A Proofs of Lemmas in Section 4

A.1 Proof of Lemma 4.1

We first present the following lemma. The proof is given in Appendix C.

Lemma A.1. Let f(z) and g(z) be two non-trivial increasing functions. Let Z; and Z5 be zero-mean
jointly Gaussian random variables. If Var(Z;) = Var(Z;) = 1 and § = Cov(Z, Z3) > 0, then
Cov[f(Z1), 9(Z2)] is an increasing function of 6, and we have Cov[f(z1), g(z2)] > 0.

Proof of Lemma 4.1. Since Cov(w' Z,w'T Z) = w'w’, by Lemma A.1 we know there exists an
increasing function v (7) such that (w'w’) = ¢(w,w’) and ¥(7) > 0 for 7 > 0. ¥(7) < A
follows directly by Cauchy-Schwarz inequality. O

A.2 Proof of Lemma 4.2

Proof of Lemma 4.2. For M, if k = 0 it is obvious that M = 0. If k # 0, we have
|k|(2LI1Tv*| + Vk) - || QLILTv* |+ VE) _ (2L|1Tv*| 4+ 1)
A+ 2k - K2k ||
This upper bound if M does not depend on k.

<

For D, since we assume that o < 1/(8A), it suffices to show that x2M?k is bounded. Similar to the
bound of M, if k = 0 clearly s M?k. If k # 0, we have

KIELATY'| + VI _ o [IslVEELLTY' £ 1))
A+ K2k - K2k

Therefore D has an upper bound that only depends on the choice of activation function o(+), the

ground-truth parameters (w*, v*) and the initialization (w", v°). The results for Dy and p are

obvious. O

K2k = 2LV [+ 1)2

B Proofs of Results in Section 5

In this section we give the proofs of the claims and lemmas used in Section 5.
B.1 Proof of Claim 5.1

Proof of Claim 5.1. Note that forany 7 = 1,...,n, P;x;, j = 1,...,k are independent standard
Gaussian random vectors. Therefore we have vjo(w ' P;x;)-§1v;P/x; = 0 for j' # j. Moreover,
suppose that z is a standard Gaussian random vector. Let wy,..., W, _1 be a set of orthonormal
vectors orthogonal to w, then we have

r—1
Elo(w'2)z] = Bufo(w'2) - (w'2)] - w+ Y Eilo(w'z) - (w]2)] W,
j=1
=E,fo(w'z)  (w'z)] -w
= g - W,
where the second equality follows by the fact that ijz, j=1,...,7 — 1 are independent of w ' z

and have mean 0. Note that this argument for w also works for w*. Therefore, we have

n k k
1 _
Elgw(w, V)] =- E E{ Yi — E vio(w P;x;)| - E I3 1vj/Pj/x1}
i=1 j=1 j=1

k
. ¢ Pax;

3 Xi
j'=1

k
Z U;O’(W*ijxi) — Z UjO'(WTPin,)

i=1 j=1 j=1
k k

= — g viviw' — g viw

- JI J
=1 =1
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This proves the first result. The second identity E[g,(w,v)] = g,(w,Vv) directly follows by the
definition. O

B.2 Proof of Lemma 5.2
Proof of Lemma 5.2. Define

ng(wav) _gw(w/7V)H2 ||gw(W,V) _gw(W’V/)H?

Hyw = sup . , Hyy:= sup ; ,
w,w’ EWp ||W - W ||2 v,v'€Vy HV -V Hz
veVy weWy
Hyp = sup lg.(w,v) — gv/(W/,V)Hg’ H,, = sup g (W, v) — g:,(w,v')Hg
w,w’ €Wy HW*W ||2 v,v €Vy ||V*V ||2
vEVy weWy
For any 61, ...,d5 > 0, we first give the following lemmas.

Lemma B.1. If n > (r + k) log(34/d1 ), then with probability at least 1 — ¢y, we have

1 n k k
sup E Z Z |bjaTiji| . Z b;,a/TPj/X,i
=1

aa’es™ Vi i
b7b/esk—1

< CVk,

where C is an absolute constant.
Lemma B.2. If n > (r + k) log(68/d2), then with probability at least 1 — d2, we have

n k k

1
sup — Z ija(aTiji) . Z bia TPyx; < CLVE,

aa’es™ i T §'=1

where C' is an absolute constant.
Lemma B.3. If n > (r + k) log(34/ds3), then with probability at least 1 — d3, we have

1 n k k
sup — E E |bjaTPin‘ . E ‘b;/a/TP]‘/XA < Ck,
a,a’EST_l n im1 =1 — p
b,b’eskt !

where C'is an absolute constant.
Lemma B4. If n > (r + k) log(68/d4), then with probability at least 1 — d4, we have

n k k
1
sup - — ZZ lbja’ Pyx| - Z v,0(a’"Pjx;)| < CLE,

a,a'GS;_ll i=1 j=1 jr=1
b,b’ €5t~

where C' is an absolute constant.
Lemma B.5. If n > (r + k) log(102/d5), then with probability at least 1 — 05, we have

n k k
1
sup  — Z ijo(aTiji) : Z Vyo(a T Pjix;) < CL?k,
aa’es™t T j=1
b,b’esk1
where C' is an absolute constant.
Lemma B.6. If n > (r + k) log(18/ds), then with probability at least 1 — dg, we have

n k

1
sup — E €; - E bjaTiji < Cv,
acs™ ' iy 4
besk—1

where C' is an absolute constant.
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Lemma B.7. If n > (r + k) log(18/d7), then with probability at least 1 — 47, we have

sup Z |€;] - Z bja  Pjx;| < CvVk,

j=1

where C is an absolute constant.

Let 6 = §/9, 92 = d4 = 26/9, 65 = /3 and dg = 67 = §/18. Then we have 01 + d3 + 4 + 05 +
d¢ + 07 = 0. By union bound and the assumption that n > (r + k) log(324/¢), with probability at
least 1 — §, the results of Lemmas B.1, B.2, B.4, B.5, B.6, and B.7 all hold. We are now ready to
prove (5.1)-(5.4).

Proof of (5.1). By Assumption 3.1 and Lemma B.1 we have

2" [gw(w, v) — guw (W', V)]

How=_ 2P o=
acS™ 1 veV, 2
< wp el iyy|y aPjx
wes Py, & MG 2 2 ||w w'|| 7%
Sclg_lD(z) ka

where C is an absolute constant.

