ | x, z)’s
reparametrization.

∇ηL(θ, φ, η) = E
qφ(ψ1:M,0,z1:M )

∇η E
τη(ψ1:M,1:K |z1:M )

M

LΣE
m=1

[αm]

= E
qφ(ψ1:M,0,z1:M )

(
E

τη(ψ1:M,1:K |z1:M )
∇η

M

LΣE
m=1

[αm]

+ E
τη(ψ1:M,1:K |z1:M )

M∑
m=1

K∑
k=1

∇ψmk
(

M

LΣE
m=1

[αm]

)
∇ηψmk

)

= E
qφ(ψ1:M,0,z1:M )

(
E

τη(ψ1:M,1:K |z1:M )

M∑
m=1

σ(α)m∇ηαm +A

)

= E
qφ(ψ1:M,0,z1:M )

(
E

τη(ψ1:M,1:K |z1:M )

M∑
m=1

σ(α)m

[
−

K∑
k=0

σ(βm)k∇ηβmk

]
+A

)

= E
qφ(ψ1:M,0,z1:M )

(
E

τη(ψ1:M,1:K |z1:M )

M∑
m=1

σ(α)m [
∑K
k=0 σ(βm)k∇η log τη(ψmk)] +A

)

= E
qφ(... )

 E
τη(... )

M∑
m=1

K∑
k=1

REINFORCE-like term︷ ︸︸ ︷
σ(α)m σ(βm)k∇η log τη(ψmk) +B +A
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Where

A = − E
τη(ψ1:M,1:K |z1:M )

M∑
m=1

K∑
k=1

σ(α)m σ(βm)k∇ψmkβmk∇ηψmk

B = E
τη(ψ1:M,1:K |z1:M )

M∑
m=1

σ(α)m σ(βm)0∇η log τη(ψm0)

qφ(. . . ) = qφ(ψ1:M,0, z1:M ), τη(. . . ) = τη(ψ1:M,1:K | z1:M )

One can see the red term is the REINFORCE derivative of the Eτγ(ψm,k) σ(α)m σ(βm)k w.r.t. γ
with all other ψ being fixed. We then evaluate this REINFORCE gradient at γ = η, this substitution
"trick" is needed to avoid differentiating α and β w.r.t. η, only their gradients w.r.t. ψmk matter. We
would also like to notice that though B also contains∇η log τη(ψm0) term similar to REINFORCE,
it’s not a REINFORCE gradient, as ψm0 comes from a different distribution, and thus we can not
apply reparametrization to it.

∇ηL(θ, φ, η) = E
qφ(... )

(
M∑
m=1

K∑
k=1

E
τη(ψ1:M,1:K\mk|z1:M )

(
∇γ Eτγ (ψmk|zm) σ(α)m σ(βm)k

) ∣∣∣
γ=η

+B +A

)

= E
qφ(... )

(
M∑
m=1

K∑
k=1

Eτη(ψ1:M,1:K |z1:M )∇βmk [σ(α)m σ(βm)k]∇ψmkβmk∇ηψmk +B +A

)

= E
qφ(... )
τη(... )

(
M∑
m=1

K∑
k=1

σ(α)m σ(βm)k[1−σ(βm)k(2−σ(α)m)]∇ψmkβmk∇ηψmk +B +A

)

= E
qφ(... )
τη(... )

(
M∑
m=1

K∑
k=1

σ(α)m σ(βm)2k(σ(α)m − 2)∇ψmkβmk∇ηψmk +B

)

= E
qφ(... )
τη(... )

M∑
m=1

σ(α)m

(
(σ(α)m−2)

K∑
k=1

σ(βm)2k∇ψmkβmk∇ηψmk+σ(βm)0∇η log τη(ψm0)

)
(10)

We call this gradient estimator IWHVI-DReG. Similar derivations can be made w.r.t. q’s parameters
φ to combat decreasing signal-to-noise ratios identified by Rainforth et al. (2018). We will not
provide them here, as this is outside of the scope of the present work. It’s also straightforward to
derive a similar gradient estimator for ρ’s parameters in case of hierarchical prior p(z), since this
case essentially corresponds to nested IWAE.

D.2 Experiments

To evaluate the (10) gradient estimate we take a slightly trained (for 50 epochs by the usual gradient)
VAE and compare signal-to-noise ratios of different gradients while varying K and M . For each
minibatch we recompute the vanilla autodiff gradients and a doubly reparametrized gradient (10)
100 times to estimate signal-to-noise ratio for each weight. We then average SNRs over different
minibatches of fixed size, and present mean and 90% confidence intervals over different choices of
weight in fig. 3a.

We also compute SNR on a toy task from (Rainforth et al., 2018) for an upper bound (theorem C.1)
on Eq(x) log q(x) for q(x, z) = N (x | z, I)N (z | θ, I) and τη(z | x) = N (z | Ax + b, 2/3) for
θ = [1, . . . , 1], x, z ∈ R10. We first train η = {A, b} to optimality by making 1000 AMSGrad (Reddi
et al., 2018) steps with learning rate 10−2 with batches of 100, then evaluate the gradients 1000
times with batches of size 100. We also include gradients of IWAE (coming from the task of lower
bounding the Eq(x) log q(x)) to compare with. We compute SNR per parameter over these 1000
samples, and present results in fig. 3b.

