Supplementary materials for ‘“‘Communication-Efficient Distributed
Learning via Lazily Aggregated Quantized Gradients"

A Proof of Lemma
With the LAQ update, we have:
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where the second equality follows from: (a,b) = 1(||al|* + ||b]|* — |la — b]|*) and the last inequality

is resulted from: || 37 | a3 < n >0, |lai®.
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B Proof of Lemma
With Assumption under the LAQ we have:
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For the ease of expression, we define 84 := 1 Zf’: 28> d=1,2,---,D. Then the Lyapunov function
defined in can be written as '
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where the second inequality follows from Young’s Equality: ||a+b||3 < (1+p)|lall3 + (14 o~ H)|b]13.
The last inequality is resulted from
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where the second inequality follows from (7a). Substituting Q(6%) = Vf(6*) — €* into gives
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D
<= SIVAO ) +a (VAO").) + 15+ (5 + A0+ )% 35 D a0 0~
d=1

D—1
L -
+ (5 + B0+ p2)’[IVF(0%) = €"I3+ D (Bass — Ba) |07 — 0"
d=1

_ _ 3L .
—Bp| """ — 6" DH§+(7+351)(1 IM > (llemllz + 1en H13)
memk

< [(—5 + gpr)a+ (L+28)(1+ p2)a?IVF OB +{I5 + (5 + 81+ 070?52 — o}

1647 — 0" 7|13 + Z o B+ 970?28+ Bars — fa}6M 0~ 63
3a 3L R
+ 5+ (G 380+ )%IM Y (lenl3 + len ' 12)
memMk
1
+ et (L4280 + p2)a’] €3
(24)
where the second inequality is the consequence of
(V5(0").") < 2ol VFO)IB + 5 "3 (5)
’ -2 2p1

The following conditions are sufficient to guarantee the first three terms in (24) are non-positive.

(—5 + gor)a+ (L+26:)(1 + pa)a® <O (262)
5+ (é +B1)(1+ p{l)aﬂ% +Bas1 — Ba <0, Vd € {1,2,---,D —1}; (26b)
[% + (g +B)(1+py "o’ ]gD Bp <0. (26¢)

By simple manipulation after replacing 84 by £ Y7, ¢; in (26), we attain (T7).
Assumption indicates f(+) satisfies the PL condition:

2u(f(6%) = £(67) < |V £(8")I3. @7

Let c be defined as
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Then,

D
V(O™ —V(0") < —c[f(8")~F(07)+_ Ball0™ T —0" 31+ Blle" 3+ D (lemlE+lIen 13,

d=1 meMk
(29)
ie.,
V(') <ouV(0") + Bl E+ D (llemll3 + llen 1)), (30)
meMk
where o1 = 1 — ¢, B = max{gz—a + (L +261)(1 + p2)o?, [% + (% +381)(1 + p; ')’ M}.
C Proof of Theorem
We can first prove that there exist constants o2 € (0,1) and B; > 0 such that,
V(0%) < oh V0 (31a)
ek |I% < BiT?a5V°, vm e M. (31b)

where V° is a constant which depends on the initial condition of LAQ algorithm. The constants By,
o1, 02 and stepsize « should satisfy

02 — (2405 ) BMpBi7* > o1 (32a)
241" _i
>+ 9p+3)72 + 9pr’o; " < oo (32b)
nBi
v
a2y (32¢)

Then just by letting P = max{V®, B}V°} we can obtain desired result (19).

In the following part, we just prove (31). First it is not difficult to verify that we can set V° to be
large enough to ensure @) is satisfied for k = —¢,—t + 1,---,0. Then we assume that for some
k >0, (I9) holds for k —t,k —t+1,--- , k. In the following, we need to show that (T9) is true for
k+1,k+2,--- ,k+t+ 1. It turns out that proof for k + 2,--- |k + ¢ + 1 is similar to that for k& + 1,
hence, we only show the proof for &k + 1.