Proof of (5.2) For any a € S"~!, by definition we have

aT[gw(WaV) - gw<W,V/)] = Il + 12 + I3 + ]47

where
1 n k k
Il - _EZZU;U(W*TP]XI) Zg (U]' _U]/)a PJ/X“
i=1 j=1 j'=1
1 k
L=—3"3 (0= v)o(w Pjxi)- Y & lvpal Pyx;,
i=1 j=1 =1
1 n k k
L= ZZU;U(WTPJXZ') Z § (v —vj)a Pyx,
i=1 j=1 j/=1
1S, &
Iy = - ZQ‘ Z & vy —vj)a Pyx;
=1 j'=1

By Lemma B.2 and Lemma B.6 we have

I < O LVE|[VH|2|lv = V|2,
In, I3 < Co Do ' LVE|v — v'||2,
I, < 021/571”" — V|2

foralla € S"~1, w € Wy and v, v’ € Vy, where C is an absolute constant. Since 2||[v*||z + Do <
3D, we have

a’[gu(w,v) — gu(w,v')]
v —=v'll2

Hw'u - sup S 03571(1/ + D()L\/g),

acsS™ !t wew,
v,v' €Vy

where Cj is an absolute constant.
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Proof of (5.3) By definition we have

a'[gy(w,v) — go(W', V)]
[w — w2

H,, = sup
aeSkfl,VEVO
w,w’ EWp

a' {[¥(w) - 3Z(w)] "y + [T (W)E(w) - BT (W) E(w')]v}

T estev nlw—w]s

aeSkF—t vey,
w,w’ €Wy

<+ I+ I,

where

= sup _722% o(w'P;x;) — o(w T P;x;)] ZU,UW P,ixi),

aESk 1 i=1 j=1 |W W/”Q
wW,W GWO
n k k T T
L= s 23N aelw Pyx) 3 wlr Prx) - olw! Byoxi)]
aesk—t vey, n i=1 j=1 j=1 HW - W ||2
w,w'EWO
k k
1 <& TP, _ TP
Ié _ sup 1 Z Z a; [U(W JXz) ‘/7(W sz)] Z ’UJ/O'(W/ P]/XZ))
aest lvevy, i1 [w — w2 Jrom’
w,w’EWO

Therefore by the Lipschitz continuity of o(+), Lemma B.4 and Lemma B.7, we have

I < sup ZZ JHW W’II b, Z Who(w T Pyx:)| < CaLk|[v*a,
acsP T j'=1
w,w'GWo
_w\T
IL < sup ZZ'GJ o(w Px;)|- Z vjr ij/xi < CyLDyk,
aESkil,VEVO i=1 j=1 §'=1 HW*W ||2
w,w’ €Wy
k
I < sup ZZ ]HW W/H P X Z lvjo(w'TPjix;)| < CyLDok,
aesFlvev, iz 1j=1 J'=1
w,w’ EWy
I < sup Z|ez Z a; /) P,x; < CyuVk,
aes*1, = HW 2
w,w/EWo

where C is an absolute constant. Since ||v*||2 < Dy, we have

Hy < Cs(v + DoLVE)WVE,
where Cj is an absolute constant.
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Proof of (5.4) By Lemma B.5 we have
a'[g,(w,v) — go(w,v')]

H’U’U = sup 7
acsh 1t wew, [v—=v'll2
v,v €Vy
Ty T 1
a'Y' wXw)(v—v
L wp AETWEWE V)
aes* 1 wew, nfv = vl
v,v EVy
= sup —fZZa] o(w'P; %) Z 7 WTPj/x,»)
aESkil,WEWO i=1 j=1 ||V -V ||2
v,v' €V
< CeL’k,
where Cj is an absolute constant. This completes the proof of Lemma 5.2. [

B.3 Proof of Lemma 5.3

We first introduce the following lemma.

Lemma B.8. Let z be a standard Gaussian random variable. Then under Assumption 3.1, o(z) is
sub-Gaussian with

lo(2)[lw, < CLand[lo(z) = £lly, < CT,
where C'is an absolute constant, L = 1 + |o(0)| and ' = 1 + |o(0) — x|
Proof of Lemma 5.3. By assumption, with probability at least 1 —4/3, the bounds given in Lemma 5.2

all hold. let N1 = NWy, (kn)™1], No = N[Vy, (kn)~1] be (kn)~!-nets covering Wy and V,
respectively. Then by the proof of Lemma 5.2 in [36], we have

VY] < (3kn)", |Na| < (3kn)".
For any w € Wy and v € V), there exists w € N and v € N5 such that

lw =Wz < (kn) 7", [lv = ¥2 < (kn) ™

Proof of (5.5). By triangle inequality we have
||gw(W, V) - gw(wv V)HQ S Al + A2 + A37

where
A1 = [|guw(W, V) — guw(W,V)|l2,
Az = [|gw(W, V) — 8, (W, V)|l
= [[8,(W, V) — 8, (W, V)||2.

For A;, we have
Al < ng(W,V) - gw(‘;\%V)HQ + ”gw({’\WV) - gw(w,V)Hz
< CLETIDIVE|W — W||a + Cof (v + DoLVE) ||V — V|2

< C3¢ Y v+ DE + DoL) (B.1)

1
my
where C1, Cy and C5 are absolute constants. For As, by direct calculation we have
8, (W, V) = Elgu (W, V)]
Let N3 = N(S"71,1/2) be a1/2-net covering S”~*. Then by Lemma 5.2 in [36] we have |[N3| < 5",
By definition, for any a € N3 we have

a'g,(w,v) Z ~ Ui+ e +Kr1T (V= V)V,
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where
k k k
Ur = ZU;‘ [o(w* T Px;) — k], U; = Zﬁj [o(W P;x;) — K], Vi = ZﬁjaTiji.
j=1 j=1 j=1

By Lemma B.8, o(w* "P;x;) — x and o(W P;x;) — k are centered sub-Gaussian random variables
with [|o(W* TP x;) — K|, [|lo(W TP ;x;) — 4, < C4T for some absolute constant Cy. Therefore
by Lemma 5.9 in [36], we have |U}|y, < Cs||[v*||2I and ||U;|ly, < CsDoI', where Cs is an
absolute constant. Similarly, we have ||V; ||y, < CsDy for some absolute constant Cs. Therefore, by
Lemma E.1 we have

U5 = Ui + € + 817 (v* = 9)]Villy, < CrDo[(Do + [[v*[|2)T + M + v]

S CgDQ(DoF + M + l/),

where C7 and Cy are absolute constants. By Proposition 5.16 in [36], with probability at least 1 — /3,
we have

(r + k) log(90nk/d)

2’ [gu (W, V) — 8, (W, V)]| < Cof ' Do(Dol" + M + u)\/

forall w € M1, Vv € A5 and a € N3, where Cy is an absolute constant. Therefore by Lemma 5.3 in
[36], we have

(r+ k) log(90nk/d)

Ay < C10€ Do(DoT + M + V)\/ (B.2)

forall w € M7, Vv € N, where Cyq is an absolute constant. For A3, by triangle inequality we have

Az < [[80 (W, V) = 8y (W, V)2 + [[8(W, V) — 8o (W, V)2

< |VIEIwW = w2+ [[[IVI5 = V3] + [v* " (v = ¥)]]