Best seen in the toy task, SNR of autodiff gradients decreases as K grows, much resembling the
standard IWAE issue, outlined by (Rainforth et al., 2018). IWHVI-DReG solves the problem, but
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Figure 3: Signal-to-Noise Ratio of gradients for different values of K. Solid lines denote SNR
averaged over all model’s parameters, and shaded area marks 90% confidence interval over all
parameters.

only partially. While the SNR is no longer decreasing, it does not increase as in IWAE-DReG. While
detailed study of this phenomena is outside the scope of this work, we show that it’s the second
term (denoted B) in IWHVI-DReG, coming from the ψm0-based term in the bound, that causes the
trouble. Indeed, if we omit this term, the (now biased) estimate would have higher SNR, essentially
approaching the standard IWAE’s one. In practice, we found that the improved gradient estimate
IWHVI-DReG significantly increased DKL(τ(ψ | z) || q(z)), but this resulted in minor increases in
the validation log-likelihood.

E Debiasing the bound

E.1 Deriving the bound

Following (Nowozin, 2018) we argue (lemma E.1) that

UK = E
p(ψ0|z)

E
τ(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

p(z, ψk)

τ(ψk | z)

)
= log p(z) +

∞∑
j=1

γj
(K + 1)j

So UK can be seen as a biased estimator of log marginal density log p(z) with bias of order O(1/K).
We can reduce this bias further by making use of the following fact:

(K + 1)UK −KUK−1 = log p(z)− γ2
K(K + 1)

+O
(

1
K2

)
= log p(z)−

∞∑
j=0

γ2
(K + 1)j+2

+O
(

1
K2

)
= log p(z)− γ2

(K + 1)2
+O

(
1
K2

)
Averaging this identity over all possible choices of a subset of samples from τ(ψ | z) of size K − 1,
we obtain Jackknife-corrected estimator with bias of order O(1/K2). One could then apply the same
procedure again and again to obtain Generalized-order-J-Jackknife-corrected estimator with bias of
order O(1/KJ+1), leading to a J-Jackknife upper log marginal density estimate:

J JK =

J∑
j=0

c(K,J, j)UK−j (11)

Where UK−j is (K − j)-samples bound averaged over all possible choices of a subset of size K − j
from ψ1:K , and c(K,J, j) are Sharot coefficients (Sharot, 1976; Nowozin, 2018):

UK−j =
1(
K
K−j

) ∑
S⊆{1,...,K}:|S|=K−j

log

(
1

K − j + 1

[
p(z, ψ0)

τ(ψ0 | z)
+
∑
k∈S

p(z, ψk)

τ(ψk | z)

])
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c(K,J, j) = (−1)j
(K − j)J

(J − j)!j!

Despite not guaranteed to be an upper bound anymore, we still see that the estimate tends to
overestimate the log marginal density in practice.

Lemma E.1. For fixed p(ψ0 | z), τ(ψ1:K | z) and z there exists a sequence {γk}∞k=1 s.t.

UK = log p(z) +

∞∑
j=1

γj
(K + 1)j

(12)

Proof. First, we note that UK can be represented as log marginal density plus some non-negative
(due to theorem C.1) bias, which we’ll consider in greater detail.

UK = E
p(ψ0|z)
τ(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

p(z, ψk)

τ(ψk | z)

)
= log p(z) +

Bias︷ ︸︸ ︷
E

p(ψ0|z)
τ(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

p(ψk | z)
τ(ψk | z)

)

Denote wk = p(ψk|z)
τ(ψk|z) , w′k = wk − 1 and expand the Bias around 1:

Bias =

∞∑
n=1

(−1)n+1

n
E

p(ψ0|z)
E

τ(ψ1:K |z)

(
1

K+1

K∑
k=0

w′k

)n

=

∞∑
n=1

(−1)n+1

n
E

p(ψ0|z)
E

τ(ψ1:K |z)

(
1

K+1w
′
0 + K

K+1w
′
1:K

)n
=

∞∑
n=1

(−1)n+1

n

n∑
m=0

(
n

m

)
E

p(ψ0|z)

(
w′0
K+1

)m
E

τ(ψ1:K |z)

(
K
K+1w

′
1:K

)n−m
=

∞∑
n=1

(−1)n+1

n

n∑
m=0

(
n

m

)(
1− 1

K+1

)n−m (
1

K+1

)n
E

p(ψ0|z)
(w′0)

m E
τ(ψ1:K |z)

(
w′1:K

)n−m
Where w′1:K = 1

K

∑K
k=1 w

′
k – an empirical average of zero-mean random variables. A. Angelova

(2012) has shown that for a fixed s ∈ N there exist γ(s)1 , . . . , γ
(s)
T s.t.

