
A Proofs of Lemmas in Section 4

A.1 Proof of Lemma 4.1

We first present the following lemma. The proof is given in Appendix C.
Lemma A.1. Let f(z) and g(z) be two non-trivial increasing functions. Let Z1 and Z2 be zero-mean
jointly Gaussian random variables. If Var(Z1) = Var(Z2) = 1 and θ = Cov(Z1, Z2) > 0, then
Cov[f(Z1), g(Z2)] is an increasing function of θ, and we have Cov[f(z1), g(z2)] > 0.

Proof of Lemma 4.1. Since Cov(w>Z,w′>Z) = w>w′, by Lemma A.1 we know there exists an
increasing function ψ(τ) such that ψ(w>w′) = φ(w,w′) and ψ(τ) > 0 for τ > 0. ψ(τ) ≤ ∆
follows directly by Cauchy-Schwarz inequality.

A.2 Proof of Lemma 4.2

Proof of Lemma 4.2. For M , if κ = 0 it is obvious that M = 0. If κ 6= 0, we have
|κ|(2L|1>v∗|+

√
k)

∆ + κ2k
≤ |κ|(2L|1

>v∗|+
√
k)

κ2k
≤ (2L|1>v∗|+ 1)

|κ|
.

This upper bound if M does not depend on k.

For D, since we assume that α ≤ 1/(8∆), it suffices to show that κ2M2k is bounded. Similar to the
bound of M , if κ = 0 clearly κ2M2k. If κ 6= 0, we have

κ2k ·
[
|κ|(2L|1>v∗|+

√
k)

∆ + κ2k

]2
≤ κ2k ·

[
|κ|
√
k(2L|1>v∗|+ 1)

κ2k

]2
= (2L|1>v∗|+ 1)2.

Therefore D has an upper bound that only depends on the choice of activation function σ(·), the
ground-truth parameters (w∗,v∗) and the initialization (w0,v0). The results for D0 and ρ are
obvious.

B Proofs of Results in Section 5

In this section we give the proofs of the claims and lemmas used in Section 5.

B.1 Proof of Claim 5.1

Proof of Claim 5.1. Note that for any i = 1, . . . , n, Pjxi, j = 1, . . . , k are independent standard
Gaussian random vectors. Therefore we have vjσ(w>Pjxi)·ξ−1vj′Pj′xi = 0 for j′ 6= j. Moreover,
suppose that z is a standard Gaussian random vector. Let w̃1, . . . , w̃r−1 be a set of orthonormal
vectors orthogonal to w, then we have

Ez[σ(w>z)z] = Ez[σ(w>z) · (w>z)] ·w +

r−1∑
j=1

Ez[σ(w>z) · (w>j z)] ·wj

= Ez[σ(w>z) · (w>z)] ·w
= ξ ·w,

where the second equality follows by the fact that w>j z, j = 1, . . . , r − 1 are independent of w>z
and have mean 0. Note that this argument for w also works for w∗. Therefore, we have

E[gw(w,v)] = − 1

n

n∑
i=1

E

{[
yi −

k∑
j=1

vjσ(w>Pjxi)

]
·

k∑
j′=1

ξ−1vj′Pj′xi

}

= − 1

n

n∑
i=1

E

{[
k∑
j=1

v∗jσ(w∗>Pjxi)−
k∑
j=1

vjσ(w>Pjxi)

]
·

k∑
j′=1

ξ−1vj′Pj′xi

}

= −

(
k∑
j=1

v∗j vjw
∗ −

k∑
j=1

v2jw

)
= gw(w,v).
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This proves the first result. The second identity E[gv(w,v)] = gv(w,v) directly follows by the
definition.

B.2 Proof of Lemma 5.2

Proof of Lemma 5.2. Define

Hww := sup
w,w′∈W0

v∈V0

‖gw(w,v)− gw(w′,v)‖2
‖w −w′‖2

, Hwv := sup
v,v′∈V0
w∈W0

‖gw(w,v)− gw(w,v′)‖2
‖v − v′‖2

,

Hvw := sup
w,w′∈W0

v∈V0

‖gv(w,v)− gv(w
′,v)‖2

‖w −w′‖2
, Hvv := sup

v,v′∈V0
w∈W0

‖gv(w,v)− gv(w,v
′)‖2

‖v − v′‖2
.

