Supplementary for

Learning in Generalized

Linear Contextual Bandits with Stochastic Delays

A Table of Parameters

Notation | Definition
K | number of arms
d | feature dimension
i | mf ey <a fo-e-<1y 9(2'0)
0* | unknown parameter in GLCB model
o | sub-Gaussian parameter for noise ¢,
L, | upper bound on g
M, | upper bound on g
og | lower bound on Ay, (E[+ D ac(k] Ttatia))
¢p | tail-envelope distribution for the delays
q | parameter to characterize the tail-envelope distribution £p
p | expectation of the tail-envelope distribution &p
Mp | parameter of £p
op | parameter of &p
og | sub-Gaussian parameter of G,
iy | expectation of iid delays
D, a0z | upper bound on bounded delays

Table 2: Parameters in the GLCB model with delays.

B Auxiliary Results

Theorem 8 (Maximum over a finite set, Wainwright (2019)). Let X1, --- , X,, be centered o-sub-

Gaussian random variables. (i.e. Elexp(AX;)] < exp (’\22"2> ). Then,

and

E ( max X,») < o+/2log(n),

1<i<n

E ( max |Xi> < o+/2log(2n).

1<i<n

Moreover, for any t > 0,

and

t2
. < _
]P)(llélzagxn X; >t) <exp < 552 + log n> ,

2
. < JE— .
P(lrggﬁxn X > 1) < 2exp ( 202 +log n)

Note that the random variables in Theorem 8 need not be independent.
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Theorem 9 ( Sub-Gaussian parameter for centered indicator random variables, Ostrovsky and Sirota
(2014) ). Let p € [0,1] and let ) be a centered random variable such that P(n = 1 — p) = p and
P(np=—p) =1—p, then

Elexp(\)] < exp(A*Q(p)),

_ _1-2p
where Q(p) = Tos(2)"
Theorem 10 (Hoeffding Bound, Wainwright (2019)). Let X, -, X,, be independent random
variables. Assume X; has mean ; and sub-Gaussian parameter ;. Then for all t > 0, we have

(Sm= ) o (- )

i=1
C Maximum Likelihood Estimators (MLEs).

We use data with timestamps in 7} to construct the MLE. Suppose we have independent samples of
{Ys : s € Ti} condition on { X : s € T;}. The log-likelihood function of 6 under (1) is

Y.X10 — m(X10
logl (0| Ty) = Z[ v()( )+B(Ys,n)}
seTy n
= Z [YsX.0 — m(X.0)] + constant.
U(n) seTy

Therefore, the MLE can be defined as
N / /
0; € arg max ZT [Ys X 0 —m(X.0)].
sely

Since m is differentiable with m > 0, the MLE can be written as the solution of the following
equation
> (Ve —g(X0) X, =0, (12)
seTy
which is the estimator we use in Step 4 of Algorithm 1.
Note that, the general GLCB, a semi-parametric version of the GLM, is obtained by assuming only
that E[Y|X] = g(X'0*) (see (2)) without further assumptions on the conditional distribution of
Y given X. In this case, the estimator obtained by solving (12) is referred to as the maximum
quasi-likelihood estimator. It is well-documented that this estimator is consistent under very general

assumptions as long as matrix ) XX/ tends to infinity as ¢ — oo (Chen et al. (1999); Filippi

seTy
et al. (2010)).

D Missing Proofs

In this section, we provide the proofs of Propostion 1, Theorem 2, Proposition 4, Lemma 6, Lemma 7
and Theorem 5.

Proof of Proposition 1. Now let us prove the three properties in Proposition 1.

Property 1. Let Dk,; be a random variable such that Dk,; > —(up + Mp) almost surely, E[Dk] <0
and ]P’(f)ki > 1) <exp (— it

2
207,

) for x > 0. One can view f)ki as a shifted delay.

Define I; =1 (Dk > z) —p; withp; = P(bki > ). Then P (1:1 =1 fpi) = p; and IP’(L =p;) =

1—-2p;

1 — p;. Denote 0; = Too—, it is easy to verify that
215 (571

i o2)2
Eexp ()\Ii) = piexp(AM1 —p;)) + (1 — p;) exp(—piA) < exp ( 12 ) .
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Therefore I; is sub-Gaussian with parameter o;. (Also see Theorem 9.)