< Di|lw — W2 + 3Dg|lv — V|2

< 4Do(Dg + 1)(nk)~t. (B.3)
By (B.1), (B.2), (B.3), and the assumptions on sample size n, we have

||gw(w, V) _ gw(w’ V)”2 < C11€71D0(D0F + M+ V)\/('f' + k) 105(90nk/5)’

where (17 is an absolute constant.
Proof of (5.6). By triangle inequality we have
lgo(w,v) =8, (W, v)|l2 < By + By + Bs,

where
By = [|lgu(w, V) — 8o(W,V)]|2,
By = [|gu(W, V) — 8, (W, V)||2,
Bs = ||g,(W,V) — 8, (W, V)]

For B, by Lemma 5.2 we have
By < |[go(w, v) — 8o(W, V)[l2 + [|8o(W, V) — 80 (W, V)2
< Cha(v + DoLVEWE| W — Wlja 4+ CisL2k||v — V|2
< Cra(wVk + DoLk + L%k)/ (nk), (B.4)
where C5, C13 and C14 are absolute constants. For Bs, by direct calculation we have
g8,(W,V) = E[gy (W, V)].
Let Ny = N(S*711/2) be a 1/2-net covering S*~!. Then by Lemma 5.2 in [36] we have
|NV4| < 5*. By definition, for any b € Ay we have
b'g,(W,v) = f% U= Ui+ ei+r1" (v =9)(U] + £1"D),

i=1

n
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k
U = Zvj* [o(w*TP;x;) — k], U; = Zﬁ;[o(vAvTiji) — k], Ul = ij [o(W ' P;x;) — K.
Similar to the proof of (5.5), we have |U/ ||y, < Ci5|[v*|[2T, [|Us|ly, < CisDol, and ||U]]|y, <
C151, where (5 is an absolute constant. Therefore by Lemma E. 1, we have
I[UF = U; + € + k1T (v = 9)](U} + £1"b)||y, < Cr6(T + sVE)[Dol + M + v,

where C¢ is an absolute constant. By Proposition 5.16 in [36], with probability at least 1 — ¢ /4 we
have

(r + k) log(90nk /o)

D7 [0 (§.9) — £ (%, 9)]] < Cur(T + wv/R) Do + M + W

forallw € N1, v € N5 and b € Ny, where Cy7 is an absolute constant. By Lemma 5.3 in [36], we
have

(r + k) log(90nk/d)

g0 (W, V) — &, (W, ¥)||2 < Cus(T + sVE)[Dol' + M + V]\/ (B.5)

for all w € N7,V € N3, where Cig is an absolute constant. For Bs, by definition and Lemma B.9
we have

3 < (A+kE)|[v = V]2 + [[v¥]l2|p(w, w") — (W, w")|

< (A4 wE)[|[v = Vll2 + LI[v*|2[lw — W]l

< (A + Kk + DoL)(nk) ™" (B.6)
By (B.4), (B.5), (B.6) and the assumptions on the sample size n, we have

(%) ~ B,z < Cuoll + mVDD + 01 o]y [ EIOBL0ES)

where C'g is an absolute constant. This completes the proof of (5.6). ]

B.4 Proof of Lemma 5.4

We remind the readers that L = 1 4 |0(0)| and " = 1 + |o(0) — | are constants that only depends
on the activation function. We introduce the following notations. Let

gy =8,(W, V'), &, =g, (W,v'),
ot =wt —agl,, vTl=vt—-ag.
Then it is easy to see that for any fixed w', v¢, the vectors g, gf),ﬁt“,vt“ defined above are
expectations of g, g!  u'T! vi*! respectively. We will also use the result of the following lemma.

Lemma B.9. Under Assumption 3.1, for any fixed unit vector w, ¢(w, -) is Lipschitz continuous
with Lipschitz constant L = 1 + |o(0)].

Proof of Lemma 5.4. We now list the proof of (5.7)-(5.10) as follows.
Proof of (5.7). By the definition of w'*! and g we have

't =w! —agl, = (1 — o v!2)w' + a(v*Tv)w".

The equation above implies that when 1 — a[v?||2 > 0, @'*! is in the cone spanned by w and w*.
To simplify notation, we define i = ' ™! /[|[a’™!||o. By 1 — a||v![|2 < 1 and a(v*Tv?) > ap, we
have

t E * T xrt
wla>w*' P 14 P

— B.7
lapw* +wilz  Japw +wils = 1+ ap ®B7)

The first inequality in (B.7) is further explained in Figure 2. Moreover, by Lemma 5.3 we have
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' Jrl(Worst position)

Figure 2: Explanation of (B.7). The two arrows denotes w* and w?. The gray area shows all possible
positions of aw* + bw! with a > ap and 0 < b < 1. We use blue and green dots to represent
the worst case of ' ™" and 1 respectively. The first inequality in (B.7) is then easily obtained by

. o~ . . . . * t
replacing U with its worst case value, which is %.

™t =2 = allgl, —&Lll2 < anw.

By Lemma E.2, we have

2am
t+1 o w
W =12 < W
By w*Tw? > 0, we have
1

@t |e = [|(1 = o v*[5)W" + cwﬂ—v"‘w*H2 >1—alvl3>1-aD}> 3

Therefore,
Wit — 1|y < dam,. (B.8)

Since w*, wt and 4 are all unit vectors, by (B.7) we have

1 R 1 1
- w3 > —F 4 1— < w T —wi|3).
2 1+ap 1+ap 2

Rearranging terms gives

[u— w2 < W' — w*|l2.

1+ap
By (B.8) we have
W' — w2 + dan,, <

1 1
wt+1 7W* <
I o< s = VT

Rearranging terms again, we obtain

8a/1+ ap
1+ 1T+ apm”'

Iw" = w*[|2 +

* — 1 * —
W't —w* ||y = 8p7 (1 + ap)ny < ﬁ[l\wt — w2 = 8p7 (1 + ap)nu).

1+«
This completes the proof of (5.7).
Proof of (5.8). By the definition of g’ we have
17gl = 1T {(AT + 2117 )v! — [p(w!, w")I + k211" ]v*}
= (A + /BT — [p(w!, w*) + k2E]1 T v
= (A+KE)LT (VI = v*) + [A — p(w!, w1 Tv".
Therefore,

17(FH —v) =1 —a(A + 21T (v —v*) — a[A — ¢(w!, w*)]1Tv".
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By Lemma 5.3, [17 (vt — vt)| < a|17 (g" — &)| < aVk|gt — 8|2 < aVkn,. Therefore by
triangle inequality we have

1T v < [ oA+ 2R (v v+ alA - g(w!, w177 + avim,.
By lemma B.9, we have
A —p(w',w")| = [p(w", w") — p(w', w")[ < L][w' — w" 2.
Therefore,
T v < [ oA+ 2RI (v v+ aLllw! — w21 V7| + avEn,. (B9
This completes the proof of (5.8).
Proof of (5.9). By the definition of g’,, we have
= (AT + 211 ")v! — [p(w!, w*)I + £211 T ]v*
= Av! — g(w!, wH)v* + H211T(Vt —v¥)

