
Proof of Lemma 1. Consider Problem (21)-(23), with the objective function replaced by∑
i∈S+ (1− Fi) +

∑
i∈S− Fi. Here, the vector v is fixed. Since Fi ∈ [0, 1] for all i ∈ {1, . . . , n},

Fi − Fj ∈ [−1, 1]. The left side of Constraint (22) takes value in {0, 1, . . . , s}. Therefore, the
constraint is tight only when the left side is equal to 0. Therefore, we only require that for (i, j) such
that

∑d
k=1 q(i, j, k)vk = 0, it holds that Fi ≤ Fj . Let ε = min {minFi>0{Fi},minFi<1{1− Fi}}.

In other words, ε is the margin to the endpoints of [0, 1]. Suppose that F is an optimal solution with
some values Fi ∈ (0, 1). Then ε > 0. Let C = {i : Fi ∈ (0, 1)}. Consider adding ε to each Fi such
that i ∈ C, and call the new solution F+ε. Clearly, F+ε is feasible. The change in the objective is
equal to ∑

i∈S+

(
1− F+ε

i

)
+
∑
i∈S−

F+ε
i −

∑
i∈S+

(1− Fi)−
∑
i∈S−

Fi

= ε
(∣∣{i : i ∈ C, i ∈ S−

}∣∣− ∣∣{i : i ∈ C, i ∈ S+
}∣∣)

On the other hand, consider subtracting ε from each Fi such that i ∈ C, and call the new so-
lution F−ε. By construction, F−ε is also feasible. The chance in the objective is equal to
ε (|{i : i ∈ C, i ∈ S+}| − |{i : i ∈ C, i ∈ S−}|). Since we have assumed that F is an optimal solu-
tion, both changes must be nonnegative. Since they are negations of each other, they must both be
equal to zero. Therefore, the solutions F+ε and F−ε have the same objective value as the solution F .
If ε = minFi>0{Fi}, choose F−ε, and if ε = minFi<1{1− Fi}, choose F+ε. This leads to the size
of the set C decreasing by at least one. Repeating this process inductively, we eventually produce a
solution with C = ∅. Therefore, we have shown that there always exists an integer optimal solution.

We have shown that for fixed v, there always exists an integer optimal solution. Furthermore, the
process of converting an optimal solution into an integer optimal solution runs in polynomial time.
Varying v, it also holds that the optimal solutions to Problem (5)-(9) remains the same. The same
procedure applies to convert an optimal solution into an integer optimal solution in polynomial
time.

A Results on the Noisy Input Model

Recall the Noisy Input Model: Y = f(X +W ), where f is an s-sparse coordinate-wise monotone
function with active coordinates A. We assume throughout this section that X is a uniform random
variable on [0, 1]d, W is a zero-mean random variable independent from X with independent
coordinates, and f : Rd → {0, 1}.
In this section, we prove the statistical consistency of Two-Stage Isotonic Regression, with Sequential
Linear Programming Support Recovery as the support recovery algorithm. In Subsection A.1 we
consider the setting where the set of active coordinates is known, and provide an upper bound on the
resulting L2-norm error of our estimator. In Subsection A.2 we provide a guarantee on the probability
of correctly estimating the support, using S-LPSR. These results are combined to give Corollary 7,
stated at the end of the section. As a special case of the corollary, if s is constant and the sequence of
functions {fd} extends a function of s variables, and n = ω(log(d)) samples are used by TSIR, then
the estimator f̂n that is produced is consistent.

A.1 Statistical consistency

Suppose that the set of active coordinates, A, is known. Then we can apply Problem (21)-(23) within
Algorithm 4 to estimate the function values, with the variables vi that indicate the active coordinates
set to 1 if i ∈ A, and set to 0 otherwise. The coordinates outside the active set do not influence the
solution of the optimization problem, and therefore do not affect the estimated function. Therefore,
the setting where A is known is equivalent to the non-sparse setting with dimension d = s.

We investigate the regime under which Problem (21)-(23) produces a consistent estimator, in the non-
sparse setting (d = s). To state our guarantees, it is convenient to represent binary coordinate-wise
monotone functions in terms of monotone partitions.
Definition 5 (Monotone Partition). We say that (S0, S1) is a monotone partition of Rd if

1. S0 and S1 form a partition of Rd. That is, S0 ∪ S1 = Rd and S0 ∩ S1 = ∅.
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2. For all x, y ∈ Rd, if x � y, then either (i) x, y ∈ S0, (ii) x, y ∈ S1, or (iii) x ∈ S0, y ∈ S1.

LetMd be the set of all monotone partitions of Rd.

Note that there is a one-to-one correspondence between monotone partitions and binary coordinate-
wise monotone functions.

Let Y = f(X + W ) represent our model, with d = s, and with f corresponding to a monotone
partition (S?0 , S

?
1 ). That is, f(x) = 0 for x ∈ S?0 and f(x) = 1 for x ∈ S?1 . Let h0(x) be the

probability density function of X , conditional on Y = 0. Similarly, let h1(x) be the probability
density function of X , conditional on Y = 1. For (S0, S1) ∈Md, let

H0(S1) =

∫
z∈S1

h0(z)dz and H1(S0) =

∫
z∈S0

h1(z)dz.

Finally, let p be the probability that Y = 0. Let

q(S0, S1) , pH0(S1) + (1− p)H1(S0).

The value of q(S0, S1) is the probability of misclassification, under the monotone partition (S0, S1).
Assumption 2. We assume that q has a unique minimizer onMd, which is (S?0 , S

?
1 ).

Definition 6 (Discrepancy). For two monotone partitions (S0, S1) and (S′0, S
′
1), the discrepancy

function D :Md ×Md → [0, 1] is defined as follows.

D ((S0, S1), (S′0, S
′
1)) , P (X ∈ S0 ∩ S′1) + P (X ∈ S′0 ∩ S1)

Also let
Bδ (S?0 , S

?
1 ) , {(S0, S1) ∈Md : D ((S0, S1), (S?0 , S

?
1 )) ≤ δ}

be the set of monotone partitions with discrepancy at most δ from (S?0 , S
?
1 ).

Theorem 3. Let d = s. Suppose Assumption 2 holds, and the components of W are independent.
Let f̂n be the estimator derived from Algorithm 1, and let

qmin(δ) , min {q(S0, S1) : (S0, S1) 6∈ Bδ(S?0 , S?1 )} > q(S?0 , S
?
1 ).

Then for any 0 < δ ≤ 1,

P
(
‖f̂n − f‖2 > δ

)
≤

exp
[
(2s + 2 log(2)− 1)n

s−1
s

]
exp

[
n

2s−1
2s

] +
(

exp
[
n

2s−1
2s

]
+ 1
)

exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
n

36

)
.

Corollary 4. Suppose that qmin (δ) − q (S?0 , S
?
1 ) = Θ(1), that is, constant in s. When d = s and

n = eω(s2), the estimator f̂n produced by Algorithm 1 is consistent.

Theorem 3 has an analogous version in the sparse setting (s < d). First we need some definitions,
similar to those that precede Theorem 3. We write x =A y if x �A y and x �A y.
Definition 7 (s-Sparse Monotone Partition). We say that (S0, S1) is an s-sparse monotone partition
of Rd if

1. S0 and S1 form a partition of Rd. That is, S0 ∪ S1 = Rd and S0 ∩ S1 = ∅.

2. There exists a set A ⊂ [d] such that for all x, y ∈ Rd, if x �A y, then either (i) x, y ∈ S0,
(ii) x, y ∈ S1, or (iii) x ∈ S0, y ∈ S1. Note that this implies that if x =A y, then either
x, y ∈ S0 or x, y ∈ S1.

LetMs,d be the set of all s-sparse monotone partitions of Rd.

Note that there is a one-to-one correspondence between monotone partitions and s-sparse binary
coordinate-wise monotone functions.

Let Y = f(X + W ) represent our model, with d < s, and with f corresponding to an s-sparse
monotone partition (S?0 , S

?
1 ). That is, f(x) = 0 for x ∈ S?0 and f(x) = 1 for x ∈ S?1 . Let h0(x) be

13



the probability density function of X , conditional on Y = 0. Similarly, let h1(x) be the probability
density function of X , conditional on Y = 1. For (S0, S1) ∈Ms,d, let

H0(S1) =

∫
z∈S1

h0(z)dz and H1(S0) =

∫
z∈S0

h1(z)dz.

Finally, let p be the probability that Y = 0. Let

q(S0, S1) , pH0(S1) + (1− p)H1(S0).

The value of q(S0, S1) is the probability of misclassification, under the s-sparse monotone partition
(S0, S1).
Assumption 3. We assume that q has a unique minimizer onMs,d, which is (S?0 , S

?
1 ).

Definition 8 (Discrepancy). For two s-sparse monotone partitions (S0, S1) and (S′0, S
′
1), the dis-

crepancy function D :Ms,d ×Ms,d → [0, 1] is defined as follows.

D ((S0, S1), (S′0, S
′
1)) , P (X ∈ S0 ∩ S′1) + P (X ∈ S′0 ∩ S1)

Also let
Bsδ (S?0 , S

?
1 ) , {(S0, S1) ∈Ms,d : D ((S0, S1), (S?0 , S

?
1 )) ≤ δ}

be the set of s-sparse monotone partitions with discrepancy at most δ from (S?0 , S
?
1 ).

Theorem 4. Suppose Assumption 3 holds, and the components of W are independent. Let f̂n be the
estimator derived from Algorithm 1 and let

qmin(δ) , min {q(S0, S1) : (S0, S1) 6∈ Bsδ(S?0 , S?1 )} > q(S?0 , S
?
1 )}.