We first show that when ¢ > max { /9 10g(2)0123, af 29D + 1} := I, the following two facts

14q
hold:

13)

ittae (z — 1)1+q
d — | — -~ > 1. 14
an exp (20123> exp ( 20% ) > (14)

The first inequality holds by Assumption 2 and second inequality holds by simple calculation.

e Define h(x) = exp (g:;q> with ¢ > 0, which is differentiable. By Mean Value Theorem,
D

207,
for some z € (i — 1,4), we have

h(z) — h(y) = exp (%) %(m —y) for some z € (z,y). Takex =i —land y = 1,

ilta (i —1)t+e 21N (14 q)2¢
exp| —5 | —exp | ——— = ex —
P\ 202 P\ 202 P\202 ) 202
1 q 1 , — 1)9
( +g)z > +q)(; ' o1 as)
207 207
. . . . . 0.2
The last inequality in (15) holds since ¢ > /5 =T 1.
Given (13)-(14), when ¢ > I and q > 0,
o? = 1_fpi < 11 (16)
—Pi —Pi
210g< o ) 210g< o )
2
9D
1) 17)

2 2 D
g o; = E < E E
i=1 i=I 210g (1;7%) i=1 2 IOg (1;337) 1=I—1 it
=1 > ] o2 (1+q)
2 2 _ YD
< “D(”ZM)S"D(”/I ) =7

2
Itis easy to check that 02 = 211% < lforallp; € [0,1]. Therefore, Y 02 < i[—i—w.
Pq
Define G = Zf; INi. combining above result with Theorem 10, G is sub-Gaussian with parameter
I, o5(+q)

og = . Similarly, we can show that G, = 27;:1 I; is sub-Gaussian with parameter

1
oG = \/ﬁ—i— U%%ﬂ) foranyt=1,2,--- ,T.
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Recall Gy = Y"1 I(Dy > t—s). Whent < up+Mp—1,Gy < up+Mp. Whent > pup+Mp—1,
specifying k; =t — (up + Mp) —iand Dy, = D; — up — Mp,

t—1
G = Y I(Dy>t—s)
s=1

t—pup—Mp—1 t—1
= Y IDizt—s)+ Y. IDs>=t-s)
s=1 s=t—up—Mp
t—1 t—up—Mp—1
= > IDizt-s)+ Y. I(Ds—pp—Mp>t—s—pup—Mp)
s=t—up—Mp s=1

t—up—Mp—1

< wup+Mp+ Z I(Ds —pup —Mp >t—s—up — Mp)
s=1
t—up—Mp—1
= wo+Mp+ Y D (upiap)—i —pp—Mp >i) (i=t—s—pp—Mp)
i=1
t—up—Mp—1
= pp+Mp+ Z I(Dy, > 1)
i=1
Hence,

Gy

IA
=
)
r
Y
|
S
_|_
3
+
=
S
_|_
S

t—pup—Mp—1
< pp+Mp+ > L+ (up+ Mp)

i=1
= ét—uD—MD—l +2(pup + Mp) (18)

Therefore, we arrive at G; < ét—uD—MD—l + 2(up + Mp) with specific choice of k; = t — (up +
MD) —iandei = Dz — UD —MD.

Given the fact that E[ét] = (0 and G’t is sub-Gaussian with parameter o, G satisfies

2
P(Gy > 2(up + Mp) + ) < exp (%‘TZ) . (19)
G

Property 2. Further define G = max;<;<7{G;} as the running maximum of correlated sub-
exponentials G; up to time 7', from Theorem 8, we have

E[G}] < ogy/2logT.
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By the union bound,

i]?(@t > oa 210gT+33)

P (G% >oa 210gT—|—m) <
t=1
V2logT 2
= Tow <_(0G 2(f2 = )
G
x? 2zog+/2logT
= Texp|———5 — ————5—— —logT
202 202
G el
z? 2xogy/2logT
= e S . A=
P 20% 20%
<

2
exp|—=—5 .
P 202,
Therefore, with probability 1 — ¢,

G < og\/21og(T) + ocy/2log (;)

Recall that G = maxi<i<7 G¢. When T < up + Mp — 1, G < pp + Mp. When T' >
pup + Mp — 1, specifying k; = T — (up + Mp) — i and Dy, = Dy, — p — M, we have

G < G+ 2(up + Mp).
The derivation is similar to the analysis in (18).

Therefore, with probability 1 — §, we have

1
G <2(up + Mp) + og/21og(T) + ocy/2log (5>

Property 3. Given a fixed G; (¢t = 1,2,---,T), from Vershynin (2010) and Li et al. (2017),
Amin (W) > B with probability 1 — §, when

2
C1Vd + Coy/log(3) 9B . ,
> .
t> (%) + WG + Gy (20)

Combining above with (19), we have the desired result.