= AWV —v") 4+ [A — p(wh, wH)v* + k2117 (v — v¥). (B.10)
Therefore
(v! = v*) gl = AV = VI3 + [A = p(w!, W) (v = v7) Tv*
> AV = V7|3 = 1A = o(w!, wH)| - [[vF = vl vz

By Lemma B.9, we have
|A - ¢(Wt7W*)| = |¢(W*aW*> - ¢(Wt7W*)‘ S LHW* - WtHQ'
Therefore,

(V) TE 2 AV VR - Lw Wl v ol
L2
> v = v - g (T IV B - i + Alv - vIR)

L2
oAl

A
> SVt = v I - v Bl — w3

By Lemma 5.3, we have

2

A L
fev) e > SV VIR = SR IVEIBIWT = W = (v = v e,

(v =
A t * (|12 i * 12 * t)2 2
> vt = vl = SXIV B llwT — Wl — 2
Moreover, by (B.10) we have
Ighllz < AV = v lla + LIV [lallw’ = w* |l + &> VE[LT (v = v7)].
By Lemma 5.3, we have
lghllz < AV = v¥l2 + LIV flallw’ = w* |l + &VE[LT (v = v*)| + 10,
Therefore,
IV =3 = v~ agl — V713
= v = vIl3 — 2a(v! = v*) g + a?[lgl I3
Plugging in the previous inequalities gives

L2
IV v (- ol a0 v = v+ (5 40?2 e - w

2
+ 4T (v — v + (Aa + 4042)773
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This completes the proof of (5.9).
Proof of (5.10). We first check w'™! € W. By (B.7) and (B.8) we have

Tt
ap+w*'w
*T it > P

— dany,.
T ap o

Since w! € W, we have w* ' w® < 2w*T wt. Moreover, by w*TwY < 1, we have

Twttl > P TR0 11 *T T 0

1
* 0 *
4 > .
W =7 21 W W ATy =2 9 W W

where the last inequality follows by the assumption that

Since |[w!t!||s = 1, we have w!™t € W. For vi*!, since vt € V, by (5.9) and the definition of M
and D we have

IV = VI < (1 — 0 + 402A2) vt — v + a(A + 40) L2V 3 -4
+402k2M?k + 2a(A7! 4 2a)
< (1 — aA +4a*A?)D? + aA(1 — 4aA)D?
= D>
Therefore we have ||[viT! — v*||y < D. Since v! € V, by (B.9) and the definition of M we have

K17 (VT = v < L= (A + &2E)]|R1T(vF =) + afw| L[ w" = w"[[2[1Tv"| + als]Vn,
<1 — oA+ K2E)M + 2a|s| L1 TV + a|c|VE
<1 — (A + K2E)M + oA + K2 k)M
=M.

*Tvt—',-l

We now check v > p. By assumption we have x2(17v*)1T (vl — v*) < p. Therefore by

definition we have
VgL = Avi TVl + k2(1Tv) (1 TvY) — p(w* T wh)|[ve ]2 — w2(1Tv")?
<AV =g (w Twh) [V + p.
By Lemma 4.1, ¢(7) is an increasing function. Therefore,
v Tt = v T (vt — ag!)
> vVt —alAvi Ty —y(w*Tw)[v¥([3 + o]
> (1= al)v v+ agp(w* Tw?/2)[[v¥]3 — ap
> (1 —al)p+ap(w*Tw?/2)|[v¥]3 — ap.
By the definition of p, we have
(W Two/2) VI3 = 2+ A)p.
Therefore we have
VIV > (1 —aA)p+ a2+ A)p—ap=(1+a)p.
Moreover,
VTV - T < v o
By the assumptions on n we have ||v*||2n, < p. Therefore

VIV > (T4 a)p — af|v¥|lam > p.
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Finally, we check x2(1Tv*)1 T (viT! — v*) < p. By definition we have
17g! = 1T {(AT + k2117 )v! — [p(w!, wH)I + k211 T ]v*}

= (A + &)1V — [p(w!,w*) + 2E]1 T v

By Lemma 4.1, we have ¢(w', w*) < A. Therefore,
1Tv)(17g) = (A + £k ATV (V) — [g(w', w*) + £2k](1Tv*)?
> (A4 21 Tv)1LT (v = v7),
and
ATv)1TEFH —v) <ATv)1IT (v = v*) — (A + K2R (A Tv)LT (v — v¥)

[1— A+ K2E)]ATv)LT (v —v*).

Since v € V, by Lemma 5.3, when 1 — a(A + k2k) > 0 we have

R2ATVILT (VI = v <1 — a(A + &20)][2(ATv)1LT (v — v 4 ar?1 TV [VEn,
<1 — (A + K2K)]p + ar?[1 TV |VEn,

211 T <, *
2 2 k%1 V|\/E
<1 —a(A + K%k)]p + a(A + K%k) - 17V M.
= \/E v

By the assumption on n we have |17 v*|k~1/27, < p. Plugging it into the inequality above gives
H2(1Tv*)1T(Vt+1 o V*) < p.

Therefore we have (wi™t vitl) e W x V. O

B.5 Proof of Lemma 5.5

The following auxiliary lemma plays a key role in converting the recursive bounds to explicit bounds.
Lemma B.10. Leta,b € (0,1), ¢1,c2 > 0 be constants. If sequences {u; }1>0, {vs }+>0 satisfies

U1 < auy 4 c1bt + co, vy < avg + 1t + o

then it holds that

1 ]
ug < a'ug + ert(a Vb)) + ey : . vy < alvg + %td(a VD) 4 :
—a

The proof of Lemma B.10 is given in Section E in appendix. We can now apply Lemma B.10 to the
recursive bounds (5.7), (5.8) and (5.9).

Proof of Lemma 5.5. The first convergence result for w' directly follows by Lemma 5.4 and (5.7).
To prove (4.4), we first derive the convergence rate of |17 (v! — v*)|. By (4.3) and Lemma 5.4, we
have

1T (v =) < 1T (v = v+ aL[L TV i [w? — w2 + 8a L1 v |p~
+ aVEn,.

By Lemma B.10, we have
T (v = v < AT (VO = v+t Vs) al1Tvi|[|w’ — w¥||;

+8L|lT v*|p~ quﬂrfm
A+ k2K
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Therefore, by Lemma 5.4 we have

IV = v 3 <3 lv! =PI+ 2(A7 + da)al? V3 (7 |w — w3 + 6407y M)

4 12a2R4k{7§t|1T(VO _ V*)|2 + t2(,>/1 vV 73)2ta2L2|1TV*‘2||W0 _ W*Hg

A+ K2k

2a
+ <A + 4a2> n?