For any δ1, . . . , δ5 > 0, we first give the following lemmas.

Lemma B.1. If n ≥ (r + k) log(34/δ1), then with probability at least 1− δ1, we have

sup
a,a′∈Sr−1

b,b′∈Sk−1

1

n

n∑
i=1

k∑
j=1

|bja>Pjxi| ·

∣∣∣∣∣
k∑

j′=1

b′j′a
′>Pj′xi

∣∣∣∣∣ ≤ C√k,
where C is an absolute constant.

Lemma B.2. If n ≥ (r + k) log(68/δ2), then with probability at least 1− δ2, we have

sup
a,a′∈Sr−1

b,b′∈Sk−1

1

n

n∑
i=1

k∑
j=1

bjσ(a>Pjxi) ·
k∑

j′=1

b′j′a
′>Pj′xi ≤ CL

√
k,

where C is an absolute constant.

Lemma B.3. If n ≥ (r + k) log(34/δ3), then with probability at least 1− δ3, we have

sup
a,a′∈Sr−1

b,b′∈Sk−1

1

n

n∑
i=1

k∑
j=1

|bja>Pjxi| ·
k∑

j′=1

|b′j′a′>Pj′xi| ≤ Ck,

where C is an absolute constant.

Lemma B.4. If n ≥ (r + k) log(68/δ4), then with probability at least 1− δ4, we have

sup
a,a′∈Sr−1

b,b′∈Sk−1

1

n

n∑
i=1

k∑
j=1

|bja>Pjxi| ·
k∑

j′=1

|b′j′σ(a′>Pj′xi)| ≤ CLk,

where C is an absolute constant.

Lemma B.5. If n ≥ (r + k) log(102/δ5), then with probability at least 1− δ5, we have

sup
a,a′∈Sr−1

b,b′∈Sk−1

1

n

n∑
i=1

k∑
j=1

bjσ(a>Pjxi) ·
k∑

j′=1

b′j′σ(a′>Pj′xi) ≤ CL2k,

where C is an absolute constant.

Lemma B.6. If n ≥ (r + k) log(18/δ6), then with probability at least 1− δ6, we have

sup
a∈Sr−1

b∈Sk−1

1

n

n∑
i=1

εi ·
k∑
j=1

bja
>Pjxi ≤ Cν,

where C is an absolute constant.
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Lemma B.7. If n ≥ (r + k) log(18/δ7), then with probability at least 1− δ7, we have

sup
a∈Sr−1

b∈Sk−1

1

n

n∑
i=1

|εi| ·
k∑
j=1

|bja>Pjxi| ≤ Cν
√
k,

where C is an absolute constant.

Let δ1 = δ/9, δ2 = δ4 = 2δ/9, δ5 = δ/3 and δ6 = δ7 = δ/18. Then we have δ1 + δ2 + δ4 + δ5 +
δ6 + δ7 = δ. By union bound and the assumption that n ≥ (r + k) log(324/δ), with probability at
least 1 − δ, the results of Lemmas B.1, B.2, B.4, B.5, B.6, and B.7 all hold. We are now ready to
prove (5.1)-(5.4).

Proof of (5.1). By Assumption 3.1 and Lemma B.1 we have

Hww = sup
a∈Sr−1,v∈V0

|a>[gw(w,v)− gw(w′,v)]|
‖w −w∗‖2

≤ sup
a∈Sr−1,v∈V0

ξ−1‖v‖22 ·
1

n

n∑
i=1

k∑
j=1

∣∣∣∣ vj
‖v‖2

(w −w′)>

‖w −w′‖2
Pjxi

∣∣∣∣ ·
∣∣∣∣∣

k∑
j′=1

vj′

‖v‖2
a>Pjxi

∣∣∣∣∣
≤ C1ξ

−1D2
0

√
k,

where C1 is an absolute constant.