O

Proof of Theorem 2. We first bound the one-step regret. To do so, fix ¢ and let X; = zy,; and

Ay = 0, — 0%, where a} = arg max,e(x] #(7y ,0") is an optimal action at round ¢. The selection of
a+ in DUCB-GLCB implies

(X7, 00) + Bel X Iy < (X, 0e) + Bell Xelly -
Then we have
(X7,0%) — (X4, 0%) = (X) — Xy, 0,) — (X} — Xy, 0, — 07) (1)
BulllXelly - — X7 ) + X7 = Xilly i llAlv. 22)

Therefore, to bound (X}, 0*) — (X, 0*), it suffices to bound ||A||y, and ”Xt”\/,‘l-

IN

Suppose Amin (Wr41) > 1, forany 6 € [%, 1) define event

En = {||A|Wt < Z\/‘; log (1 + W) +log (;) } :
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From Lemma 2 in (Li et al. (2017)), then event Ea holds for all ¢ > 7 with probability at least 1 — J.

IAdly, = AViA, =4 (Wt+ > szg> A

seM,
= AWA+ Y AIXXA,

seM,

< AWA+ Y IAPIX)
seM,

< AUy, + Gell Al

When Apin (W7) > 16022°2G)  from Lemma 7 in (Li et al. (2017)), with probability 1 — 4,

d+1log(3)
A < —00 <.
1A < — o (V) =

Therefore, when Amin (W7) > 1602 225G with probability 1 — 24,

2 /d 2(t— G 1
1Ay, < \/" (Groe (142555 ) v10e (5) ) + o
d 2(t — Gy
< Z\/210g<1—|—( y ))+lg< )+\/ (23)

Let us come back to the satisfaction of conditions A, (Wy) > 160 2% and A\pin(Wry1) > 1.
From Proposition 1, Apin(W;) > max {1, 1602 d+l:§( 5) } with probablhty 1 — 28, when

2
. C1Vd + Cayflog(1) 2 max{1, 1602 28 ) Y 1o [ ! o
> o) + o) +2(up + Mp) + o¢ og <5) =7.(24)

We now choose 3; = \/d log (1 4 2= G')) + log(%) + /Gy If & holds for all t > 7, then,

(X7,07) = (X0,0%) < B (1Kl = 1 llys + 17 = Xl ) - (25)

Suppose there is an integer m such that Ay (Vi41) > 1, from Lemma 2 in Li et al. (2017), we have

m—+n ner
> Xy < \/2dnlog< y > (26)

t=m+1

for all n > 0. Combine (25) and (26), we have

- x )k % T
tz;l((Xt,G ) — (X, 0%)) < 2@1@){#&}%

A\

o |d 2T 1 T
< — — - — * _
< Q[H\/2log<1—|— d>+log(6>—|—\/GT 2leog<d>

T 2do T
< * — -
< 2,/G; 2leog<d)+ lo (d6>\/T
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Note that g is an increasing Lipschitz function with Lipschitz constant L, and the g function is
bounded between 0 and 1. The regret of algorithm DUCB-GLCB can be upper bounded as

T
Rr < 74+1Lg » ((X[,07) = (X;,60%))
t=7+1

T+ L, (2,/G*T 2Td log (5) 20 10 (;) ﬁ) : (27)

Combining with the results in (6), (23) and (24), with probability 1 — 54,
1\ T
2 <\/2(,uD + Mp) + oa(2log(T)Y* + \/og (2 log (6)) ) 2Tdlog (d)

() 1]

/4
/ T
4/ pup + Mp leog —1—27/4\/ log< )) dlog (d)T

+ 274 Jog (log (T))V* dlog(d>T+2d“1 (T)ﬁ .

IN

Rt

IN

T+ Ly

T4+ Ly

dé

O
Proof of Proposition 4. When there exists an upper bound D;,,,x on the delay, Proposition 1 can be
improved as follows.