<AV = VI3 + Ryt (v s)* + Rs.

n <8L|1TV*IP1%% + \/Em>2}

where
Ry =2(A7" +da)al?|v*[5[w’ — w*[|5 + 1206 K[[1T (v — v¥)[?

+a?L21TvPlwO - w 3],

R, = 128(A7Y + 4a)aL?|v*||2p 2y 02 + 12a2f<;4k<

2
+ <Aa +4a2>n3.

We can then further apply the second bound in Lemma B.10 to the above inequality and obtain

SLILTv |p~ yinw + VEn, |
A+ k2k

V' = v*[l2 < Rit*2 (71 V72 V 43)" + (Re + Ralk|VE) (e + 70),
where
R, = \/Q(A—l + 4&)QL2||V*||2||WO — w2 + 4(1&2\/E[|1T(v0 —v9| + ||VO —v"2

+al|tTv|[w? — w2,

1

Ry = ————[16+/(1 4+ 4aA) L2||v*||2p 1972 + 32V aAKL[1 v |p~ 1y + V2 + 4aA],
12«

Bty = Al —4aA)’

This completes the proof of convergence of v?. O

C Proofs of Lemmas in Appendix A
C.1 Proof of Lemma A.1

The following lemma gives a generalized version of Hoeffding’s Covariance Identity [21]. This result
is mentioned in [31], and a version for bounded random variables is proved by [9]. We give the proof
of the version we present in Appendix E.

Lemma C.1. Let X, X5 be two continuous random variables. For right-continuous monotonic
functions f and g we have

Cov[f(X1),9(X2)] = . Cov[L(X1 < 1), 1(Xz < x2)]df(z1)df(22).

We also need the following lemma, which is a Gaussian comparison inequality given by [34].

Lemma C.2 ([34]). Let X,Y € R be two centered Gaussian random vectors. If E(X?) = E(Y;?)
and E(X;X;) <E(Y;Y;) forall4,j = 1,...,d, then for any real numbers 71, ..., 74, we have

]P(Xl STl,...,Xd STd) S]P(Yl STl,...,YdSTd).
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Proof of Lemma A.1. Tt directly follows by Lemma C.1 and Lemma C.2 that Cov[f(Z1), g(Z2)] is
an increasing function of . Moreover, let U; and U, be independent standard Gaussian random
variables. Then it is easy to check that

d
@P(Ul le,gUl-i- \/1—02U2§£U2) >0

0=0

for all 1,z € R. Therefore for non-trivial increasing functions f and g, by Lemma C.1 and the
definition of Lebesgue-Stieltjes integration, we have Cov[f(Z1), g(Z2)] > 0. O

D Proofs of Lemmas in Appendix B
D.1 Proof of Lemma B.1

Proof of Lemma B.1. Let Ny = N(S"71,1/8), No = N(S¥71,1/8) be 1/8-nets covering S"~!
and S¥~1 respectively. Then by Lemma 5.2 in [36] we have |N| < 17" and [Ns| < 17%. Denote

k
} :A/ ~Nal
b]-/a Pj/Xi
i'=1

It is easy to see that Z?,:l b;,ﬁ’TPj/xi, 1 = 1,...,n are independent standard normal random

n k
~ ~ 1 N
A@A b)) == " [pa Pixl-
(a>a7 9 ) n |]a JX|

i=1 j=1

variables. Moreover, foreachi = 1,...,n,a " P;x;,j = 1,...,k are independent standard Gaussian
random vectors. By triangle inequality we have

k
ST haPxl| < Cilbly < CiVE,
j=1

2

where (' is an absolute constant. Therefore, by Lemma E.1 we have
k k
T aT T
Z jbja’ P,x;| - Z via Pjix;
j=1 j'=1

where () is an absolute constant. By Proposition 5.16 in [36], with probability at least 1 — §; we
have

S 02\/E7

P1

IAGR,&,b,b) — E[AGR,&,b, 5| < CsVF Ww) log(34/61)
n

forall 8,2’ € N and b, b’ € N3, where C5 is an absolute constant. By the assumptions on n we
have

|A(3,d,b,b') — E[A(3,d, b,b)]| < C3VE.

Moreover, by the definition of 1 -norm we have

E[A(3,d,b,b")] < ||A@,&,b,b')|y, < CoVk.
Therefore

|A@,&,b,b')| < C4Vk

foralla,a’ € N and b, b’ € N, where Cy is an absolute constant.
Forany a,a’ € S and b, b’ € S¥~1, there exists a,a’ € N and b, b’ € N5 such that

la—8llz, [la" — &z, b — b2, [b' b/l < 1/8.
Therefore

A(a,a’,b,b") < CVEk+ 1) + I + Is + I, (D.1)
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where

I, = |A(a,a’,b,b') — A(a,a’, b, b)|,
I, = |A(aa a/7b7]3/) - A(a7 alvgvg/”a
I3 = |A(a7 alvgvg/) - A(a7 3/7373/”’
I, = |A(a,@,b,b') — A(@,a,b,b)|.
Let
A= sup A(a,a’,b,b)
a,a’csm !
b,b’esk~1

Then we have
L < A(a,a’,b,b' — b)
= b — B’||2A<a, a’,b, b/_lo/)
[b" — b’[l
< [Ib" — b4
Similarly, we have
L <||b—b|,4
Iy < [la" — @A
Iy < |ja— a2 A.
Plugging the inequalities above into (D.1) gives

_ 1

A< Ok + 34
Therefore we have A < 2C4/k. This completes the proof. O
D.2 Proof of Lemma B.2

Proof of Lemma B.2. Let N1 = N (S"~1,1/8), No = N(S¥~1,1/8) be 1/8-nets covering S™~!
and S*~! respectively. Then by Lemma 5.2 in [36] we have |/\/1| < 17" and |[Ns| < 17%. Denote

A(a,a,b,b') ZZbaanz Zb’,ﬁ P, x;.
=1 j=1

For any &,a’ € A; and b, b’ € N3, by Lemma B.8, oc(@"P;x;), j = 1,...,r are independent sub-
Gaussian random variables with ||o(a" P;x;)||y, < C1L for some absolute constant C;. Therefore
by triangle inequality, we have

< CoLVk,

k
Z o(a P iXi)
J=1 P2

where (', is an absolute constant. Moreover, since P x;, j' =1,...,k are independent Gaussian
random vectors, we have

< (s

Z b/ /TP X
o

for some absolute constant C. Therefore, by Lemma E.1 we have || A(a,3’, b, b’ My < CoLVE,
where () is an absolute constant. By Proposition 5.16 in [36], with probablhty atleast 1 — d5/2, we
have

~ ~ ~ ~ I
1A8,8,b,b) — EA®R,&,b,b)] < C5L\/E\/<T + ) 10g(68/02)
n
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foralla,a’ € N7 and 57 b e N3, where Cj is an absolute constant. Therefore by the assumptions
on n we have

A@,&,5,B)| < CoLvVE + [EA@&, &, b,B)|,

where Cj is an absolute constant. Moreover, by the definition of 1)1 -norm we have

EA@, &, b,b') < [|A@,a,b,b)|y, < C4sLVEk.
Therefore we have
|A(@,a’,b,b)| < C7LVE

for some absolute constant C;. Now for any a,a’ € S"~! and b, b’ € S¥~1, there exists a,a’ € N}
and b, b’ € N5 such that

la = &2, [la" —&[l2, b = b2, [[b = b'[l> < 1/8.