E
τ(ψ1:K |z)

(
w′1:K

)s
=

T∑
t=1

γ
(s)
t

Kt
=

T∑
t=1

γ
(s)
t

[ ∞∑
n=1

1

(K + 1)n

]t

Therefore every addend in Bias depends on K only through 1/(K + 1), and thus decomposition (12)
holds.

Note on convergence: while we have not shown the presented series to be convergent, in practice we
only care about bias’ asymptotic behaviour up to an order of 1/(K+1)J , for which the decomposition
works as long as the corresponding moments in Bias exist and are finite.

E.2 Experiments

We only perform experimental validation of the Jackknife upper KL estimate (JHVI for short) in the
same setting as in section 6.1. appendix E.2 shows improved performance of the Jackknife-corrected
estimate.
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Figure 4: Negative entropy bound for 50-dimensional Laplace distribution. Shaded area denotes 90%
confidence interval.

F Mutual Information

To estimate the Mutual Information (MI) of qφ(z, ψ|x) with high certainty we rely on the multisample
variational bounds UK and LK . Indeed, the MI can be represented as:

MI[qφ(z, ψ|x)] := E
qφ(z,ψ|x)

log
qφ(z, ψ|x)

qφ(z|x)q(ψ|x)
= E
qφ(z,ψ|x)

[log qφ(z|ψ, x)− log qφ(z|x)]

By applying UK and LK to the log qφ(z|x) term we obtain lower and upper bounds, correspondingly:

E
qφ(z,ψ0|x)
τ(ψ1:K |z,x)

log
qφ(z|ψ0, x)

1
K+1

∑K
k=0

qφ(z,ψk|x)
τ(ψk|x,z)

≤ MI[qφ(z, ψ|x)] ≤ E
qφ(z,ψ0|x)
τ(ψ1:K |z,x)

log
qφ(z|ψ0, x)

1
K

∑K
k=1

qφ(z,ψk|x)
τ(ψk|x,z)

These bounds can be made much tighter than previously known ones (Poole et al., 2018) by training
better variational approximations and using many samples K, and in fact generalize and bridge the
InfoNCE and Barber-Agakov lower bounds. In our evaluation, we used K = 1000. For SIVI models
we fixed parameters θ and φ and trained only τ for 50 epochs on the trainset. While this probably
wasn’t enough to get the network to converge, we have used enough samples K that the difference
between the upper and the lower bounds become smaller than 0.1. The MI bounds were then averaged
over the entire test set. We estimated the standard deviation of both bounds to be smaller than 0.01
for almost all models. The average of two bounds was used as the MI estimate.

G Experiments Details

For MNIST we follow the setup by Mescheder et al. (2017): we use single 32-dimensional stochastic
layer with p(z) = N (z | 0, I) prior, decoder pθ(x | z) = Bernoulli(x | πθ(z)) where πθ is a neural
network with two hidden 300-neurons layers and a softplus nonlinearity 6, and latent variable model
encoder qφ(z | x) =

∫
N (z | µφ(x, ψ), σ2

φ(x, ψ))N (ψ | 0, 1)dψ where µφ(x, ψ) and σ2
φ(x, ψ) are

outputs of a neural network with architecture similar to as that of the decoder, except each next
layer (including the one that generates distribution’s parameters) acts on previous layer’s output
concatenated with input ψ. We take τϑ(ψ | z, x) = N (ψ | νϑ(x, z), ς2ϑ(x, z)) where mean and
variance are outputs of another neural network with same network architecture as that of the decoder,
except it takes concatenation of x and z as input.

For OMNIGLOT we used simiar architecture, but for 50-dimensional z and ψ, and all hidden layers
had 200 neurons.

For flow-based models we used their implementations from TensorFlow Probability (Dillon et al.,
2017a). We had the encoder network output not only µ and σ, but also a context vector h of same
size as z to be used to condition the flow transformations.

6This is the nonlinearity used in Mescheder et al. (2017)’s code for fully-connected experiments.
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For IWHVI we used a grid search over 1) whether to use IWHVI-DReG (10), 2) whether to do inner
KL (the log q(ψ)

τ(ψ|x,z) terms) warm-up (linearly increase its weight from 0 to 1) for the first 300 epochs,

3) whether to do outer KL warmup (the log p(z)
1

K+1
∑
...

term) for the first 300 epochs, 4) Either use

learning rate ηbase = 10−3 with annealing η = 0.95epoch/100ηbase or η = 10−4 without annealing. We
used the same grid for SIVI, except options (1) and (2) had no effect, since they only influenced τ ,
and thus we did not perform search over them. For HVM only the option (1) had no effect, since
HVM does not sample from τ .

In all cases using IWHVI-DReG proved beneficial, the optimal learning rate turned out to be 0.001
and outer KL warmup was useful. The inner KL warmup didn’t affect the results significantly.

In all experiments we did 10, 000 epochs with batches of size 256 and used Adam (Kingma and
Ba, 2014) optimizer with β1 = 0.9, β2 = 0.999. We held out 5, 000 examples from trainsets to be
used as validation. The data was dynamically binarized by sampling each pixel as Bernoulli random
variable with the probability of success being equal to the pixel’s intensity.
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