1) proof of for k + 1:
V(0 ) <o105V° + BMpBi 205 V° + BMpBir(1 + 05 o V°

=[o1 + (24 05 ) BMpBir?)o5V® < ok +1v° &9
where the last inequality is the result of (32a).
2) proof of for k + 1:
The following holds according to the definition of Lyapunov function:
F(6%) — f(67) < V(8") < o5 V°. (34)

Assumption indicates there exists a constant L’ such that |V f(01) — Vf(02)|ec < L'||01 —
92”00, Ym e M and Val, 02.

Because of convexity, the following inequality holds for any 6, and 05:
<me(91) — me(eg),el — 92> >0, Vm € M (35)

which means for any mi,ms € M, Vfn,(01) — V fm,(02) and V fr,(01) — V fim, (02) are of the
same sign element wise. (Hint: if there exists an ¢ such that [V f., (01) — V fin, (02)]i - [V fm,(01) —
V fm2(02)]: < 0, then letting all the entries other than i-th entry of 8; — 6> be zero and [0, — 62]; #
0 ylelds <me1 (01) — mel (02), 0, — 02> . <me2 (01) — me2 (02), 0, — 02> <0, which contradicts
). Therefore, for any 6 and 6,

M

IV fm(61) = Vi (02) o < | Y V(1) =V fin(62)]|

m=1

(36)
= ||V f(61) — Vf(62)|lco < L'[|01 — 62|00, Ym € M.
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Having this we can show
k
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The second inequality holds because, if criterion is not satisfied for k, Qm( N m) — Qm(0F) =0,

-1

otherwise 0r, = 0, ', and | Qum(0%) — Qum(0n) oo = |Qm(0) — Qu (B Nleo < 1Qm(6") —
Qu (B Hll2 < \/ iz Yoy Sall@F T T — 02 3([lek I3 + (k13 -

Because of Assumptlon. 2| the following holds

16— 0|3 < %[f(B) — £(6%)]. (38)

Thus, we have
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Since (32c¢) holds,
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Substituting into yields:
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where the second inequality follows from and the last equality is the result of (32b). Therefore,

5112 < 72(RE)? = 72|V £ (0"FY) — Qu () |2 < Bir2ok V0 “2)

+ (9p + 3)Bir? + 9pBir?o; ok VO < Bio{y0
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Here we have finished the proof that hold for any integer k > 0.
Now we show that there do exist o1 € (0,1) and o2 € (0,1) such th and are satisfied. First,

wefix pr =1, p2=1and & = & = -+ = €p = &, which reduces (17) as:
1
< .
D¢ < 6 (43a)
1/1
<—(=- .
a < 17 (8 2Df> (43b)
Thus, we set D§ = %and a = 327, n € (0,1). With the condition number « := % > 1, it follows that
_ o n@2-—m) 14-—n 4—n ’D—l _ o n@2-mn) 14-n,
e =min{ e T B —dt Dla | ™M 56, 3ap (44a)
3n(n+18)M
B =1 T 077 44
1024L (445)
. . 2_ _
We choose D < &, the it can be verify % < 1342—]3” holds. Hence,
g _n2=mn)
or=1-c=1 CHT (45)
Above values enforce (17) satisfied. Then we check (32). That holds means
8uL 8 46)

12 e

where we use L ~ L’. In practical problem, —> < 1 usually holds. Then we first show a necessary
condition for (32a):

1-BZ>o1 47)
which with B and o in {44b) and plugged in is equivalent to the following :
8u—54M 27M
m7 with pu > R (48)

Note that ¢ > 27M /4 can be achieved by scaling the loss function. Scaling the loss function does not
change the learning problem and does not changes the condition constant «. It worths mentioning that
itis only when p; = 1 and p, = 1 (46) and (8} should hold. Actually, p; and p. are only constrained
as 0 < p1 < 1 and p2 > 0. Consequently, 7 has a lager range of choice instead of only in the range

described by (46) and (48).