Therefore
A(a,a’,b,b") < CrLVE+ I, + I + I3 + I,
where
I = |A(a,a’,b,b') — A(a,a’,b,b’)|,
I, = |A(a, a',b,B’) — A(a, a’,B,E’)L
I; = |A(a,a’,b,b') — A(a,a’,b,b’)|,
I, = |A(a,@,b,b') — A@,@,b,b)|.
Let
A= sup A(a,a’,b,b)
a,a’esm !
b,b’esk—1

Since A(a,a’, b, b’) is linear in a’, b and b’, we have
I < b = b/[|24, I < b= bl|o4, I3 < [la’ — &'||,4
Moreover, by the Lipschitz continuity of o(-), we have

1 n k N
Iy < = bj(a—a) P,x|-
S Y e ) Py

i=1 j=1

7 T
bj’ Pj/ Xl

j'=1
Therefore by Lemma B.1 with §; = d2/2 we have
I < CsVEk|a—a'|
for some absolute constant Cs. Summing the bounds on I, ..., I gives
A< CyLVE+4)2,
where Cj is an absolute constant. Therefore we have A < 2CyL+/k. This completes the proof. [

D.3 Proof of Lemma B.3

Proof of Lemma B.3. Let Ny = N(8"71,1/8), No = N(S¥~1,1/8) be 1/8-nets covering S"~!
and S¥~1 respectively. Then by Lemma 5.2 in [36] we have |A7| < 17" and [Ns| < 17%. Denote

A(a,a,b,b') ZZ ;2" P;x| Z b8 TP x|,

lljl
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Forany a,a’ € \; and b, b’ € N, by triangle inequality, we have

Z v,a T Pix;

]_

<Ok

j/aTPin

11)2 )2

for some absolute constant C. Therefore, by Lemma E.1 we have || A(a,a’ .b, b’ N, < Cak, where
(5 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1 — d3, we have

(r+ k)log(34/63)

|A@,a’,b,b’) — E[A(a,a’,b,b)]| < cgk\/

forall @,a’ € N; and b, b’ € N, where Cs is an absolute constant. Therefore by the assumptions
on n we have

|A(@,a,b,b)| < Csk + |E[A(3,d, b, b')]|.
By the definition of 11 -norm we have
E[A(@,&,b,b)] < |A@, &, b,b)|y, < Cok.
Therefore we have
|A@,3",b,b')| < Cuk,

where Cj is an absolute constant. Now for any a,a’ € S"~! and b,b’ € S*~!, there exists
a,a’ € M7 and b, b’ € N5 such that

la — &2, ]2’ — |2, |[b — bll2, [b" — b'[ls < 1/8.

Therefore
A(a,a’,b,b") < Chk + I + Iy + I5 + I,
where
I, = |A(a,a’,b,b') — A(a,a’,b,b’)|,
I, = |A(a,a’,b,b') — A(a,a’, b, b)|,
I; = |A(a,a’,b,b') — A(a,d, b, b)|,
I, = |A(a,@,b,b') — A(@,@,b,b)|.
Let
A= sup A(a,a’,b,b)
a,a’esm !
b,b’esk~1

Since A(a,a’, b, b’) is Lipschitz continuous in a, a’, b and b’, we have
I < b = b[l2A4, I < b bl|2A, I5 < [|la’ — &||24, 4 < [la — &]|2A.
Therefore,
A< Cyk+A)2,

Therefore we have A < 2C4k. This completes the proof. O
D.4 Proof of Lemma B.4

Proof of Lemma B.4. Let Ny = N'(S"71,1/8), No = N(S¥71,1/8) be 1/8-nets covering S"~!
and S¥~1 respectively. Then by Lemma 5.2 in [36] we have |A7| < 17" and [N>| < 17F. Denote

A(a,a’,b,b') ZZV? a'P,x;| Z Vo (' TPx).

11]1
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Foranya,a’ € A and b, b’ € N, by LemmaB.8, o(@ T "P;x;),j =1,...,r are independent sub-
Gaussian random variables with [|o(2'T P;x;)||y, < C1L for some absolute constant C;. Therefore
by triangle inequality, we have

< CoLVk,
P2

k
> [bjo@ Px))|
=1

where (5 is an absolute constant. Similarly, we have

k
Z |b;-/A/TPj/Xi|
J'=1 P2

for some absolute constant C. Therefore, by Lemma E.1 we have || A(a, @', b, b/ Ny, < CyLk,
where C} is an absolute constant. By Proposition 5.16 in [36], with probability at least 1—04/2, we
have

< 03\/];

~ ~ ~ ~ 1
A5 ~ BLAG. 5,5 < Cyrky THH 0e08/0)

n

foralla,a’ € MV and B, b €N 2, where Cj is an absolute constant. Therefore by the assumptions
on n we have

|A(&,@",b,b')| < CsLk + [E[A(8, @, b, b')]|.
By the definition of ¢;-norm we have
E[A(@,@,b,b')] < |A(&,&,b,b)|ly, < CyLk.
Therefore we have
|A(a,a’ b b’)| < CgLk
for some absolute constant Cs. Now forany a,a’ € S"~! and b, b’ € S*~!, there exists a,a’ € N}
and b, b’ € N5 such that

la =&, la" —&[l2, b = b2, [[b = b'[l> < 1/8.

Therefore
A(a,a’,b,b') < CsLk + Iy + Iy + I3 + I,
where
I, = |A(a,a’,b,b') — A(a,a’, b, b)|,
I, = |A(a,a’,b,b') — A(a,a’,b,b)|,
I; = |A(a,a’,b,b') — A(a,a’,b,b)],
I, = |A(a,@,b,b') — A(@,a,b,b)|.
Let
A= sup A(a,a’,b,b).
a,a’esm1
b,b’esk~1

Since A(a,a’, b, b’) is Lipschitz continuous in a, b and b’, we have
L < b = b|l24, I < b~ bl A, L < [la— &[4
Moreover, by the Lipschitz continuity of o(+), we have

ZZH)a P,x;| - Z|b’ (@ —a) Px|

i=1 j=1
Therefore by Lemma B.3 with 63 = d4/2 we have
I3 < Crklja’ — @2
for some absolute constant C';. Since L > 1, summing the bounds on Iy, . .., I gives
A< CgLk+ A2,
where Cy is an absolute constant. Therefore we have A < 2CgLk. This completes the proof. O
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D.5 Proof of Lemma B.5