Proof of (5.2) For any a ∈ Sr−1, by definition we have

a>[gw(w,v)− gw(w,v′)] = I1 + I2 + I3 + I4,

where

I1 = − 1

n

n∑
i=1

k∑
j=1

v∗jσ(w∗>Pjxi)

k∑
j′=1

ξ−1(vj′ − v′j′)a>Pj′xi,

I2 =
1

n

n∑
i=1

k∑
j=1

(vj − v′j)σ(w>Pjxi) ·
k∑

j′=1

ξ−1vj′a
>Pj′xi,

I3 =
1

n

n∑
i=1

k∑
j=1

v′jσ(w>Pjxi) ·
k∑

j′=1

ξ−1(vj′ − v′j′)a>Pj′xi,

I4 = − 1

n

n∑
i=1

εi

k∑
j′=1

ξ−1(vj′ − v′j′)a>Pj′xi.

By Lemma B.2 and Lemma B.6 we have

I1 ≤ C2ξ
−1L
√
k‖v∗‖2‖v − v′‖2,

I2, I3 ≤ C2D0ξ
−1L
√
k‖v − v′‖2,

I4 ≤ C2νξ
−1‖v − v′‖2

for all a ∈ Sr−1, w ∈ W0 and v,v′ ∈ V0, where C2 is an absolute constant. Since 2‖v∗‖2 +D0 ≤
3D0, we have

Hwv = sup
a∈Sr−1,w∈W0

v,v′∈V0

a>[gw(w,v)− gw(w,v′)]

‖v − v′‖2
≤ C3ξ

−1(ν +D0L
√
k),

where C3 is an absolute constant.
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Proof of (5.3) By definition we have

Hvw = sup
a∈Sk−1,v∈V0

w,w′∈W0

a>[gv(w,v)− gv(w
′,v)]

‖w −w′‖2

= sup
a∈Sk−1,v∈V0

w,w′∈W0

−a>{[Σ(w)−Σ(w′)]>y + [Σ>(w)Σ(w)−Σ>(w′)Σ(w′)]v}
n‖w −w′‖2

≤ I ′1 + I ′2 + I ′3,

where

I ′1 = sup
a∈Sk−1,
w,w′∈W0

− 1

n

n∑
i=1

k∑
j=1

aj [σ(w>Pjxi)− σ(w′>Pjxi)]

‖w −w′‖2
·

k∑
j′=1

v∗j′σ(w∗>Pj′xi),

I ′2 = sup
a∈Sk−1,v∈V0

w,w′∈W0

− 1

n

n∑
i=1

k∑
j=1

ajσ(w>Pjxi) ·
k∑

j′=1

vj′ [σ(w>Pj′xi)− σ(w′>Pj′xi)]

‖w −w′‖2
,

I ′3 = sup
a∈Sk−1,v∈V0

w,w′∈W0

− 1

n

n∑
i=1

k∑
j=1

aj [σ(w>Pjxi)− σ(w′>Pjxi)]

‖w −w′‖2
·

k∑
j′=1

vj′σ(w′>Pj′xi),

I ′4 = sup
a∈Sk−1,
w,w′∈W0

− 1

n

n∑
i=1

εi ·
k∑
j=1

aj [σ(w>Pjxi)− σ(w′>Pjxi)]

‖w −w′‖2
.