Then for any 0 < δ ≤ 1,

P
(
‖f̂n − f‖2 > δ

)
≤

exp
[
(2s + 2 log(2)− 1)n

s−1
s

]
exp

[
n

2s−1
2s

] +

((
d

s

)
exp

[
n

2s−1
2s

]
+ 1

)
exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
n

36

)
.

Theorem 3 allows us to state the following corollary regarding the IPIR algorithm.
Corollary 5. Suppose s is constant and the sequence of functions {fd} extends a function of s
variables. Let f̂n be the estimator produced by Algorithm 1. If n = ω(log(d)), then f̂n is a consistent
estimator.

A.2 Support recovery

In this subsection, we give support recovery guarantees for Algorithm 3’. The guarantees will be in
terms of differences of probabilities.
Definition 9. Let Y1 = f(X1 +W1) and Y2 = f(X2 +W2) be two independent samples from the
model. For k ∈ A, define

pk , P (Y1 = 1, Y2 = 0 | q(1, 2, k) = 1)− P (Y1 = 0, Y2 = 1 | q(1, 2, k) = 1) .

Assume without loss of generality that A = {1, . . . , s} and p1 ≤ p2 ≤ · · · ≤ ps.
Lemma 3. For all k ∈ A, it holds that pk > 0.
Theorem 5. Let B be the set of indices corresponding to running Algorithm 3’ using n samples.
Then it holds that B = A with probability at least

1− ds exp

(
− p2

1n

64s3

)
.

We can now give a guarantee of the success of Algorithm 4, using Algorithm 3 for support recovery.
Corollary 6. Assume that p1 = Θ(1). Let n be the number of samples used by Algorithm 3’. If
n = ω(s3 log(d)), then Algorithm 3’ recovers the true support w.h.p. as n→∞.
Corollary 7. Suppose that qmin (δ)− q (S?0 , S

?
1 ) = Θ(1). Suppose also that p1 = Θ(1), and that the

components of W are independent. Consider running Algorithm 4 using n samples for sequential
support recovery. Let m = n

s . Consider using an additional m samples for function value estimation,
so that the total number of samples is n+m. Let f̂n+m be the estimated function. If n = ω(s3 log(d))

and n = seω(s2), then f̂n+m is a consistent estimator.
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B Proofs for the Noisy Output Model

We will build toward a proof of Theorem 1. We note that Algorithm 1 selects an s-sparse
coordinate-wise monotone function that minimizes the empirical L2 loss. To prove the statis-
tical consistency of the estimated function, we need to introduce the expected VC dimension
([24]). Let Fs,d be the set of s-sparse coordinate-wise monotone functions on [0, 1]d. Fol-
lowing [11], let Q(x, y, f) = (y − f(x))

2 for x ∈ [0, 1]d, y ∈ R, and f ∈ Fs,d. For
a fixed sequence (x1, y1), . . . , (xn, yn) ∈ [0, 1]d × [0, 1], consider the set of vectors Q =
{(Q(x1, y1, f), . . . , Q(xn, yn, f)) , f ∈ Fs,d}. In other words, we vary over Fs,d and produce
the associated error vectors. Let N (ε,Fs,d, (x1, y1), . . . , (xn, yn)) be the size of the minimal ε-net
of the set Q. Namely, a set E is an ε-net for Q if for every q ∈ Q there exists v ∈ E such that
‖q − v‖∞ ≤ ε. For any ε > 0, the expected VC entropy of Fs is defined as

NFs,d(ε, n) = E [N (ε,Fs,d, (X1, Y1), . . . , (Xn, Yn))] .

The expectation is over the random variables (Xi, Yi). The expected VC entropy measures the
complexity of the class Fs,d, and can be used to prove convergence in L2.

The following proposition follows from Corollary 1 (pp. 45) of [14].
Proposition 1.

P

(
sup

f̂∈Fs,d

∣∣∣∣∣
∫
Q(x, y, f̂)dF (x, y)− 1

n

n∑
i=1

Q(Xi, Yi, f̂)

∣∣∣∣∣ > ε

)
≤ 4NFs,d

( ε

16
, n
)

exp

(
− ε

2n

128

)
.

Proposition 2. If Y = f(X) +W ∈ [0, 1] almost surely, then

P
(
‖f̂n − f‖2 > ε

)
≤ 8NFs,d

(
ε2

32
, n

)
exp

(
− ε

4n

512

)
.

Proof. Equivalently, we show

P
(
‖f̂n − f‖22 > ε

)
≤ 8NFs,d

( ε

32
, n
)

exp

(
− ε

2n

512

)
.

As shown by [12],

‖f̂n − f‖22 =

∫
Q(x, y, f̂n)dF (x, y)−

∫
Q(x, y, f)dF (x, y).

Therefore,

P
(
‖f̂n − f‖22 > ε

)
= P

(∫
Q(x, y, f̂n)dF (x, y)−

∫
Q(x, y, f)dF (x, y) > ε

)
.

By optimality of f̂n, it holds that
∑n
i=1Q(Xi, Yi, f)−

∑n
i=1Q(Xi, Yi, f̂n) ≥ 0. We therefore have

P
(
‖f̂n − f‖22 > ε

)
≤ P

(∫
Q(x, y, f̂n)dF (x, y)−

n∑
i=1

Q(Xi, Yi, f̂n) +

n∑
i=1

Q(Xi, Yi, f)−
∫
Q(x, y, f)dF (x, y) > ε

)
.

Grouping the first two terms and the last two terms, we obtain by the Union Bound,

P
(
‖f̂n − f‖22 > ε

)
≤ P

(∫
Q(x, y, f̂n)dF (x, y)−

n∑
i=1

Q(Xi, Yi, f̂n) >
ε

2

)

+ P

(
n∑
i=1

Q(Xi, Yi, f)−
∫
Q(x, y, f)dF (x, y) >

ε

2

)

≤ P

(∣∣∣∣∣
∫
Q(x, y, f̂n)dF (x, y)−

n∑
i=1

Q(Xi, Yi, f̂n)

∣∣∣∣∣ > ε

2

)
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+ P

(∣∣∣∣∣
n∑
i=1

Q(Xi, Yi, f)−
∫
Q(x, y, f)dF (x, y)

∣∣∣∣∣ > ε

2

)

≤ 2P

(
sup

f̂∈Fs,d

∣∣∣∣∣
∫
Q(x, y, f̂)dF (x, y)−

n∑
i=1

Q(Xi, Yi, f̂)

∣∣∣∣∣ > ε

2

)

≤ 8NFs,d

( ε

32
, n
)

exp

(
− ε

2n

512

)
,

where the last inequality follows from Proposition 1.

Therefore, if the expected VC entropy of Fs,d grows subexponentially in n, the estimator f̂n derived
from Algorithm 1 converges to the true function in L2. Define the non-sparse class Fd = Fd,d.

Proposition 3. NFs,d(ε, n) ≤
(
d
s

)
NFs(ε, n).

Proof. The set Fs,d can be written as a union of
(
d
s

)
function classes, depending on which subset of

the coordinates is active.

Our goal is now to bound the expected VC entropy of the class Fd. The expected VC entropy is
related to a combinatorial quantity known as the labeling number.
Definition 10 (Labeling Number ([11])). For a sequence of points x1, . . . , xn ∈ [0, 1]d and a positive
integer m, the labeling number L(m,x1, . . . , xn) is the number of functions φ : {x1, . . . , xn} →
{1, 2, . . . ,m} such that φ(Xi) ≤ φ(Xj) whenever xi � xj , for i, j ∈ {1, . . . , n}.
Proposition 4. For any (x1, y1), . . . , (xn, yn) ∈ [0, 1]d × [0, 1],

N (ε,Fd, (x1, y1), . . . , (xn, yn)) ≤ L
(⌈

2

ε

⌉
, x1, . . . , xn

)
.

Let Fd be the set of coordinate-wise monotone functions f : [0, 1]d → {0, 1}. Then

N
(
ε,Fd, (x1, y1), . . . , (xn, yn)

)
≥ L

(⌊√
3

2ε

⌋
− 3, x1, . . . , xn

)
.

Proof. For the lower bound, let δ =
√

2ε
3 , and letN =

⌊
1
δ

⌋
−3. Define the sequence qi = δ(i+1), for

i ∈ {1, . . . , N}. The monotone labelings supported on {q1, . . . , qN} are a subset of the coordinate-
wise monotone functions. Our goal is to show that for every two distinct labelings l1 and l2, it holds
that

‖ (Q(x1, y1, l1), . . . , Q(xn, yn, l1)) , (Q(x1, y1, l2), . . . , Q(xn, yn, l2)) ‖∞ > 2ε.

If this relation holds for all distinct pairs of labelings, then at least L(N, x1, x2, . . . , xn) points are
required to form an ε-net of the set Q.

If l1 and l2 are distinct labelings, then there exists k ∈ {1, . . . , n} such that l1(xk) 6= l2(xk).
Therefore,

|Q(xk, yk, l1)−Q(xk, yk, l2)| =
∣∣(l1(xk)− yk)2 − (l2(xk)− yk)2

∣∣
=
∣∣l1(xk)2 − 2ykl1(xk) + 2ykl2(xk)− l2(xk)2

∣∣
= |2yk (l1(xk)− l2(xk)) + (l1(xk)− l2(xk)) (l1(xk) + l2(xk))|
= |l1(xk)− l2(xk)| |l1(xk) + l2(xk)− 2yk|

≥ δ · 2
∣∣∣∣ l1(xk) + l2(xk)

2
− yk

∣∣∣∣
≥ δ · 2 min {q1, 1− qN}
≥ 4δ2

=
8

3
ε
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> 2ε

We conclude that L(N,Fd, x1, . . . , xn) ≤ N
(
ε,Fd, (x1, y1), . . . , (xn, yn)

)
.