Proof of Lemma B.5. Let N1 = N(S"71,1/8), N = N(S¥=1,1/8) be 1/8-nets covering S"~*
and S*~! respectively. Then by Lemma 5.2 in [36] we have |[N;| < 17" and |N2| < 17%. Denote

S
B
E

SPVENEN 1 > AT N T
A(a,a’,b,b’) = - Z ‘ bjo(@a P;x;) - Z Vio('a Pyx;).
For any a,a’ € N; and B, b’ € N, similar to the proof of Lemma B.4, we have

< C1LVE,

)

P2 2

where C is an absolute constant. Therefore, by Lemma E.1 we have ||A(a, @, b, B’) lpy < CoL?k,
where C5 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1 — 05 /3, we
have

k
Z/b\jd(aTPin)
Jj=1

k
Z /l;;-/d(alTPj/Xi)
3'=1

(r+ k) log(102/65)

|A@,a’,b,b’) — E[A(a,a’,b,b)]| < ch%\/

forall @,a’ € N; and b, b’ € A5, where C5 is an absolute constant. Therefore by the assumptions
on n we have

|A@,a’,b,b')| < C3L%k + |E[A(A,@, b, b)].
Similar to the proofs of Lemma B.1-B.4, by the definition of v);-norm we have
E[A(@,&,b,b)] < |A@,&,b,b)|y, < CaL?k.
Therefore we have
|A(a,a,b,b)| < C4L%k
for some absolute constant Cy. Now for any a,a’ € S"~! and b, b’ € S*~!, there exists a,a’ € N}

and b, b’ € N, such that
la —&l|2, &’ — &[5, |[b = Blla, [[b' = b'l|> < 1/8.

Therefore
A(a,a’,b,b’) < C4L’k + I + I + I3 + Iy,
where
I, = |A(a,a’,b,b') — A(a,a’, b, b’)],
I, = |A(a,a’,b,b') — A(a,a’, b, b)|,
I; = |A(a,a’,b,b') — A(a,a’,b,b)|,
I, = |A(a,@,b,b') — A@,a,b,b)|.
Let
A= sup A(a,a’,b,b).
a,a’esm1
b,b’esk~1

Since A(a,a’, b, b’) is linear in b and b’, we have
I < b —b||24, I < |b— b2 A.
Moreover, by the Lipschitz continuity of o(-), we have

n k k
1 ~ . R
L=<~ D> bio@ Pix)|- > [ (2l —&) TPixil,
i=1

i=1j=1

n k k
1 ~ R o
Li<- > > hila—a)TPx)| - Y [o@ TP,

i=1j=1 J'=1
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Therefore by Lemma B.4 with d, = 2J5/3 we have

.[3 < C5k||a/ - §’||2, I4 < C5k:||a - ﬁ||2
for some absolute constant C5. Since we have L > 1, summing the bounds on Iy, . .., Iy gives

A< CgL’k + A)/2,

where Cg is an absolute constant. Therefore we have A < 2CgL2k. This completes the proof.  [J
D.6 Proof of Lemma B.6
Proof of Lemma B.6. Let N1 = N (S"=1,1/4), No = N(S¥~1,1/4) be 1/4-nets covering S"~!
and S*~! respectively. Then by Lemma 5.2 in [36] we have [N;| < 9" and || < 9%. Denote

n k
o~ 1 Z ZA ~
14(217 b) = E €; - bjaTPin.
i=1 j=1

For any a € N7 and b € N, since P X, j =1,..., k are independent Gaussian random vectors,
we have
k
ZEﬁTP]xI < 01
J=1 P2

for some absolute constant C;. Therefore by Lemma E.1 we have || A(a, B) |y, < Cav, where Co

is an absolute constant. Since EA(a, E) = 0, by Proposition 5.16 in [36], with probability at least
1 — dg, we have

(r + k) log(18/36)

|A(a,b)| < c?,y\/

for alla € N and be N2, where Cj is an absolute constant. Therefore by the assumptions on n we
have

|A(A, b)| < Cyv.
Now forany a € S"~! and b € S¥~1, there exists & € N} and b € N such that

|a — &2 [[b — b2 < 1/4.

Therefore
A(a,b) < Cav + I + Iy, (D.2)
where
I = |A(a,b) — A(a,b)|, I, = |A(a,b) — A(a,b)|.
Let
A= sup A(a,b).
aes'r‘—l
besk—1

Since A(a, b) is linear in a and b, we have
L <|b=b|.4, I, < ||la—a|,A.
Plugging the two inequalities above into (D.2) gives
Z < C3l/ + Z/2

Therefore we have A < 2C3v. This completes the proof. O
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D.7 Proof of Lemma B.7

Proof of Lemma B.7. Let N1 = N(S"71,1/4), Ny = N(S¥=1,1/4) be 1/4-nets covering S"~*
and S*~! respectively. Then by Lemma 5.2 in [36] we have |[N;| < 97 and |N3| < 9%. Denote

n k
o~ 1 ~
A@b)=— > el - > ba Pxi|.
i=1 j=1

For any a € N; and b € Ns, since P;x;,j = 1,...,k are independent Gaussian random vectors,
by triangle inequality we have

<Ok
¥

k
> A Pyx|
j=1

for some absolute constant Cy. Therefore by Lemma E.1 we have || A(a, b) |, < Cov/k, where
(> is an absolute constant. By Proposition 5.16 in [36], with probability at least 1 — d7, we have

|A(a,b) — E[A(@,b)]| < CW\/;\/(T + k) log(18/47)

n

foralla € N; and b e N 2, where Cs is an absolute constant. Therefore by the assumptions on n we
have

|A(a,b)| < CsvVE + [E[A(&, b)]|.
By the definition of ¢); -norm, we have
E[A@,b)] < 4@ b)lly, < CorVE.
Therefore we have
|A@a,b)| < CaVk

for some absolute constant Cy. Now for any a € S"~! and b € S¥~!, there exists a € A, and
b € N5 such that

Ja — &2 [[b — b2 < 1/4.

Therefore
A(a,b) < CaVk + I + I, (D.3)
where
I = |A(a,b) — A(a,b)|, I = |A(a,b) — A(a,b)|.
Let
A= sup A(a,b).
aesr—l
besk—l

Since A(a, b) is Lipschitz continuous in a and b, we have
I < |b—b|s4, I < |Ja—a|,A.
Plugging the two inequalities above into (D.3) gives
A< OV +A4)2.