Then there exist positive, universal constants C; and Cy such that A\,;, (W;) > B with probability at
least 1 — ¢, as long as

2
C1Vd + Cy /log(%) 2B,
t> max-
o )\min(z) + )\min(z) +

Along with the fact that event (23) holds for all ¢ > 7 with probability at least 1 — 2§, we have with
probability 1 — 34,

QN <7+1L, <2\/Dmax 2Td log (Z;) 2do = log (T> ﬁ) .

do

That is, O(Rr) = O(V/Dumax+/dT log(T) + dv/'T log(T))
When {D;}!_, are iid with mean p./,

t—1 t—1
E[G] = ED I(s+Dy>t)]=Y P(s+ D, >1t) < i,
s=1 s=1
—1
VIGy] = I(s 4+ Dy > t)] <Z]P>s+D > 1) < .
s=1 s=1

Therefore, with probability 1 — 54,

T 1 1/4 T
/ - 7/4 - -
41//¢D’/leog( )—1—2 Voa <log (5>> dlog( )T

+ 27/% /56 (log (T))l/4 dlog <§> T+ Qd—U log <§(;> VT .

Q) < r+1I,
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Proof of Lemma 6. Define

_ T A—1
St,a =/ Ty oAy Tra € Ry

Bt = [xz‘,a.,]TE‘I’t GR‘\IJt‘Xd
C, = [(D;+7<t—1)aT, Jrecw, € RITIxd
Zt = [yT,aT}TE\Pt S Rl\pt‘X1~

Then A; = I; + B! B; and ¢; = CtT Zy. (Note that A; and ¢; are defined in Algorithm 2.)
Jta = Tpo0" = @0 — 07

= 2} ,A; e — 2, A (1o + B, By)6*
= 2, ,A;'CiZ, — x} , A7 (0" + B,B,6")
= 2, ,A7'Bj(Z — B0*) + x; AN (CL — By)' Zy — wy JA; 0"

Since ||0|| < 1,

(Gt = 21007| < J2] 0 AT By (Ze = BoO)| + Nt o AT I(Ce = B Zul + Nl o A0
Due to the statistical independence of samples indexed in ¥;, we have E[Z; — B;0*] = 0. Denote

a= % In (%), following the analysis in (Chu et al., 2011, Lemma 1), we have

2a%s?
P(|a) A7 BI(Zy — Bb*)| > @spq) < 2ex T he ) < 9exp (—2a?) = —,
(I t,aflt (2t 10| ta) < p ||BtAt_1$t,a||2 > p( ) TK

and [[A; "0l| < st

Further notice that || (B; — C})'Z|| < G;. Combining above facts, we arrive at the desired result. [
Proof of Lemma 7. By Lemma 3 in Chu et al. (2011), for any s € [S],

Z Sra, < 5\/d|\11%+1| log (W5 44]-

TeWT

Hence,

§ Wr, a, - E QrSroa,

7'6\113Url TE‘I’}Jrl

< 5(a+ Gh o+ 1) /AW, log | W,
< 5vV2a(a+ Gy +1)y/dYs, ] (28)

(28) holds since v/2a > /logT > ,/log |W5., 1] On the other hand, by Step 13 of Algorithm 3
(SupLinUCB) in Chu et al. (2011),

Z wT,aT Z 2_S|\Il§1+1|‘ (29)

TE\I/}+1

Therefore,

|5 4| < 2°5v2a(a + G + 1), /d| ¥, |
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Sketch proof of Theorem 5. Denote @0 be the set of trails for which an alternative is chosen in step
7-8 of Algorithm 3. Since 2~ < \F we have {1,2,--- , T} = &y U, ®5. ;.

M=

E Ry [E< X/,0" > -E < X;,0" >]
t=1
S
= Y E<X/,0">-E<X,0">]+> > [E<X;,0"°>-E<X,0" >
tedo s=1teds,
9 S
< f\q’o|+28 277 |0 | (30)
s=1
< \(I)o|+Z4O a(Gp+a+1))/d o5 | (31
< 2f+40(fa(GT+a+1)NSTd (32)

with probability 1 — 4.5. (30) holds by (Auer, 2002, Lemma 15) or (Chu et al., 2011, Lemma 5), (31)
holds by Lemma 7, and (32) holds by some simple calculations.

Apply the Azuma-Hoeffding bound (Auer, 2002, Lemma 8) with oo, = 2 and B = 4,/T log (%)
have

Ry < 2VT + 46 (\@a(G; va+ 1)) VST, (33)

with probability 1 —6(S +1). Recall that & = W Replacing § by 6/(S + 1), substituting
S = log(T'), and combining with the result in (6) yields

Ry < T + 46+/log(T (xf\/ 2TK( logé(T) * U) (2(up + Mp)

- agm+gg\/210g <§>+\/;10g(2TK(1o%(T)+1))H))

with probability 1 — 24. O
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