For the upper bound, the proof comes from the proof of Proposition 3 in [11]. Let N =
⌈

2
ε

⌉
. Let

qi = i−1
N for i ∈ {1, . . . , N,N + 1}. Define

G , {
(
(y1 − g1)2, (y2 − g2)2, . . . , (yn − gn)2

)
: gi ∈ {q1, . . . , qN}, xi � xj =⇒ gi ≤ gj}.

Then |G| ≤ L(N, x1, . . . , xn). We now show that G is an ε-net of Q =
{(Q(x1, y1, f), . . . , Q(xn, yn, f)) , f ∈ F}. For each sample i ∈ {1, . . . , n}, find ki such that
f(xi) ∈ [qki , qki+1). Set gi = qki . Now,∣∣(yi − f(xi))

2 − (yi − qki)2
∣∣ =

∣∣y2
i − 2yif(xi) + f(xi)

2 − y2
1 + 2yiqki − q2

ki

∣∣
=
∣∣f(xi)

2 + 2yi (qki − f(xi))− q2
ki

∣∣
= |(f(xi)− qki) (f(xi) + qki)− 2yi (f(xi)− qki)|
= (f(xi)− qki) |f(xi) + qki − 2yi|

≤ 2

N

=
2⌈
2
ε

⌉
≤ ε

It remains to show that xi � xj =⇒ gi ≤ gj . Since f is coordinate-wise monotone, xi � xj =⇒
f(xi) ≤ f(xj). Then also gi ≤ gj . Therefore, we have shown that G is a valid ε-net, and we
conclude that the size of the smallest ε-net is at most L(N, x1, . . . , xn).

The m-labeling number is in turn related to the binary labeling number.

Proposition 5. [11] It holds that L(m,x1, . . . , xn) ≤ (L(2, x1, . . . , xn))
m−1

.

Proof. The proof can be found in the proof of Lemma 3 in [11], with the correction that

g2(xi) =

{
1 if g(xi) ≤ m
2 if g(xi) = m+ 1.

Propositions 4 and 5 suggest that the binary labeling number is a good proxy for the VC entropy.
Theorem 6. Let X1, . . . , Xn be distributed uniformly and independently in [0, 1]d. Let
L(X1, . . . , Xn) be the number of binary monotone labelings of the points X1, . . . , Xn. Then for
k ≥ 1,

exp

[
log(2)(1− e−1)k

(d− 1)!
n
d−1
d

]
≤ E[L(X1, . . . Xn)k] ≤ exp

[(
2 log(2)k + 2k+d

)
n
d−1
d

]
.

We also have

E[L(X1, . . . Xn)k] ≤ exp
[(

2d + 2 log(2)− 1
)
n
d−1
d

]
.

In order to prove the upper bound in Theorem 6, we relate the binary labeling number to the number
of integer partitions.
Definition 11 (Integer Partition). An integer partition of dimension (d−1) with values in {0, 1, . . .m},
is a collection of values Ai1,i2,...,id−1

∈ {0, 1, . . . ,m} where ik ∈ {1, . . .m} and Ai1,i2,...,id−1
≤

Aj1,j2,...,jd−1
whenever ik ≤ jk for all k ∈ {1, . . . , d− 1}. The set of integer partitions of dimension

(d− 1) with values in {0, 1, . . .m} is denoted by P ([m]d).
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Figure 3: Illustration of a partition in d = 2 with m = 10. The partition cells are indicated in gray,
and the border cells are marked.

Note: the definition is in terms of (d − 1) because when the monotone regression problem is in
dimension d, we will consider partitions of dimension (d− 1). To illustrate the definition, consider
setting d = 2 (see Figure 3). An integer partition of dimension 1 is an assignment of values
(A1, A2, . . . , Am) that is non-increasing, and each Ak takes value in {0, 1, . . . ,m}. A 1-dimensional
partition can be seen to divide the m×m grid in a monotonic way. Next we define the concept of a
border cell.
Definition 12 (Border Cell). Label the cells in the [m]d grid according to cell coordinates, namely
entries (x1, x2, . . . xd), where xk ∈ {1, . . . ,m} for each k ∈ {1, . . . , d}. For a partition p ∈
P ([m]d) with entries in {1, . . . ,m}, consider its values Ai1,i2,...,id−1

. The cells corresponding to the
partition (which we call the partition cells) are given by (x1, x2, . . . , xd−1, x), for x ≤ Ax1,x2,...,xd−1

and where each xk ranges in {1, . . . ,m}. We say that two cells are adjacent if they share a face or a
corner. The border cells are defined to be the partition cells that are adjacent to at least one cell that
is not a partition cell.

Lemma 4. The number of border cells in any (d− 1)-dimensional integer partition with entries from
{1, . . . ,m} is at most md − (m− 1)d.

Proof. When d = 2, the number of cells on the border of any (1-dimensional) partition with values
in {1, . . . ,m} is at most 2m− 1 = m2 − (m− 1)2, corresponding to a path from (1,m) to (m, 1).
When d = 3, the number of border cells in any (2-dimensional) partition with values in {1, . . . ,m}
is at most corresponding to border cells that include (1,m,m) and (m, 1, 1). All partitions with
such border cells have the same number of border cells. The simplest of these is the one where
each cell is on the perimeter of the cube. The number of border cells in such a partition is equal to
3m2− 3m+ 1 = m3− (m− 1)3. For general d, the number of border cells in a (d− 1)-dimensional
partition taking values in {1, . . . ,m} is upper bounded by the total number of cells minus the number
of cells in an (m− 1)d grid, in other words, md − (m− 1)d.

The key idea of the proof of the upper bound in Theorem 6 comes from the following lemma.

Lemma 5. Let k ≥ 1 and let N ∼ Binom
(
n, m

d−(m−1)d

md

)
. It holds that

E[L(X1, . . . , Xn)k] ≤
∣∣P ([m]d

)∣∣k E[2kN ].

Proof. The idea of the proof comes from the proof of Theorem 13.13 in [6], who showed a similar
result for d = 2 and k = 1. Consider a binary coordinate-wise monotone function f , with domain
[0, 1]d. Let S0 = {x ∈ [0, 1]d : f(x) = 0} and S1 = {x ∈ [0, 1]d : f(x) = 1}. The number of
binary labelings of a set of points X1, . . . , Xn is equal to the number of partitions (S0, S1) producing
distinct labelings. To upper-bound the number of dividing surfaces, we divide the d-dimensional cube
into an md grid, [m]d. That is, each cell in the grid has side length 1

m . Let B be the intersection of
the boundaries of the S0 and S1. For example, if

f(x) =

{
0 if x1 + x2 < 1

1 if x1 + x2 ≥ 1

then B = {x : x1 + x2 = 1}. Now consider the subset of cells that contain at least one element of
B. These cells are necessarily the border cells of some (d− 1)-dimensional integer partition with
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values from {1, . . . ,m}. Therefore, we can upper bound the number of labelings as follows. For
a boundary B corresponding to a partition (S0, S1), let B be the border cells of the corresponding
integer partition. Define the set B to contain all such B, noting that |B| =

∣∣P ([m]d
)∣∣. Let NB

be the number of points falling into the cells comprising B. For each B that corresponds to a
partition (S0, S1), we add a contribution of 2NB . This contribution corresponds to all (valid or
invalid) labelings of the points within the border cells. Points outside the border cells are labeled 0 if
they fall in S0 and 1 if they fall in S1. Since we have potentially overcounted the number of binary
labelings by including invalid labelings, we have the following upper bound.

L(X1, . . . , Xn) ≤
∑
B∈B

2NB .

Therefore, we also have

L(X1, . . . , Xn)k ≤

∑
B∈B

2NB

k

.

By Jensen’s inequality, we have that for ai ≥ 0 and k ≥ 1,(
1

n

n∑
i=1

ai

)k
≤ 1

n

n∑
i=1

aki .

Therefore, ∑
B∈B

2NB

k

≤ |B|k−1
∑
B∈B

2kNB

and we have

L(X1, . . . , Xn)k ≤ |B|k−1
∑
B∈B

2kNB

E
[
L(X1, . . . , Xn)k

]
≤ E

|B|k−1
∑
B∈B

2kNB


= |B|k−1

∑
B∈B

E
[
2kNB

]

From Lemma 4, the number of points in the border cells of a partition with the maximal number of
border cells is distributed as a binomial random variable N with parameters

(
n, m

d−(m−1)d

md

)
. We

therefore have

E
[
L(X1, . . . , Xn)k

]
≤ |B|k−1

∑
B∈B

E
[
2kN

]
= |B|k E

[
2kN

]
=
∣∣P ([m]d

)∣∣k E [2kN ] .
Proof of Theorem 6. Upper bound
From Lemma 5, we know that

E[L(X1, . . . , Xn)k] ≤
∣∣P ([m]d

)∣∣k · E[2kN ].

Now,

E[2kN ] = E[elog(2)kN ] = MN (log(2)k),
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where MN (·) is the moment-generating function of the random variable N . A binomial random
variable Z with parameters (n, p) has moment-generating function MZ(θ) = (1 − p + peθ)n.
Additionally, [17] showed that ∣∣P ([m]d

)∣∣ ≤ (2m

m

)md−2

.

