
Supplementary Material to
“Understanding Attention and Generalization

in Graph Neural Networks”

Boris Knyazev
University of Guelph

Vector Institute
bknyazev@uoguelph.ca

Graham W. Taylor
University of Guelph

Vector Institute, Canada CIFAR AI Chair
gwtaylor@uoguelph.ca

Mohamed R. Amer∗
Robust.AI

mohamed@robust.ai

1.1 Additional results
0 200 400 600 800 1000

Training epoch

20

40

60

80

100

Ac
cu

ra
cy

 /
Ra

tio
 o

f n
od

es
 (%

)

Attn AUC Avg. class. accuracy of "should be pooled" nodes of "should be dropped" nodes Ratio of pooled nodes, r

0.01

0.02

0.03

0.04

0.05

Pr
ed

ict
ed

 a
tte

nt
io

n
co

ef
f.,

bad initialization (cos. sim.=-0.75) good initialization (cos. sim.=0.75) optimal initialization (cos. sim.=1.00)

S
U

P
E

R
V

IS
E

D
A

T
T

E
N

T
IO

N

0 200 400 600 800 1000
Training epoch

20

40

60

80

100

Ac
cu

ra
cy

 /
Ra

tio
 o

f n
od

es
 (%

)

0.01

0.02

0.03

0.04

0.05

Pr
ed

ict
ed

 a
tte

nt
io

n
co

ef
f.,

0 200 400 600 800 1000
Training epoch

20

40

60

80

100

Ac
cu

ra
cy

 /
Ra

tio
 o

f n
od

es
 (%

)

0.005
0.010
0.015
0.020
0.025
0.030
0.035

Pr
ed

ict
ed

 a
tte

nt
io

n
co

ef
f.,

0 200 400 600 800 1000
Training epoch

20

40

60

80

100

Ac
cu

ra
cy

 /
Ra

tio
 o

f n
od

es
 (%

)
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ed

ict
ed

 a
tte

nt
io

n
co

ef
f.,

(a) (b) (c)

Figure 1: Influence of initialization on training dynamics for COLORS using GIN trained in the
supervised ways. In the supervised cases, models converge to a perfect accuracy and initialization
only affects the speed of convergence. In these experiments, we train models longer to see if they can
recover from a bad initialization. For the unsupervised cases, see Figure 4.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale/std of initialized attention weights,

0

20

40

60

80

100

Av
g.

 c
la

ss
. a

cc
ur

ac
y,

 %

(a) GIN: COLORS (n=16), unsup attention
Xavier's normal
Xavier's uniform
Kaiming's normal
Kaiming's uniform
normal
uniform

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale/std of initialized attention weights,

0

20

40

60

80

100

Av
g.

 c
la

ss
. a

cc
ur

ac
y,

 %

(b) GIN: COLORS (n=16), sup attention
Xavier's normal
Xavier's uniform
Kaiming's normal
Kaiming's uniform
normal
uniform

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale/std of initialized attention weights,

0

20

40

60

80

100

Av
g.

 c
la

ss
. a

cc
ur

ac
y,

 %

(c) GIN: COLORS (n=16), wsup attention
Xavier's normal
Xavier's uniform
Kaiming's normal
Kaiming's uniform
normal
uniform

1.0 0.5 0.0 0.5 1.0
Cosine similarity with GT attention

0

2

4

6

8

10

St
d

of
 in

it.
 a

tte
nt

io
n

fo
r

,

(d) GIN: COLORS (n=16), unsup attention

0

20

40

60

80

100 Avg. class. accuracy, %

Figure 2: Influence of distribution parameters used to initialize the attention model p in the COL-
ORS task with n = 16 dimensional features and the GIN model. We show points corresponding to the
commonly used initialization strategies of (Xavier [1]) and (Kaiming [1]). (a-c) Shaded areas show
range, bars show ±1 std. For n = 3 see Figure 6. For the GCN model we observe similar trends, but
with lower accuracies.

∗Most of this work was done while the author was at SRI International.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Table 1: Additional results on three tasks for different test subsets. ChebyGIN-d - deeper atten-
tion model. ChebyGIN-h - higher dimensionality of the input fed to the attention model (see Table 2
for architectures).