For any o, € (0,1), there exists a ¢ > 1 such that ;' < B,, where B, is not too large. Define
halh5¢ . < -
n' := Bi7?, then a sufficient condition of (32a) and @ is

014 (24 B2)BM?p)) < 02 < 1; (49a)
24L"?
[ e +9p(Ba 4+ 1) + 3]7% < 0. (49b)

When 7’ is chosen to be small enough and o3 is close enough to 1, @ is equivalent to . Hence,
choosing 7 satisfying (46) and (48) is sufficient to guarantee (49a). With n’ fixed, we can let 7 to be
small enough to ensure that (49b) holds. So far, we have shown that we can find o and o2 satisfying
0 < 01 < 02 < 1, thus validate LAQ converges at linear rate.

D Alternative proof of Theorem 1 based on a new Lyapunov function

For this proof we define Lyapunov function as

D D
V(6") = £(6") — £(87) + D03 6" - 0t 4y 3 ek (50)

d=1 j=d meM

which differentiates from the that defined in the paper in that the error is included.

b Y2 < 72 (REFY)? = 22V £ (0"Y) = V£ (68) + V £ (6%) — Qu(0%) + Qun(0%) — Qun (B)]|2

<3720 0% — 083 + 372 ek |2 + 372 Qm (0%) — Qu (@) I3
(G
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Then the one-step Lyapunov function difference is bounded as
v(eHt) — V(")
< —a(VF(6),Q0M) + SIVIEIBE+ 51 D QuiBn ) — Q613
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L _ _ _ _
+ (5 + B+ 3T L) 0" — o’“|\2+z Bar1 — Ba)||0°T ¢ — 0|5 — Bpll@* T P — 0" "3
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meM meM
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L -
+ (5 + B+ 3T L) (L4 p2)o?[QOMIIE + D (B — Ba)ll6™ " — 6° |13
d=1

— — ~k—1
—Bpl0" T 0" IS 44377 1) Y llemllZ 3977 D 1Qm(n ) — Qm (83

meM meM
D
@ kN2 k k (e L —1y 2 2 1 k+1—d k—d| 2
< = — s - —
< =SIVAON)I3 +a(Tr0"),e") +1(5 + (5 +B)(1 + 92 )a®)M + 397 | 2l 0"~ |I3
D—1
L - - -
+ (5 B 3y L) (L + p2)a([VF(0%) = €85 + D (Bayr — Ba)l|0"H 7 — 055 — B[0P — 073
d=1
3a 3L - ke
+ [+ (5 36+ 99 L) (1t 2 Na® + 3977 IM Y (lemllz + l1&m 12 +9(B37° = 1) Y el
meMk mem
1 1
< (=5 + gpn)at (L4261 +6v7° L) (1 + p2)a”]| V£ (6°) |2
o L _ _ _
UG+ (5 4B+ 37721+ ps a2 )M +377°) 52— ) 6"H17P — 9P|
D-1 o I €
+ D {5+ (5 4B+ 3y L) (1 + pz )a®)M + 3y7%] 50 + Bapr — Ba}077 7 — 673
d=1
3a 3L 2 gh-1
+G + (G 38+ 99 L) (14 p3 o’ +377 M Y (lenlls + l1en ' 12)

meMk

1
+ g et (L 28+ 6y L)L+ p)al 397 = 1) 37 flenlis
meM
(52)

where the second inequality uses the Young’ inequality and the third inequality follows from .