Substituting,

E[L(X1, . . . , Xn)k] ≤
(

2m

m

)kmd−2 (
1− md − (m− 1)d

md
+
md − (m− 1)d

md
elog(2)k

)n
≤
(

2m

m

)kmd−2 (
1 + 2k

md − (m− 1)d

md

)n
≤
(
22m

)kmd−2
(

1 + 2k
md − (m− 1)d

md

)n
= 22kmd−1

(
1 + 2k

md − (m− 1)d

md

)n
= exp

[
2 log(2)kmd−1 + n log

(
1 + 2k

md − (m− 1)d

md

)]
Choosing m = n

1
d ,

E[L(X1, . . . , Xn)k] ≤ exp

2 log(2)kn
d−1
d + n log

1 + 2k
n−

(
n

1
d − 1

)d
n




Since log(1 + x) ≤ x,

E[L(X1, . . . , Xn)k] ≤ exp

[
2 log(2)kn

d−1
d + 2k

(
n−

(
n

1
d − 1

)d)]
Applying the Binomial Theorem,

n−
(
n

1
d − 1

)d
= n−

d∑
k=0

(
d

k

)
n
d−k
d (−1)k

= −
d∑
k=1

(
d

k

)
n
d−k
d (−1)k

≤
d∑
k=1

(
d

k

)
· max
k∈{1,...,d}

n
d−k
d (−1)k+1

=
(
2d − 1

)
n
d−1
d

Substituting, we obtain

E[L(X1, . . . , Xn)k] ≤ exp
[
2 log(2)kn

d−1
d + 2k

(
2d − 1

)
n
d−1
d

]
≤ exp

[(
2 log(2)k + 2k+d

)
n
d−1
d

]
.

The proof for k = 1 is similar.
Lower Bound
Let N be an integer, which will be specified later. Divide [0, 1]d into Nd cells of side length 1

N . The
cells are labeled in the natural coordinate system, writing C = (x1, . . . , xd) ∈ [N ]d. We say that
two cells are incomparable if for all x ∈ C1 and y ∈ C2, neither x � y nor x � y. Let us find the
number of incomparable cells.

Lemma 6. The number of incomparable cells is at least
(
N+d−2
d−1

)
.
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Proof. Consider any two cells C1 = (x1, x2, . . . , xd) and C2 = (y1, y2, . . . , yd). If∑d
i=1 xi =

∑d
i=1 yi, then either (x1, . . . , xd) = (y1, . . . , yd) or (x1, . . . , xd) 6� (y1, . . . , yd) and

(x1, . . . , xd) 6� (y1, . . . , yd). Observe that if (x1, . . . , xd) 6� (y1, . . . , yd) and (x1, . . . , xd) 6�
(y1, . . . , yd), then C1 and C2 are incomparable. In dimension d, let us therefore count the number of
cells whose coordinates sum to N + d− 1. This corresponds to the number of integer compositions
of (N + d− 1) into d parts, which is given by

(
N+d−2
d−1

)
.

The number of incomparable points, Yn is at least the number of occupied incomparable cells, which
we call ∆. For d ≥ 2,

E[∆] ≥
(
N + d− 2

d− 1

)(
1−

(
1− 1

Nd

)n)
=

(N + d− 2)!

(d− 1)!(N − 1)!

(
1−

(
1− 1

Nd

)n)
≥ Nd−1

(d− 1)!

(
1−

(
1− 1

Nd

)n)
Now let N =

⌈
n

1
d

⌉
. Then

E[∆] ≥ n
d−1
d

(d− 1)!

(
1− e−1

)
We can now lower bound the expected value of labeling number raised to the power k. First,

L(X1, . . . , Xn) ≥ 2∆

L(X1, . . . , Xn)k ≥ 2k∆

By Jensen’s inequality,

E
[
L(X1, . . . , Xn)k

]
≥ E

[
2k∆

]
≥ 2kE[∆] ≥ 2k

1−e−1

(d−1)!
n
d−1
d

= exp

[
log(2)(1− e−1)k

(d− 1)!
n
d−1
d

]

Finally, we tie together the above results to prove Theorem 1.

Proof of Theorem 1. The proof is by chaining the inequalities from Propositions 2- 5, along with
Theorem 6. By Proposition 2,

P
(
‖f̂n − f‖2 > ε

)
≤ 8NFs,d

(
ε2

32
, n

)
exp

(
− ε

4n

512

)
.

By Proposition 3, NFs,d(ε, n) ≤
(
d
s

)
NFs(ε, n). Therefore,

P
(
‖f̂n − f‖2 > ε

)
≤ 8

(
d

s

)
NFs

(
ε2

32
, n

)
exp

(
− ε

4n

512

)
.

By Proposition 4,

N (ε,Fs, (x1, y1), . . . , (xn, yn)) ≤ L
(⌈

2

ε

⌉
, x1, . . . , xn

)
,

where xi ∈ [0, 1]s for i ∈ {1, . . . , n}. Substituting,

P
(
‖f̂n − f‖2 > ε

)
≤ 8

(
d

s

)
E
[
N

(
ε2

32
,Fs, (x1, y1), . . . , (xn, yn)

)]
exp

(
− ε

4n

512

)
≤ 8

(
d

s

)
E
[
L

(⌈
64

ε2

⌉
, X1, . . . , Xn

)]
exp

(
− ε

4n

512

)
,
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where X1, . . . , Xn are distributed independently and uniformly at random in [0, 1]s. By Proposition
5, L(m,x1, . . . , xn) ≤ (L(2, x1, . . . , xn))

m−1. Therefore,

P
(
‖f̂n − f‖2 > ε

)
≤ 8

(
d

s

)
E
[
L (X1, . . . , Xn)d

64
ε2
e−1
]

exp

(
− ε

4n

512

)
≤ 8

(
d

s

)
E
[
L (X1, . . . , Xn)

64
ε2

]
exp

(
− ε

4n

512

)
.

Finally, by Theorem 6,

P
(
‖f̂n − f‖2 > ε

)
≤ 8

(
d

s

)
exp

[(
2 log(2)

64

ε2
+ 2

64
ε2

+s

)
n
s−1
s

]
exp

(
− ε

4n

512

)
= 8

(
d

s

)
exp

[(
128 log(2)

ε2
+ 2

64
ε2 2s

)
n
s−1
s − ε4n

512

]
.

Proof of Corollary 1. Equivalently, we show that s = o
(√

log(n)
)

and d = eo(
n
s ) suffices. Ana-

lyzing the leading term in the exponent,

2
64
ε2 2sn

s−1
s = n1+(s+ 64

ε2
) log(2)

log(n)
− 1
s .

Analyzing the exponent,

1 +

(
s+

64

ε2

)
log(2)

log(n)
− 1

s
= 1 +

o
(√

log(n)
)

log(n)
− 1

o
(√

log(n)
)

= 1 + o

(
1√

log(n)

)
− ω

(
1√

log(n)

)

= 1− ω

(
1√

log(n)

)
.

Therefore,

exp

{(
128 log(2)

ε2
+ 2

64
ε2 2s

)
n
s−1
s − ε4n

512

}
= exp

{
Θ(1)n

1−ω
(

1√
log(n)

)
−Θ(n)

}

= exp

{
Θ(n)

(
n
−ω

(
1√

log(n)

)
− 1

)}

= exp

{
Θ(n)

(
e
−ω

(
1√

log(n)

)
log(n)

− 1

)}

= exp

{
Θ(n)

(
e
−ω

(√
log(n)

)
− 1

)}
= exp

{
Θ(n)

(
o
(
e−
√

log(n)
)
− 1
)}

exp {−Θ(n)} .

Next, (
d

s

)
≤ ds

= es log(d)

We need s log(d) = o(n), or equivalently, d = eo(
n
s ).
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To prove Theorem 2, we first prove Lemma 2.

Proof of Lemma 2. Consider the following procedure. We sample X1 and X2 independently and
uniformly on [0, 1]d. Fix k ∈ A. Let

X+ =

{
X1 if X1,k > X2,k

X2 otherwise

and

X− =

{
X1 if X1,k ≤ X2,k

X2 otherwise.

In other words, X+ is the right point according to coordinate k and X− is the left point according to
the same coordinate. Now,

P (f(X1) +W1 > f(X2) +W2|X1,k > X2,k)

= P (f(X1) +W1 > f(X2) +W2|X1,k = X+, X2,k = X−)

= P (f(X+) +W1 > f(X−) +W2|X1,k = X+, X2,k = X−)

We claim that the conditioning in the last expression can be dropped. Indeed,

P (X1,k = X+, X2,k = X−) = P (X1,k = X−, X2,k = X+) =
1

2

so that

P (f(X+) +W1 > f(X−) +W2)

=
1

2
P (f(X+) +W1 > f(X−) +W2|X1,k = X+, X2,k = X−)

+
1

2
P (f(X+) +W1 > f(X−) +W2|X1,k = X−, X2,k = X+)

= P (f(X+) +W1 > f(X−) +W2|X1,k = X+, X2,k = X−) .

The last equality is due to the two probabilities taking the same value, by symmetry. Therefore, we
have

P (f(X1) +W1 > f(X2) +W2|X1,k > X2,k) = P (f(X+) +W1 > f(X−) +W2) .

Similarly,

P (f(X1) +W1 < f(X2) +W2|X1,k > X2,k) = P (f(X+) +W1 < f(X−) +W2) .

Therefore, we can equivalently define pk as

pk = P (f(X+) +W1 > f(X−) +W2)− P (f(X+) +W1 < f(X−) +W2) .

Our goal is to show that

P (f(X+) +W1 > f(X−) +W2) > P (f(X+) +W1 < f(X−) +W2) .

Let k = 1. By Assumption 1, the function f is not constant with respect to the first coordinate.

We now construct a coupling (X−, X+,W 1,W 2) ∼ (X−, X+,W1,W2) (?) such that

P
(
f(X+) +W 1 > f(X−) +W 2

)
> P (f(X+) +W1 < f(X−) +W2) .