COLORS TRIANGLES MNIST-75SP
ORIG LARGE LARGEC ATTN ORIG LARGE ATTN ORIG NOISY NOISYC ATTN

GIN, global pool 96±10 71±22 26±11 99.2 50±1 22±1 77 87.6±3 55±11 51±12 71±5
GIN, DiffPool [2] 58±4 16±2 28±3 97 39±1 18±1 82 83±1 54±6 43±3 50±2
ChebyGIN-d, unsup, ours 97±13 24±8 15±5 91±21 62±14 25±3 78±2 96.4±1 88.4±10 88.3±10 92±15
ChebyGIN-h, unsup, ours 67±38 15±8 1±1 69±25 59±13 25±4 76±4 95.5±3 76±20 65±18 74±33

1.2 Additional analysis

How results differ depending on to which layer we apply the attention model? When an atten-
tion model is attached to deeper layers (as we do for TRIANGLES and MNIST-75SP), the signal
that it receives is much stronger compared to the first layers, which positively influences overall
performance. But in terms of computational cost, it is desirable to attach an attention model closer to
the input layer to reduce graph size in the beginning of a forward pass. Using this strategy is also
more reasonable when we know that attention weights can be determined solely by input features (as
we do in our COLORS task), or when the goal is to interpret model’s predictions. In contrast, deeper
features contain information about a large neighborhood of nodes, so importance of a particular node
represents the importance of an entire neighborhood making attention less interpretable.

Why is initialization of attention important? One of the reasons that initialization is so important
is because training GNNs with attention is a chicken or the egg sort of problem. In order to attend to
important nodes, the model needs to have a clear understanding of the graph. Yet, in order to gain that
level of understanding, the model needs strong attention to avoid focusing on noisy nodes. During
training, the attention model predicts attention coefficients α and they might be wrong, especially
at the beginning of training, but the rest of the GNN model assumes those predictions to be correct
and updates its parameters according to those α. This problem is revealed by taking the gradient
of an attention function (Eq. 1): Z = α�X , where X = f(w, ·) are node features, and f is some
differentiable function with parameters w used to propagate node features: ∂Z

∂w = ∂Z
∂f

∂f
∂w = α ∂f

∂w .
Gradients ∂Z

∂w , that are used to update parameters w in gradient descent, reinforce potentially wrong
predictions α, since they depend on α, and the model solution can diverge from the optimal one,
which we observe in Figure 4 (a,b). Hence, the performance of such a model largely depends on the
initial state, i.e. how accurate were α after the first forward pass.

2

1.3 Dataset statistics and model hyperparameters

Table 2: Dataset statistics and model hyperparameters for our controlled environment experi-
ments. Hyperparameters α̃ and r are chosen based on the validation sets.

COLORS TRIANGLES MNIST-75SP

train graphs 500 30,000 60,000
val graphs 2,500 5,000 5,000 (from the training set)
test graphs ORIG 2,500 5,000 10,000
test graphs LARGE/NOISY 2,500 5,000 10,000
test graphs LARGEC/NOISYC 2,500 − 10,000
classes 11 10 10
nodes (N) train/val 4-25 4-25 <=75
nodes (N) test 4-200 4-100 <=75

layers and filters 2 layers, 64 filters in each 3 layers, 64 filters in each 3 layers: 4, 64, 512 filters
Dropout 0 0 0.5
Nonlinearity ReLU ReLU ReLU
pooling layers 1 2 1
READOUT layer global sum global max global max

GIN aggregator SUM
2 layer MLP with 256 hid. units

SUM
2 layer MLP with 64 hid. units

SUM
2 layer MLP with 64 hid. units

ChebyGIN aggregator
MEAN

1 layer MLP3
SUM
2 layer MLP with 64 hid. units

MEAN

1 layer MLP3

ChebyGIN max scale,K 2 7 4

Attention model p applied to input layer4
Same arch. as the class. GNN,
butK = 2 for ChebyGIN,
applied to hidden layer (Eq. 4)

p applied to hidden layer5

Default initialization N (0, 1)
U(−a, a) for linear layers ac-
cording to [1] in PyTorch N (0, 1)

Optimal weights of
attention model

collinear to p = [0, 1, 0] Unknown Unknown

Ground truth
attention for node i

αGT
i = 1/Ngreen

αGT
i = Ti/

∑
i Ti, Ti is

the number of triangles that in-
clude node i

αGT
i = 1/Nnonzero,

where i - indices of super-
pixels (nodes) with nonzero
intensity, Nnonzero - total
number of such superpixels;
αGT

i = 0 for other nodes6

Attention model of
ChebyGIN-d

2 layer MLP with 32
hid. units

4 layer GNN with
32 filters

2 layer MLP with 32
hid. units

Attention model of
ChebyGIN-h

32 features in the in-
put instead of 4

128 filters in the first
layer instead of 64

32 filters in the first
layer instead of 4

Optimal threshold, α̃ chosen in the range from 0.0001 to 0.1 (usually values around 1/N are the best)
Example of used α̃ 0.03 – unsup, 0.05 – sup 0.0001 – unsup, 0.001 – sup, 0.01 – weak-sup 0.01