Therefore we have A < 2C,vv/k. This completes the proof. O
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D.8 Proof of Lemma B.8

Proof of Lemma B.S. By triangle inequality we have
lo(2)] < lo(z) = a(0)] +[o(0)] < |z] + |0 (0)]-

Since ||z||y, < 1, by the definition of 1»-norm we have

llo (2w, = iggp*”z{E[la(Z)l”]}”” < 21;1;17’1/2{E[(|2| + o ()PP < 2[1 + [o(0)]]-

Similarly, we have
lo(2) — & <|o(z) = a(0)| + |o(0) — &] <[z +[0(0) — &].
By the definition of i)2-norm, we have
|o(2) = &lly, < 2[1+|0(0) — &[]

D.9 Proof of Lemma B.9

Proof of Lemma B.9. Let w1, Wy be two distinct unit vectors, and Uy, Us be jointly Gaussian random
T

variables with E(Uy) = E(Us) = 0, B(U}) = E(U3) = 1and B(U1Us) = “0we) € [—1,1),

Then by the definition of ¢, we have

6(3w,w2) — (3w, 2)] = [y o [o(w2)o (w]2)] ~ Eyonion [o(w 2)o (wh2)]|

< E,oniopllo(w'z)| - [(wi — wa) 2]

<o (0)[[[w1 — wal|2E(|U2|) + [[w1 — w2 2E(|U1] - [U2])
<[+ [e(0))|w* — w'[l

= L|lw* —w'[s.

This completes the proof. O

E Additional Auxiliary Lemmas

The following lemma is given by [37]

Lemma E.1 ([37]). For two sub-Gaussian random variables Z; and Z5, Z; - Z5 is a sub-exponential
random variable with

121 Zally, < CllZillw, - 122l
where C'is an absolute constant.
Lemma E.2. For any non-zero vectors u,v € R¥, if [u — v||s < p, then we have

2 20°
‘ < pVand<“,V>>1_p2.
5 vl [ull2” [[v]l2 Vi3

Proof of Lemma E.2. By triangle inequality, we have |||v]|2 — [|ull2| < [Ju—v||2 < p. Therefore,

u v

Jallz vl

‘ u v u u ‘ u v
fall2 vli2lly = [Hallz - (vlizfly (vl [Ivli2 ]y
vz = l[alla] | flu—v]2
[ulf2 - l
ull2f[v]l2 vl
< 2P
vl
Moreover, we have
2 2
4
_2<u7v>+2:‘u_v _le
[ull2” [[v]]2 [ull2 [Ivll2ll; = VI3
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Therefore we have

2 2
EERATON 4
[[ull2” [Iv]l2 Iv]2

This completes the proof. O

The following lemma follows directly from the standard Gaussian tail bound. A similar result is given
as Fact B.1 in [41].

Lemma E.3. ([41]) Letw € R* be a fixed vector. For any t > 0, we have
Pxn(0,1,) (|WTX| < w2 - t) >1— Qexp(7t2/2).

E.1 Proof of Lemma C.1

Proof of Lemma C.1. Let (X1, X3) be an independent copy of (X1, X5). Then by definition we have
Cov[f(X1),9(X2)] = E{[f(X1) = f(X1)] - [9(X2) — g(X2)]},

Cov[[L(Xy < 21), 1(X5 < 22)] = B{[1(X; < #1) — L(Xy < )] - [1( X2 < @) — 1(X> < 23]}
For f(X1) — f(X1), by the definition of Lebesgue-Stieltjes integration,

F(X0) = f(X0) = /R{ﬂ[xl < f(XD)] =1z < f(X0)]}da

_ /R[]l(:cl < Xp) = 1z < X1)]df(21).

Similarly, we have

9(X2) — g(Xa) = / [L(z2 < Xa) — (22 < Xo)]dg(a).

Therefore by Fubini’s Theorem we have

Corlf(X1).9(Xa)) = [ CovlE(¥1 < 1), 1(Xa < a)Jdfea)dg(o2).

O
Proof fo Lemma B.10. For {u;}:>0 We have
up < aug_q + b 4 e
< alaus—o + bt 4+ c2) + bt 4 e
= au;_o +c1(ab % + 07 4 o(1 4 a)
<.
1
<dlug+e(a a0+ FabT2 D) ey 7
1
< a'ug +c1t(a Vb))t +021 .
This gives the first bound. Similarly, {u;};>o for We have
v < avi—g + e (t — I)th_l + cs
<alavi_g +e1(t —2)%72 4 co) +er(t —1)% + ¢
= a’v_g + it —2)%ab % 4 (t — 1?0 4 co(1 4 a)
<l
<alvg+ [0 a2 a4 (= 2)2ab T (= 1) b T e T
—a
tt—1)(2t —1) _ 1
< gt W= Dt =) vyt
< da'vg + ¢ . (aVb) +021_a
) 1
< alvy + %t"(a V)Tt ey —
This completes the proof. O
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F Additional Experiments

In this section we present some additional experimental results on non-Gaussian inputs. Here we
consider two types of input distributions: uniform distribution over unit sphere and a transelliptical
distribution (the distribution of a Gaussian random vector after an entry-wise monotonic transform
y = x3). The experiments are conducted in the setting k = 15, r = 5 for ReLU and hyperbolic
tangent activation functions, where w* and v* are generated in the same way as described in Section 6.
Specifically, Figures 3(a), 3(b) show the results for uniform distribution over unit sphere, while Figures
3(c), 3(d) are for the transelliptical distribution. Moreover, Figures 3(a), 3(c) are for ReLU networks,
and the results for hyperbolic tangent networks are given in Figures 3(b), 3(d). From these figures,
we can see that although it is not directly covered in our theoretical results, the approximate gradient
descent algorithm proposed in our paper is still capable of handling non-Gaussian distributions. In
specific, from Figures 3(a), 3(c), we can see that our proposed algorithm is competitive with Double
Convotron for symmetric distributions and ReLLU activation, which is the specific setting Double
Convotron is designed for. Moreover, Figures 3(b), 3(d) clearly show that for hyperbolic tangent
activation function, Double Convotron fails to converge, while our approximated gradient descent
still converges linearly.

AppIoxGD: || w - wr |,
ApproXGD: || v - v* |,
DoubleConvotron: || w - w*
DoubleConvotron: || v = v* ||,

60 80
epoch

(a) ReLU+Unif. Sphere

ApproxGD: || w - w* [,
ApproxGD: || v -v* |,

DoubleConvotron: || w - w* |

DoubleConvotron: || v - v* |,

ApproxGD: || w - w* |,
APPIOXGD: || v - v+ I,
DoubleConvotron: || w = w* [l
DoubleConvotron: || v - v* I,
TIILIL T il
TVT

L

‘wauummmu“\ T
e
[

i
||

0 20 40 60 80
epoch

(b) tanh+Unif. Sphere

100

ApproxGD: || w - w* |,
ApproxGD: || v - v* |,
DoubleConvotron: || w - w ||
DoubleConvotron: || v - v* |,

0 20 40 60 80
epoch

(c) ReLU+Transelliptical

Figure 3: Experimental results for different non-Gaussian input distributions. (a) and (b) are for
uniform distribution over unit sphere, while (c) and (d) give the results for transelliptical distribiton.

100
epoch

(d) tanh+Transelliptical
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