The coupling is given by setting X+,1 = X+,1, X−,1 = X−,1. Set X+,i = X−,i and X−,i = X+,i

for all i ∈ {2, . . . , d}. Finally, set W 1 = W2 and W 2 = W1. Observe that by monotonicity,
f(X+) ≥ f(X−) and similarly f(X−) ≤ f(X+). Therefore,

{f(X−)− f(X+) ≥W1 −W2} =⇒ {f(X+)− f(X−) > W 2 −W 1}.

Furthermore, (?) holds. We conclude that

P
(
f(X+) +W 1 > f(X−) +W 2

)
≥ P (f(X+) +W1 < f(X−) +W2) .
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To show the strict inequality, it suffices to show that there is a non-zero probability of the event

{f(X+) +W 1 > f(X−) +W 2} ∩ {f(X+) +W1 ≥ f(X−) +W2}
= {f(X+) +W2 > f(X−) +W1} ∩ {f(X+) +W1 ≥ f(X−) +W2}
= {f(X+)− f(X−) > W1 −W2} ∩ {f(X+)− f(X−) ≥W2 −W1}
= {f(X−)− f(X+) < W2 −W1 ≤ f(X+)− f(X−)}

This last expression holds with non-zero probability because there exists some ε > 0 such that with
positive probability, f(X+) ≥ f(X−) + ε and similarly f(X−) ≤ f(X+)− ε. (Otherwise, f would
be constant with respect to the first coordinate).

Proposition 6. Consider stage t in Algorithm 3’. Suppose that the first t− 1 coordinates recovered
by the algorithm are correct, i.e. ki ∈ {1, . . . , s} for all i ∈ {1, . . . , t − 1}. Let R = {1, . . . , s} \
{k1, . . . , kt−1}. Let (X1, Y1) and (X2, Y2) be independent samples from the model. There exists
r ∈ R so that for all k ∈ R,

P (Y1 > Y2|q(1, 2, r) = 1, q(1, 2, k) = 0) ≥ P (Y2 > Y1|q(1, 2, r) = 1, q(1, 2, k) = 0) .

Proof. Let

f(r, k) = P (Y1 > Y2|q(1, 2, r) = 1, q(1, 2, k) = 0)− P (Y2 > Y1|q(1, 2, r) = 1, q(1, 2, k) = 0) .

We first claim that f(r, k) = −f(k, r). Using the fact that q(1, 2, k) = 1 ⇐⇒ q(2, 1, k) = 0 for all
but a measure-zero set,

f(k, r) = P (Y1 > Y2|q(1, 2, k) = 1, q(1, 2, r) = 0)− P (Y2 > Y1|q(1, 2, k) = 1, q(1, 2, r) = 0)

= P (Y1 > Y2|q(2, 1, k) = 0, q(2, 1, r) = 1)− P (Y2 > Y1|q(2, 1, k) = 0, q(2, 1, r) = 1)

= P (Y2 > Y1|q(1, 2, k) = 0, q(1, 2, r) = 1)− P (Y1 > Y2|q(1, 2, k) = 0, q(1, 2, r) = 1)

= −f(r, k).

If there are one or two indices remaining to be found, then clearly such an r exists. Otherwise, let a,
b, and c be correct indices that have not yet been found. Our next claim is that

{f(a, b) ≥ f(b, a), f(b, c) ≥ f(c, b)} =⇒ f(a, c) ≥ f(c, a).

Suppose f(a, b) ≥ f(b, a) and f(b, c) ≥ f(c, b). Then f(a, b) ≥ 0 and f(b, c) ≥ 0. Observe that

f(a, b) ≥ 0

⇐⇒ P (Y1 > Y2|q(1, 2, a) = 1, q(1, 2, b) = 0)− P (Y2 > Y1|q(1, 2, a) = 1, q(1, 2, b) = 0) ≥ 0

⇐⇒ P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0)− P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, b) = 0) ≥ 0

Similarly,

f(b, c) ≥ 0

⇐⇒ P (Y1 > Y2, q(1, 2, b) = 1, q(1, 2, c) = 0)− P (Y2 > Y1, q(1, 2, b) = 1, q(1, 2, c) = 0) ≥ 0

and

f(a, c) ≥ 0

⇐⇒ P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, c) = 0)− P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, c) = 0) ≥ 0.

By the Law of Total Probability,

P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, c) = 0)

= P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 1, q(1, 2, c) = 0)

+ P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 0) . (24)

Consider the first term of Equation (24).

P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 1, q(1, 2, c) = 0)

= P (Y1 > Y2, q(1, 2, b) = 1, q(1, 2, c) = 0)− P (Y1 > Y2, q(1, 2, a) = 0, q(1, 2, b) = 1, q(1, 2, c) = 0)
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Similarly, consider the second term of Equation (24).

P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 0)

= P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0)− P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 1)

Adding the terms,

P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, c) = 0)

= P (Y1 > Y2, q(1, 2, b) = 1, q(1, 2, c) = 0)− P (Y1 > Y2, q(1, 2, a) = 0, q(1, 2, b) = 1, q(1, 2, c) = 0)

+ P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0)− P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 1) .

Analyzing the expression P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, c) = 0) similarly, we obtain

P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, c) = 0)

= P (Y2 > Y1, q(1, 2, b) = 1, q(1, 2, c) = 0)− P (Y2 > Y1, q(1, 2, a) = 0, q(1, 2, b) = 1, q(1, 2, c) = 0)

+ P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, b) = 0)− P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 1) .

Recall that we need to show

P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, c) = 0)− P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, c) = 0) ≥ 0.

Taking the difference,

P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, c) = 0)− P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, c) = 0)

= f(a, b) + f(b, c)

− P (Y1 > Y2, q(1, 2, a) = 0, q(1, 2, b) = 1, q(1, 2, c) = 0)

− P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 1)

+ P (Y2 > Y1, q(1, 2, a) = 0, q(1, 2, b) = 1, q(1, 2, c) = 0)

+ P (Y2 > Y1, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 1)

= f(a, b) + f(b, c)

− P (Y1 > Y2, q(1, 2, a) = 0, q(1, 2, b) = 1, q(1, 2, c) = 0)

− P (Y1 > Y2, q(1, 2, a) = 1, q(1, 2, b) = 0, q(1, 2, c) = 1)

+ P (Y2 > Y1, q(2, 1, a) = 1, q(2, 1, b) = 0, q(2, 1, c) = 1)

+ P (Y2 > Y1, q(2, 1, a) = 0, q(2, 1, b) = 1, q(2, 1, c) = 0)

= f(a, b) + f(b, c)

≥ 0.

Therefore, we have proven the claim

{f(a, b) ≥ f(b, a), f(b, c) ≥ f(c, b)} =⇒ f(a, c) ≥ f(c, a).

This fact shows that the indices can be totally ordered, i.e. by writing a ≥ b when f(a, b) ≥ f(b, a).
We let r be the largest element of the order.

Lemma 7. Consider stage t in Algorithm 3’, which uses m = n
s samples. The probability that the

first coordinate is correctly recovered is at least

1− (d− 1) exp

(
− p

2
1m

64s2

)
.

Suppose that the first t− 1 coordinates recovered by the algorithm are correct, i.e. ki ∈ {1, . . . , s}
for all i ∈ {1, . . . , t− 1}. Then kt ∈ {1, . . . , s} with probability at least

1− (d− t) exp

(
− p2

1m

64(s− t+ 1)2

)
.

Proof. Applying Proposition 6, let r be an element of {1, . . . , s} \ {k1, . . . , kt−1} such that

P (Y1 > Y2|q(1, 2, r) = 1, q(1, 2, k) = 0) ≥ P (Y2 > Y1|q(1, 2, r) = 1, q(1, 2, k) = 0) .

for all k ∈ {1, . . . , s} \ {k1, . . . , kt−1}.
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Next, we consider the optimization problem at step t. Fix a feasible solution v = v. Recall that∑d
k=1 vk = 1. For this fixed value v, the optimal choice for the variables cijk must satisfy

d∑
k=1

q(i, j, k)cijk = 1−
d∑
k=1

q(i, j, k)vk

for i, j such that Yi > Yj and
∑d
k=1 q(i, j, k) ≥ 1, with cijk = 0 whenever q(i, j, k) = 0. Note that∑d

k=1 q(i, j, k)cijk =
∑d
k=1 c

ij
k . Therefore, the objective function is equal to

z(v) ,
m∑
i=1

m∑
j=1

1 {Yi > Yj , Xi 6� Xj}

(
1−

d∑
k=1

q(i, j, k)vk

)
.

Let v? = er. Let Ft be the feasible set for the vector of variables v at step t, i.e.

Ft =

{
v ∈ Rd : vi ≥ 0 ∀i ∈ {1, . . . , d}, vi = 0 ∀i ∈ {k1, . . . , kt−1},

d∑
i=1

vi = 1

}
.

Let F t = {v ∈ Ft : arg maxi vi ∩ {s + 1, . . . , d} 6= ∅}. In other words, F t is the set of feasible
solutions that lead to an incorrect coordinate choice at step t. We will give an upper bound on the
probability

P
(
∃v ∈ F t : z(v) ≤ z(v?)

)
.

Note that the complementary event, {z(v) > z(v?),∀v ∈ F t}, implies that the optimization problem
will choose a coordinate among {1, . . . , s} \ {k1, . . . , kt−1}.

Let v ∈ F t and write v = v? + u. Observe that since the coordinates of v and v? both sum to 1, the
coordinates of u sum to 0. Also, ur < 0 and uk ≥ 0 for k 6= r. Now,

z(v)− z(v?)