It is straightforward that the following condition guarantees the first three terms in above inequality
are nonpositive

1 1 ’
(=5 + gpa+ (L4261 +6y7°L%)(1 + p2)a® < 0;

o L , _ ép
(G + (G b+ 3yr2 L) (1 4 p3 a®)M + 3477 S~ P <0 (53)
L , _
(5 + (5 + 81+ 377 L) (1 + p3)a®) M + 3772175‘}\4 +ha1 = a0
For the ease of exposition, we define constant ¢ and B as
c=min{(1 — p1)a — 2u(L + 261 + 6y7>L"?)(1 + p2)a?,
o L _ ép
1-[(=+(= 3yr2L?)(1 HYa? )M + 3y72| 21—
[(2+(2+ﬂ1+ YT )( +p2 )O() + ’}/T]QQMBD’ (54)
Ba+1 a L 272 —1y .2 2 &a
1-— — (= — 3 L 1 M+ 3
Bd [(2+(2 +61+ T )( +p2 )Oé ) + ’YT]agMﬁd}
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and,

3a¢ 3L 1
B = maux{[7—1—(7—&—361—&—977'2L'2)(1—i—p271)a2—i—?ry7'2]M7 ﬁa—&—(L—ﬂﬁl+6772L’2)(1+p2)a2}.
1
(55
Assumption indicates f(+) satisfies the PL condition:
2u(£(6%) — £(67)) < |VF(6")]3. (56)
Plugging into (52)) gives
V(O <oiV(0") + Bl 12+ D (lemllz + 1€n 1D +4B37° = 1) > llemll
meM meM (57)
< o1V(0%) + [BMp* + B+4(37° = 1] D llewllz +Bp”* Y llen'II3
meM meM
where o1 =1 — c.
By choosing parameter stepsize « that impose the following inequality hold
[BMp® + B +~(3r° —1)] <0, (58)
one can obtain .
V(O < V(0" + Bp* = v D llen I3
meM
<oVO") +BYS S max  v(6") (59)

k—t<t/<k—1
meM

< o V(0") + BMp21 max V(Gt’).

Y k—t<t/<k—1

For simplicity, we fix p; = %, pe =1, By = W

Consequently, we obtain

, o= %,and'yT2 = %,withmb > 0.

B= [370( + (% + 361 + 9y’ L?)a® + 3y M
(60)
3a 3a 2a 9bL
= [ﬁ + (? +3D§+ 9ab)f + ML/Q}
and
P 2
¢ mnin { 14+ 2DE+ 6ablla 3 = (5a+ Dg +3ab) + armwr | 6D
K D—-d+1
For the design parameter D, we impose D < k. From (61}, it is obvious that the following condition
1 1 1 3bL?
- < (=
[2 4(a + 2D¢E + 6ab)la < 3 (2a+D§+3ab)+aL,2M (62)
guarantees
14 2D¢ + 6ab
ez 2 (‘““K“ ablla. 63)
1_
Thus, we obtaino; =1 —c=1— 3 4(a+2£g+6ab)]a.
Following [8) Lemma 3.2], if the following condition holds
o1+ BMpQ% <1 (64)
then it guarantees the linear convergence of V, that is,
V(0") < o5 V(6") (65)

where 0y = (01 + BMpQ%)ﬁ. It can be verified that a = 55, b = 5, D = o5 and 72 <

o J[M2p? (3L 2] s a sufficient condition for (53), (62) and (64} being satisfied. Therefore,
the linear convergence of is indeed guaranteed. With above selected parameters, we can obtain

1 1 L2 IR . )
o1 = _1 —‘m.and oy =(1- 0005 T M?p?(9835= + 57)7%) T It is thus obvious that w1tl.1 .the
quantization being accurate enough, i.e., 72 — 0, the dependence of convergence rate on condition

number is of order é, which is the same as standard gradient descent.
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E Proof of Proposition

Suppose that at current iteration & the last iteration when worker m communicated with server is
d where 1 < d’ < d,n, then 871 = 9*—4'_ Therefore,