Optimal ratio, r chosen in the range from 0.05 to 1.0 with step 0.02-0.05 (usually values close to 1.0 are the best)
Example of used r 1.0 1.0 – unsup, 0.97 – sup 0.3

β in loss (Eq. 5 in the paper) 100
Number of clusters in DiffPool 41 41 25

Training params
100 epochs (lr decay after 90)2

Models with attn: 300 epochs
(lr decay after 280)

100 epochs (lr decay after 85
and 95 epochs)

30 epochs (lr decay after 20
and 25 epochs)

1In DiffPool, the number of clusters returned after pooling must be fixed before we start training.
While this number can be smaller or larger than the number of nodes in the graph, we still did not find
it beneficial to use DiffPool with a number of clusters larger than 4 (the minimal number of nodes in
training graphs). Part of the issue is that we train on small graphs and test on large ones and it is hard
to choose the number of clusters suitable for graphs of all sizes.
2Fewer than for attention models, since they converged faster.
3We found that using the SUM aggregator and 2 layer MLPs is not necessary for COLORS and
MNIST-75SP, since the tasks are relatively easy and the standard ChebyNet models performed

3

comparably. For MNIST-75SP, the SUM aggregator and 2 layer MLPs were also unstable during
training.
4Since perfect attention weights can be predicted solely based on input features.
5Attention applied to a hidden layer receives a stronger signal compared when applied to the input
layer, which improves results and makes it unnecessary to the use a GNN to predict attention weights
as we do for TRIANGLES.
6For supervised and weakly-supervised models, we found it useful to set αGTi = 0 for nodes with
superpixel intensity smaller than 0.5.

Table 3: Dataset statistics and model hyperparameters for experiments with unavailable
ground truth attention. Dataset subscripts denote the maximum number of nodes in the train-
ing set according to our splits. ∗In COLLAB nodes do not have any features and a common practice is
to add one-hot node degree features, in the same way as we do for TRIANGLES. The range of node
degrees is from 0 to 491, hence the input dimensionality is 492. Results are reported after repeating
the experiments 100 times: 10 seeds defining train/test splits × 10 seeds defining model parameters.
Hyperparameters α̃ and β are chosen based on 10-fold cross-validation on the training sets. Since the
training sets are small in these datasets, it is challenging to tune hyperparameters this way. Therefore,
in some cases, we adopt a strategy as in [3] and fix hyperparameters for all folds.

COLLAB35 PROTEINS25 D&D200 D&D300

input dimensionality 492∗ 3 89 89
train graphs 500 500 462 500
test graphs 4500 613 716 678
classes 3 (physics research areas) 2 (enzyme vs non-enzyme)
nodes (N) train 32-35 4-25 30-200 30-300
nodes (N) test 32-492 6-620 201-5748 30-5748

layers and filters 3 layers, 64 filters in each, followed by a classification layer
Dropout 0.1
Nonlinearity ReLU
pooling layers 1
READOUT layer global max
ChebyGIN aggregator MEAN, 1 layer MLP (i.e. equivalent to GCN [4] ifK = 1 or ChebyNet [5] ifK = 3)
ChebyGIN max scale,K 3 1 3 3

Optimal threshold, α̃ chosen in the range from 0.0001 to 0.1
Example of used α̃ 0.002 0.0001 for unsup, 0.1 for weak-sup 0.005 0.01

β in loss (Eq. 5 in the paper) chosen in the range from 0.1 to 100
Example of used β 0.5 10 10 0.1

Attention model
2 layer MLP with 32
hidden units applied
to hidden layer

p applied to hidden layer
2 layer MLP with 32
hidden units applied
to hidden layer

Default initialization U(−a, a) for linear layers according to [1] in PyTorch

Training params 50 epochs (lr decay after 25, 35 and 45 epochs)

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[2] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. In Advances in Neural Information Processing
Systems, pages 4805–4815, 2018.

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations (ICLR), 2019.

[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems, pages 3844–
3852, 2016.

4

	Additional results
	Additional analysis
	Dataset statistics and model hyperparameters