=

m∑
i=1

m∑
j=1

1 {Yi > Yj , Xi 6� Xj}

((
1−

d∑
k=1

q(i, j, k)vk

)
−

(
1−

d∑
k=1

q(i, j, k)v?k

))

=

m∑
i=1

m∑
j=1

1 {Yi > Yj , Xi 6� Xj}

(
d∑
k=1

q(i, j, k)v?k −
d∑
k=1

q(i, j, k)vk

)

=

m∑
i=1

m∑
j=1

1 {Yi > Yj , Xi 6� Xj}
d∑
k=1

q(i, j, k) (v?k − vk)

= −
m∑
i=1

m∑
j=1

1 {Yi > Yj , Xi 6� Xj}
d∑
k=1

q(i, j, k)uk

= −
d∑
k=1

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj , Xi 6� Xj} q(i, j, k).

Now,

1 {Yi > Yj , Xi 6� Xj} q(i, j, k) = 1 {Yi > Yj}1 {Xi 6� Xj} q(i, j, k)

= 1 {Yi > Yj} (1− 1 {Xi � Xj}) q(i, j, k)

= 1 {Yi > Yj} q(i, j, k)− 1 {Yi > Yj}1 {Xi � Xj} q(i, j, k)

= 1 {Yi > Yj} q(i, j, k),

where the last equality is due to the fact that Xi � Xj implies q(i, j, k) = 0. Substituting,

z(v)− z(v?) = −
d∑
k=1

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} q(i, j, k)
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= −ur
m∑
i=1

m∑
j=1

1 {Yi > Yj} q(i, j, r)−
∑
k 6=r

uk

n∑
i=1

n∑
j=1

1 {Yi > Yj} q(i, j, k)

=
∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} q(i, j, r)−
∑
k 6=r

uk

n∑
i=1

n∑
j=1

1 {Yi > Yj} q(i, j, k)

=
∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) .

Recall that we seek to upper bound the probability P
(
∃v ∈ F t : z(v) ≤ z(v?)

)
. From the above,

P
(
∃v ∈ F t : z(v) ≤ z(v?)

)
= P

(
∃v? + u ∈ F t : z(v? + u) ≤ z(v?)

)
= P

∃v? + u ∈ F t :
∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ 0

 .

Consider v? + u ∈ F t. Recalling that uk = 0 for all k ∈ {k1, . . . , kt−1}, observe that∑
k∈{s+1,...,d}

uk ≥
1

s− t
∑

k∈{1,...,s}\{r}

uk

⇐⇒ (s− t)
∑

k∈{s+1,...,d}

uk ≥ −ur −
∑

k∈{s+1,...,d}

uk

⇐⇒
∑

k∈{s+1,...,d}

uk ≥
1

s− t+ 1
(−ur). (25)

Since −ur > 0,

P

∃v? + u ∈ F t :
∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ 0


= P

∃v? + u ∈ F t :
1

−ur

∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ 0

 .

Let 0 < ∆ ≤ pr
4(s−t+1) . Observe that the existence of v? + u ∈ F t such that

1
−ur

∑
k 6=r uk

∑m
i=1

∑m
j=1 1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ 0 implies at least one of the fol-

lowing occurs:

1. There exists k ∈ {1, . . . , s} \ {r, k1, . . . , kt−1} such that
m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ m(m− 1)(−∆).

2. There exists k ∈ {s+ 1, . . . , d} such that
m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ m(m− 1)

(
1

4
pr −∆

)
.

Indeed, if none of these events occur, then for every v? + u ∈ F t,

1

−ur

∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

=
1

−ur

∑
k∈{1,...,s}\{r,k1,...,kt−1}

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))
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+
1

−ur

∑
k∈{s+1,...,d}

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

> m(m− 1)

 1

−ur

∑
k∈{1,...,s}\{r,k1,...,kt−1}

uk(−∆) +
1

−ur

∑
k∈{s+1,...,d}

uk

(
1

4
pr −∆

)
= m(m− 1)

−∆

−ur

∑
k 6=r

uk +
pr
−4ur

∑
k∈{s+1,...,d}

uk


= m(m− 1)

−∆ +
pr
−4ur

∑
k∈{s+1,...,d}

uk


≥ m(m− 1)

[
−∆ +

pr
4(s− t+ 1)

]
(26)

≥ m(m− 1)

[
− pr

4(s− t+ 1)
+

pr
4(s− t+ 1)

]
= 0.

The inequality (26) holds by (25). Therefore, by the Union Bound,

P

∃v? + u ∈ F t :
1

−ur

∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ 0


≤

∑
k∈{1,...,s}\{r,k1,...,kt−1}

P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ −m(m− 1)∆


+

∑
k∈{s+1,...,d}

P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ m(m− 1)

(
1

4
pr −∆

)
We upper bound each probability by establishing concentration. Fix i, j ∈ {1, . . . ,m} with i 6= j,
and k 6= r. By the Law of Total Expectation,

E [1 {Yi > Yj} (q(i, j, r)− q(i, j, k))]

= E [1 {Yi > Yj} |q(i, j, r) = 1, q(i, j, k) = 0]P (q(i, j, r) = 1, q(i, j, k) = 0)

− E [1 {Yi > Yj} |q(i, j, r) = 0, q(i, j, k) = 1]P (q(i, j, r) = 0, q(i, j, k) = 1)

= P (Yi > Yj |q(i, j, r) = 1, q(i, j, k) = 0)P (q(i, j, r) = 1, q(i, j, k) = 0)

− P (Yi > Yj |q(i, j, r) = 0, q(i, j, k) = 1)P (q(i, j, r) = 0, q(i, j, k) = 1)

= P (Yi > Yj , q(i, j, r) = 1, q(i, j, k) = 0)− P (Yi > Yj , q(i, j, r) = 0, q(i, j, k) = 1) .

Now, q(i, j, k) = 1 ⇐⇒ q(j, i, k) = 0. Therefore,

E [1 {Yi > Yj} (q(i, j, r)− q(i, j, k))]

= P (Yi > Yj , q(i, j, r) = 1, q(i, j, k) = 0)− P (Yi > Yj , q(j, i, r) = 1, q(j, i, k) = 0)

= P (Yi > Yj , q(i, j, r) = 1, q(i, j, k) = 0)− P (Yj > Yi, q(i, j, r) = 1, q(i, j, k) = 0)

= [P (Yi > Yj |q(i, j, r) = 1, q(i, j, k) = 0)− P (Yj > Yi|q(i, j, r) = 1, q(i, j, k) = 0)]P (q(i, j, r) = 1, q(i, j, k) = 0)

=
1

4
[P (Yi > Yj |q(i, j, r) = 1, q(i, j, k) = 0)− P (Yj > Yi|q(i, j, r) = 1, q(i, j, k) = 0)] ,

where we have swapped i and j in the second equality, due to symmetry. We now consider the two
cases for k. First consider k ∈ {1, . . . , s} \ {r, k1, . . . , kt−1}. Due to the choice of r, the expectation
is nonnegative, and we lower bound it by 0.

Next consider k ∈ {s+ 1, . . . , d}. Due to the independence of the coordinates of X , the values of
the non-active coordinates does not influence the value of the active coordinates. Also, the value of

28



the function is determined entirely by the active coordinates. Therefore, we can drop the conditioning
on the ordering on the inactive coordinate k.

For k ∈ {s+ 1, . . . , d}, we therefore have

E [1 {Yi > Yj} (q(i, j, r)− q(i, j, k))] =
1

4
[P (Yi > Yj |q(i, j, r) = 1)− P (Yj > Yi|q(i, j, r) = 1)]

=
1

4
pr.

Let k ∈ {1, . . . , s}\{r, k1, . . . , kt−1}. Since E
[∑m

i=1

∑m
j=1 1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

]
≥

0, we have

P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ −m(m− 1)∆


≤ P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ E

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

−m(m− 1)∆


Similarly for k ∈ {s+ 1, . . . , d}, we have

P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ m(m− 1)

(
1

4
pr −∆

)
= P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ E

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

−m(m− 1)∆


Consider the summation

∑m
i=1

∑m
j=1 1 {Yi > Yj} (q(i, j, r)− q(i, j, k)), as a function of theXi and

Wi variables, for fixed k. We now establish the bounded differences property for the Xi and Wi vari-
ables. Suppose we change the value ofWi. The affected terms are 1 {Yi > Yj} (q(i, j, r)− q(i, j, k))
and 1 {Yj > Yi} (q(j, i, r)− q(j, i, k)), for all j 6= i. Fix j 6= i. The largest absolute change is 2,
and occurs when q(i, j, r) = 1, q(i, j, k) = 0, and Yi > Yj , and changing Wi switches the order on
Yi and Yj . Adding the contributions for all j 6= i, the total change corresponding to changing Wi is
bounded by 2(m− 1). By similar reasoning, changing any Xi may change the summation by up to
2(m− 1).

Applying the McDiarmid inequality, we obtain for every k 6∈ {r, k1, . . . , kt−1},

P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ E

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

−m(m− 1)∆


≤ exp

(
−2 (∆m(m− 1))

2

2m(2(m− 1))2

)

= exp

(
−∆2m2(m− 1)2

4m(m− 1)2

)
= exp

(
−1

4
∆2m

)
.

Substituting ∆ = pr
4(s−t+1) , we obtain

P

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ E

 m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

−m(m− 1)∆


≤ exp

(
− p2

rm

64(s− t+ 1)2

)
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Finally,

P

∃v? + u ∈ F t :
1

−ur

∑
k 6=r

uk

m∑
i=1

m∑
j=1

1 {Yi > Yj} (q(i, j, r)− q(i, j, k)) ≤ 0

 ≤ (d− t) exp

(
− p2

rm

64(s− t+ 1)2

)
.

We conclude that the probability that the tth coordinate is correct is lower-bounded by

1− (d− t) exp

(
− p2

rm

64(s− t+ 1)2

)
≥ 1− (d− t) exp

(
− p2

1m

64(s− t+ 1)2

)
.