~Ak—1 gl T 4
1Qm (0 ) — Qum(0°)]3 =[Qum (8" ") = V (0" ™%) — Qum(0") + V fm(0") + V fm (0" ") — Vm(8")]13
<3| fm (8" 1) = Vm(0°)3 + llemllz + ller, @ 113)
<3L2, 1105 — 0|5 + 3(llek )13 + ller “ 113)
dl
=3L5,| > 0" 1 — 0" 3 + 3(llemlz + lem ©113)
d=1
d’ ,
<BLAd Y (108 T — 65 + 3(llemll3 + llen T 3)-

t=1
(66)
From the definition of d,,, and &; > & > --- > £p, it can be obtained that:
2 o Lo " satisfyi <d < dnm.
L;, < 32 MDD’ for all d satisfying 1 < d <d (67)
Substituting into gives:
d/
~k—1 ’ _ _ nk—
1Qm (B ) — Qum(8°)]3 < af}i\ﬂ > a6 — 08 + 3(llemll3 + llen I3
d=1
LD (68)
< e 0 &alle" T — 05 E + 3(lenn 15 + 1€k )
d=1

which exactly means that ll is satisfied. Since d,, < D < ¢, the criterion holds, which means
that worker m will not upload its information until at least ¢,, iterations after last communication.
therefore, in first k iterations, worker m has at most k/(d.. + 1) communications with the server.

F Intuition of the selective aggregation criterion

The following part shows the inspiration for the criterion, which is not mathematically strict but
provides the intuition. For simplicity, we fix o = 1/L, then we have:

(67
Abp = =5 IV (O[3

Afag==5IVFOMIBE=all Y (Qubn )= QuE")I.

meMmk

(69)

The lazy aggregation criterion selects the quantized gradient innovation by judging its contribution to
decreasing the loss function. LAQ is expected to be more communication-efficient than GD, that is,
each upload results more descent, which translates to:

k k
ALag _ Agp

7
= o
By simple manipulation, it can be obtained that is equivalent to:
k-1 ME
1Y @@ )~ Qu@ )1 < 2w on 2 an
memk
Since e e
1D QB ) = QuB™ ) <M D 11(@m(Bn ) — Qm(68°)]]3, (72)
memk meMmk
the following condition is sufficient to guarantee (71)):
1@ (@) = Qu(O™)I3 < IV F(6")[3/(2M?), ¥m € ME. (73)
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However, to check locally for each worker is impossible because the fully aggregated gradient
V £(8%) is required, which is exactly what we want to avoid. Moreover, it does not make sense to
reduce uploads if the fully aggregated gradient has been obtained. Therefore, we bypass directly
calculating ||V £(6%)||3 using its approximation below.

D
2 - -
IVAOMIE~ =5 > gallo™ =013 (74)

k=1

where {¢4}5_, are constants. The fundamental reason why holds is that V f(8*) can be approxi-
mated by weighted previous gradients or parameter differences since f(-) is L-smooth. Combining
and leads to proposed criterion with quantization error ignored.

G Simulation details

Logistic regression In multi-class logistic regression, suppose there are C' classes, for instance,
in MNIST dataset, C' = 10. The training data x,,,, is denoted as feature-label pair (x/, ., %%, ),
where x{n,n € RY is the feature vector and xlmm € RY is the one-hot label vector. Hence the model
parameter € R“*¥is a matrix, which is slightly different from previous description. Note that
the model is formulated in this way for the convenience of expression, which does not change the
learning problem. The estimated probability of (m, n)-th sample belonging to class 7 is given by

&inn = softmax(exi"n’n) (75)
which can be explicitly written as:
N l0xh nli _
Ko n)i = W, vie{1,2,---,C}. (76)

Regularized logistic regression adopts loss as cross-entropy plus regularizer:
< A
((mn, 0) = = 3 X )i 10g[&im n]i + 5T7(676) (a7

where T'(-) denotes trace operator, and 87 is the transpose of 8. With £(x,, ., ) defined, the local
loss functions can be determined as f,,(0) = 3.2 £(xm.n; @), and the global loss function adopts
following form:

1
FO) = D fn(0) (78)
meM
where N is the total number of data samples. In our tests, the regularizer coefficient A is 0.01.

Neural network. We employ a ReLU network of one hidden layer with 200 nodes, the dimensions
of input layer and output layer are 784 and 10, respectively. The regularizer parameter A = 0.01.
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