Proof of Theorem 2. Let kt be the tth coordinate recovered, where t ∈ {1, . . . , s}. By Lemma 7, the
probability that k1 6∈ {1, . . . , s} is upper bounded by (d− 1) exp

(
− p21m

64s2

)
.. Next, the probability

that k2 6∈ {1, . . . , s} given that k1 ∈ {1, . . . , s} is upper bounded by (d− 2) exp
(
− p21m

64(s−1)2

)
. In

general, the probability that kt 6∈ {1, . . . , s} given that ki ∈ {1, . . . , s} for all i ∈ {1, . . . , t− 1} is
at most (d − t) exp

(
− p21m

64(s−t+1)2

)
. Therefore, the probability of error in any coordinate is upper

bounded by
s∑
t=1

(d− t) exp

(
− p2

1m

64(s− t+ 1)2

)
≤

s∑
t=1

(d− t) exp

(
− p

2
1m

64s2

)
≤ ds exp

(
− p2

1n

64s3

)
.

Proof of Corollary 2.

ds exp

(
− p2

1n

64s3

)
= exp

(
log(d) + log(s)− p2

1n

64s3

)
≤ exp

(
2 log(d)− p2

1n

64s3

)
(27)

Therefore, if n = ω(s3 log(d)), then (27) goes to zero.

Proof of Corollary 3. Support recovery fails with probability at most

ds exp

(
− p2

1n

64s3

)
.

If it succeeds, the probability of the L2 norm error exceeding ε is upper bounded by the value in
Theorem 1, with d set to s and n set to m = n

s . Then P
(
‖f̂n − f‖22 > ε

)
is at most

ds exp

(
− p2

1n

64s3

)
+ 6 exp

[(
212

ε2
log(2) + 2

211

ε2 2s
)
m

s−1
s − 3ε3m

41× 210

]
.

Therefore, if n = ω(s3 log(d)) and n = seω(s2), the estimator is consistent, by Corollaries 1 and
2.

C Proofs for the Noisy Input Model

Proof of Theorem 3. To illustrate the proof idea, we show the claim for d = s = 1 first. Observe that
for any monotone partition (S0, S1) in R, either S0 = {x : x ≤ r} or S0 = {x : x < r} for some r.
When d = s = 1, the optimization problem (5)-(9) amounts to finding a boundary r ∈ R. Let

g (X1:n,W1:n; (S0, S1)) =

n∑
i=1

1 {f(Xi +Wi) = 1, Xi ∈ S0}+ 1 {f(Xi +Wi) = 0, Xi ∈ S1}

30



denote the corresponding value of the objective function. Observe that the value of
g (X1:n,W1:n; (S0, S1)) can change by at most±2 when any one of the random variables is changed.
Applying the McDiarmid inequality, for all ε > 0, it holds that

P (g (X1:n,W1:n; (S0, S1))− E [g (X1:n,W1:n; (S0, S1))] ≥ εn) ≤ exp

(
− 2ε2n2

2n · 22

)
= exp

(
−ε

2n

4

)
.

Similarly,

P (g (X1:n,W1:n; (S0, S1))− E [g (X1:n,W1:n; (S0, S1))] ≤ −εn) ≤ exp

(
−ε

2n

4

)
.

We now calculate E [g (X1:n,W1:n; (S0, S1))]:

E [g (X1:n,W1:n; (S0, S1))] = n

[
p

∫
t∈S1

h0(t)dt+ (1− p)
∫
t∈S0

h1(t)dt

]
= n [pH0(S1) + (1− p)H1(S0)]

= n · q(S0, S1).

By Assumption 2, the expectation has a unique minimizer (S?0 , S
?
1 ) ∈M1.

Observe that

P
(
‖f̂n − f‖22 > δ

)
= P (D ((S0, S1), (S?0 , S

?
1 )) > δ)

= P ((S0, S1) 6∈ Bδ(S?0 , S?1 ))

We therefore need to analyze the probability that there exists a monotone partition outsideBδ(S?0 , S
?
1 ))

with a smaller value of g than g (X1:n,W1:n; (S?0 , S
?
1 )). For all (S0, S1) ∈M1,

E [g (X1:n,W1:n; (S0, S1))]− E [g (X1:n,W1:n; (S?0 , S
?
1 ))] = n (q(S0, S1)− q (S?0 , S

?
1 ))

We now use the concentration result with ε set to 1
3 (q(S0, S1)− q (S?0 , S

?
1 )). For any (S0, S1), with

probability at least

1− exp

(
− (q(S0, S1)− q (S?0 , S

?
1 ))

2
n

36

)
,

it holds that

g (X1:n,W1:n; (S0, S1)) ≥ E [g (X1:n,W1:n; (S0, S1))]− n

3
(q(S0, S1)− q (S?0 , S

?
1 )) .

Similarly, with the same probability, it holds that

g (X1:n,W1:n; (S?0 , S
?
1 )) ≤ E [g (X1:n,W1:n; (S?0 , S

?
1 ))] +

n

3
(q(S0, S1)− q (S?0 , S

?
1 )) .

For a given (S0, S1) 6= (S?0 , S
?
1 ), both of these events occur with probability at least

1− 2 exp

(
− (q(S0, S1)− q (S?0 , S

?
1 ))

2
n

36

)
.

In that case,

g (X1:n,W1:n; (S0, S1))− g (X1:n,W1:n; (S?0 , S
?
1 ))

≥ E [g (X1:n,W1:n; (S0, S1))]− n

3
(q(S0, S1)− q (S?0 , S

?
1 ))

− E [g (X1:n,W1:n; (S?0 , S
?
1 ))]− n

3
(q(S0, S1)− q (S?0 , S

?
1 ))

= n (q(S0, S1)− q (S?0 , S
?
1 ))− 2n

3
(q(S0, S1)− q (S?0 , S

?
1 ))

=
n

3
(q(S0, S1)− q (S?0 , S

?
1 )) .
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Therefore, in this situation, solution (S0, S1) is suboptimal compared to solution (S?0 , S
?
1 ).

Observe that the cardinality of the set {g(X1:n,W1:n; (S0, S1)) : (S0, S1) ∈Md} is at most n+1. In
other words, g has at most n+ 1 possible values when we range over all possible monotone partitions.
Recall the definition of qmin(δ) = min(S0,S1)6∈Bδ(S?0 ,S?1 ) q(S0, S1). By the previous analysis and the
Union Bound,

P ((S0, S1) 6∈ Bδ(S?0 , S?1 )) ≤ (n+ 2) exp

(
− (qmin(δ1, δ2)− q (S?0 , S

?
1 ))

2
n

36

)
Therefore, with probability at least

1− (n+ 2) exp

(
− (qmin(δ1, δ2)− q (S?0 , S

?
1 ))

2
n

36

)
,

it holds that ‖f̂n − f‖22 ≤ δ.

For d ≥ 2 and (S0, S1) ∈Md, let

g (X1:n,W1:n; (S0, S1)) =

n∑
i=1

1 {f(Xi +Wi) = 1, Xi ∈ S0}+ 1 {f(Xi +Wi) = 0, Xi ∈ S1} .

The function g represents the error associated with partition (S0, S1). Applying the McDiarmid
inequality,

P (g (X1:n,W1:n; (S0, S1))− E [g (X1:n,W1:n; (S0, S1))] ≥ εn) ≤ exp

(
−ε

2n

4

)
and

P (g (X1:n,W1:n; (S0, S1))− E [g (X1:n,W1:n; (S0, S1))] ≤ −εn) ≤ exp

(
−ε

2n

4

)
Calculating the expectation,

E [g (X1:n,W1:n; (S0, S1))] = n

[
p

∫
t∈S1

h0(t)dt+ (1− p)
∫
t∈S0

h1(t)dt

]
= n [pH0(S1) + (1− p)H1(S0)]

= n · q(S0, S1).

By Assumption 2, the function q(S0, S1) has a unique minimizer, (S?0 , S
?
1 ), that corresponds to the

true function f . Therefore, if ‖f̂n − f‖22 is greater than δ, then the function f̂n must be outside of
Bδ(S

?
0 , S

?
1 ). Then it must be the case that some (S0, S1) outside of Bδ(S?0 , S

?
1 ) attained a lower

value of g than g (X1:n,W1:n; (S?0 , S
?
1 )). We use concentration to upper bound the probability of this

event.

First, we need to know how many possible objective values there are. This is upper bounded by the
number of binary labelings of the set {X1, . . . , Xn}. By Theorem 6, it holds that

E[L(X1, . . . Xn)] ≤ exp
[
(2s + 2 log(2)− 1)n

s−1
s

]
.

For any ε > 0, the Markov inequality tells us that

P (L(X1, . . . Xn) ≥ t) ≤ E[L(X1, . . . Xn)]

t

≤
exp

[
(2s + 2 log(2)− 1)n

s−1
s

]
t

.

Setting t = exp
[
n

2s−1
2s

]
,

P
(
L(X1, . . . Xn) ≥ exp

[
n

2s−1
2s

])
≤

exp
[
(2s + 2 log(2)− 1)n

s−1
s

]
exp

[
n

2s−1
2s

] .
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Therefore, with probability at least 1−
exp

[
(2s+2 log(2)−1)n

s−1
s

]
exp

[
n

2s−1
2s

] , there are at most exp
[
n

2s−1
2s

]
label-

ings, and therefore function values. We bound theL2 loss similarly to the proof for the case d = s = 1,
above. Recall that qmin(δ) = min(S0,S1) 6∈Bδ(S?0 ,S?1 ) q(S0, S1). Set ε = 1

3 (qmin(δ)− q(S?0 , S?1 )) in
the McDiarmid bound so that the optimal value remains separated from the alternatives.

P
(
‖f̂ − f‖22 > δ

)
= P ((S0, S1) 6∈ (Bδ(S

?
0 , S

?
1 )))

≤
exp

[
(2s + 2 log(2)− 1)n

s−1
s

]
exp

[
n

2s−1
2s

] +
(

exp
[
n

2s−1
2s

]
+ 1
)

exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
n

36

)

Proof of Corollary 4. We equivalently show that s = o
(√

log(n)
)

is sufficient. Analyzing the first
term,

exp
{
n
(
ns logn(2) + 2 log(2)− 1− n 1

2s

)
n−

1
s

}
≤ exp

{
n1− 1

s

(
ns logn(2) − n 1

2s +
1

2

)}
= exp

{
n1− 1

2s

(
ns logn(2)− 1

2s − 1 +
1

2
n−

1
2s

)}
≤ exp

{
n

(
ns logn(2)− 1

2s − 1

2

)}
= exp

{
n

(
n

1
s (s

2 logn(2)− 1
2 ) − 1

2

)}
= exp

{
n

(
n

1
s (o(1)− 1

2 ) − 1

2

)}
= exp

{
n

(
n−Θ(1) 1

s − 1

2

)}
= exp

{
n

(
n
−ω

(
1√

log(n)

)
− 1

2

)}

= exp

{
n

(
o

(
n
− 1√

log(n)

)
− 1

2

)}
= exp

{
n

(
o
(
n−

1
log(n)

)
− 1

2

)}
= exp

{
n

(
o
(
n−

logn(2)
log(2)

)
− 1

2

)}
= exp

{
n

(
o
(

2−
1

log(2)

)
− 1

2

)}
= exp

{
n

(
o (1)− 1

2

)}
= exp {−Θ(1)n}

We have assumed that the expression (qmin (δ)− q (S?0 , S
?
1 ))

2 is constant in s. Analyzing the second
term,

exp
[
n

2s−1
2s

]
exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
n

36

)
= exp

{
n
(
n−

1
2s −Θ(1)

)}
= exp

{
n

(
n
− 1

2o(
√

log(n)) −Θ(1)

)}
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= exp

{
n

(
o

(
n
− 1

2
√

log(n)

)
−Θ(1)

)}
= exp {n (o(1)−Θ(1))}
= exp {−Θ(1)n}

Proof of Theorem 4. The proof is analogous to the proof of Theorem 3, with the above definition
for the function q. Recall that in the proof of Theorem 3, we needed to upper bound the number
of possible function values. Here, the number of possible function values is upper bounded by the
number of s-sparse binary labelings, which are those labelings corresponding to s-sparse monotone
partitions. Let Ls(X1, . . . Xn) be the number of s-sparse binary labelings.

By Theorem 6, it holds that

E[Ls(X1, . . . Xn)] ≤
(
d

s

)
exp

[
(2s + 2 log(2)− 1)n

s−1
s

]
.

For any ε > 0, the Markov inequality tells us that

P (Ls(X1, . . . Xn) ≥ t) ≤ E[Ls(X1, . . . Xn)]

t

≤

(
d
s

)
exp

[
(2s + 2 log(2)− 1)n

s−1
s

]
t

.

Setting t =
(
d
s

)
exp

[
n

2s−1
2s

]
,

P
(
Ls(X1, . . . Xn) ≥

(
d

s

)
exp

[
n

2s−1
2s

])
≤

exp
[
(2s + 2 log(2)− 1)n

s−1
s

]
exp

[
n

2s−1
2s

] .

Therefore, with probability at least 1−
exp

[
(2s+2 log(2)−1)n

s−1
s

]
exp

[
n

2s−1
2s

] , there are at most
(
d
s

)
exp

[
n

2s−1
2s

]
s-sparse binary labelings, and therefore function values.

Proof of Corollary 5. We have assumed that s is constant and the sequence of functions {fd} extends
a function of s variables. For fixed (S0, S1), the value of q(S0, S1) does not change if we increase
the overall dimension, because of the uniformity of X and the independence of the coordinates of
W . Therefore, q does not depend on d when s is fixed, and so qmin (δ) − q (S?0 , S

?
1 ) = Θ(1). We

now analyze the bound in Theorem 4. Since s is constant, the first term goes to zero. Analyzing the
second term, ((

d

s

)
exp

[
n

2s−1
2s

]
+ 1

)
exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
n

36

)

≤
(

exp
[
s log(d) + n

2s−1
2s

]
+ 1
)

exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
n

36

)
= exp

[
s log(d) + n

2s−1
2s −Θ(1)n

]
+ e−Θ(1)n

If n = ω(log(d)), the second term goes to zero.

The proof of Theorem 5 requires Lemmas 3 and 8.

Proof of Lemma 3. We need to show that

P (Y1 = 1, Y2 = 0|X1,k > X2,k) > P (Y1 = 0, Y2 = 1|X1,k > X2,k) .
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The proof is similar to the proof of Lemma 2. Consider the following procedure. We sample X1 and
X2 independently and uniformly on [0, 1]d. Fix k ∈ A. Let

X+ =

{
X1 if X1,k > X2,k

X2 otherwise

and

X− =

{
X1 if X1,k ≤ X2,k

X2 otherwise.

In other words, X+ is the right point according to coordinate k and X− is the left point. As in the
proof of Lemma 2, we can equivalently define pk as

pk = P (f(X+ +W1) > f(X− +W2))− P (f(X+ +W1) < f(X− +W2)) .

Let k = 1. By Assumption 1, the function f is not constant with respect to the first coordinate. Our
goal is to show that

P (f(X+ +W1) > f(X− +W2)) > P (f(X+ +W1) < f(X− +W2)) .

We now construct a coupling (X+, X−,W 1,W 2) ∼ (X+, X−,W1,W2) (?). LetX+,1 = X+,1 and
X−,1 = X−,1. Let X+,i = X−,i and X−,i = X+,i for i ∈ {2, . . . , d}. Finally, let W 1 = W2 and
W 2 = W1. By monotonicity, f(X++W 1) ≥ f(X−+W2). Similarly, f(X−+W 2) ≤ f(X++W1).
Therefore, the event {f(X+ +W1) < f(X− +W2)} implies the event {f(X+ +W 1) > f(X− +
W 2)}. Furthermore, (?) holds. This shows

P (f(X+ +W1) > f(X− +W2)) ≥ P (f(X+ +W1) < f(X− +W2)) .

To show a strict inequality, we need to show that the following event happens with positive probability.

{f(X+ +W 1) > f(X− +W 2)} ∩ {f(X+ +W1) ≥ f(X− +W2)}
= {f(X+ +W2) > f(X− +W1)} ∩ {f(X+ +W1) ≥ f(X− +W2)}

Observe that there exists ε such that f(X+ + W2) ≥ f(X− + W2) + ε and f(X− + W1) ≤
f(X+ +W1)− ε with positive probability. Otherwise, f would be constant with respect to the first
coordinate. This completes the proof.

The following proposition is the analogue of Proposition 6.
Proposition 7. Consider stage t in Algorithm 3’. Suppose that the first t− 1 coordinates recovered
by the algorithm are correct, i.e. ki ∈ {1, . . . , s} for all i ∈ {1, . . . , t − 1}. Let R = {1, . . . , s} \
{k1, . . . , kt−1}. Let (X1, Y1) and (X2, Y2) be independent samples from the model. There exists
r ∈ R so that for all k ∈ R,

P (Y1 > Y2|q(1, 2, r) = 1, q(1, 2, k) = 0) ≥ P (Y2 > Y1|q(1, 2, r) = 1, q(1, 2, k) = 0) .

Proof. The proof is identical to the proof of Proposition 6.

The following lemma is the analogue of Lemma 7.
Lemma 8. Consider stage t in Algorithm 3’, which uses m = n

s samples. The probability that the
first coordinate is correctly recovered is at least

1− (d− 1) exp

(
− p

2
1m

64s2

)
.

Suppose that the first t− 1 coordinates recovered by the algorithm are correct, i.e. ki ∈ {1, . . . , s}
for all i ∈ {1, . . . , t− 1}. Then kt ∈ {1, . . . , s} with probability at least

1− (d− t) exp

(
− p2

1m

64(s− t+ 1)2

)
.
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Proof. The proof is nearly identical to the proof of Lemma 7, with p replaced by p. Lemma 3
guarantees that pk > 0 for all k ∈ A, and Proposition 7 establishes the existence of a special
coordinate r. The bounded differences analysis for the application of the McDiarmid inequality again
shows that eachXi orWi can change the summation

∑m
i=1

∑m
j=1 1 {Yi > Yj} (q(i, j, r)− q(i, j, k))

by up to 2(m− 1).

Proof of Theorem 5. The proof is nearly identical to the proof of Theorem 2, and relies on Lemma
8.

Proof of Corollary 6. The proof is identical to the proof of Corollary 2, with p replaced by p.

Proof of Corollary 7. Support recovery fails with probability at most

ds exp

(
− p2

1n

64s3

)
.

If it succeeds, the probability of the L2 norm error exceeding δ is upper bounded by the value in
Theorem 3. Then P

(
‖f̂n − f‖22 > ε

)
is at most

ds exp

(
− p2

1n

64s3

)
+

exp
[
(2s + 2 log(2)− 1)m

s−1
s

]
exp

[
m

s−1
s +ε

] +
(

exp
[
m

s−1
s +ε

]
+ 1
)

exp

(
− (qmin (δ)− q (S?0 , S

?
1 ))

2
m

36

)
.

Therefore, if n = ω(s3 log(d)) and n = seω(s2), the estimator is consistent under the assumptions of
Corollary 7.
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