Therefore by the Lipschitz continuity of σ(·), Lemma B.4 and Lemma B.7, we have

I ′1 ≤ sup
a∈Sk−1,
w,w′∈W0

1

n

n∑
i=1

k∑
j=1

∣∣∣∣aj (w −w′)>

‖w −w′‖2
Pjxi

∣∣∣∣ · k∑
j′=1

|v∗j′σ(w∗>Pj′xi)| ≤ C4Lk‖v∗‖2,

I ′2 ≤ sup
a∈Sk−1,v∈V0

w,w′∈W0

1

n

n∑
i=1

k∑
j=1

|ajσ(w>Pjxi)| ·
k∑

j′=1

∣∣∣∣vj′ (w −w′)>

‖w −w′‖2
Pj′xi

∣∣∣∣ ≤ C4LD0k,

I ′3 ≤ sup
a∈Sk−1,v∈V0

w,w′∈W0

1

n

n∑
i=1

k∑
j=1

∣∣∣∣aj (w −w′)>

‖w −w′‖2
Pjxi

∣∣∣∣ · k∑
j′=1

|vj′σ(w′>Pj′xi)| ≤ C4LD0k,

I ′4 ≤ sup
a∈Sk−1,
w,w′∈W0

1

n

n∑
i=1

|εi| ·
k∑
j=1

∣∣∣∣aj (w −w′)>

‖w −w′‖2
Pjxi

∣∣∣∣ ≤ C4ν
√
k,

where C4 is an absolute constant. Since ‖v∗‖2 ≤ D0, we have

Hvw ≤ C5(ν +D0L
√
k)
√
k,

where C5 is an absolute constant.
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Proof of (5.4) By Lemma B.5 we have

Hvv = sup
a∈Sk−1,w∈W0

v,v′∈V0

a>[gv(w,v)− gv(w,v
′)]

‖v − v′‖2

= sup
a∈Sk−1,w∈W0

v,v′∈V0

−a>Σ>(w)Σ(w)(v − v′)

n‖v − v′‖2

= sup
a∈Sk−1,w∈W0

v,v′∈V0

− 1

n

n∑
i=1

k∑
j=1

ajσ(w>Pjxi) ·
k∑

j′=1

vj′ − v′j′
‖v − v′‖2

σ(w>Pj′xi)

≤ C6L
2k,

where C6 is an absolute constant. This completes the proof of Lemma 5.2.

B.3 Proof of Lemma 5.3

We first introduce the following lemma.
Lemma B.8. Let z be a standard Gaussian random variable. Then under Assumption 3.1, σ(z) is
sub-Gaussian with

‖σ(z)‖ψ2 ≤ CL and ‖σ(z)− κ‖ψ2 ≤ CΓ,

where C is an absolute constant, L = 1 + |σ(0)| and Γ = 1 + |σ(0)− κ|.

Proof of Lemma 5.3. By assumption, with probability at least 1−δ/3, the bounds given in Lemma 5.2
all hold. let N1 = N [W0, (kn)−1], N2 = N [V0, (kn)−1] be (kn)−1-nets covering W0 and V0
respectively. Then by the proof of Lemma 5.2 in [36], we have

|N1| ≤ (3kn)r, |N2| ≤ (3kn)k.

For any w ∈ W0 and v ∈ V0, there exists ŵ ∈ N1 and v̂ ∈ N2 such that

‖w − ŵ‖2 ≤ (kn)−1, ‖v − v̂‖2 ≤ (kn)−1.

Proof of (5.5). By triangle inequality we have

‖gw(w,v)− gw(w,v)‖2 ≤ A1 +A2 +A3,

where

A1 = ‖gw(w,v)− gw(ŵ, v̂)‖2,
A2 = ‖gw(ŵ, v̂)− gw(ŵ, v̂)‖2,
A3 = ‖gw(ŵ, v̂)− gw(w,v)‖2.

For A1, we have

A1 ≤ ‖gw(w,v)− gw(ŵ,v)‖2 + ‖gw(ŵ,v)− gw(ŵ, v̂)‖2
≤ C1ξ

−1D2
0

√
k‖w − ŵ‖2 + C2ξ

−1(ν +D0L
√
k)‖v − v̂‖2

≤ C3ξ
−1(ν +D2

0 +D0L)
1

n
√
k
, (B.1)

where C1, C2 and C3 are absolute constants. For A2, by direct calculation we have

gw(ŵ, v̂) = E[gw(ŵ, v̂)].

LetN3 = N (Sr−1, 1/2) be a 1/2-net covering Sr−1. Then by Lemma 5.2 in [36] we have |N3| ≤ 5r.
By definition, for any a ∈ N3 we have

a>gw(ŵ, v̂) = − 1

nξ

n∑
i=1

[U∗i − Ui + εi + κ1>(v∗ − v̂)]Vi,
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where

U∗i =

k∑
j=1

v∗j [σ(w∗>Pjxi)− κ], Ui =

k∑
j=1

v̂j [σ(ŵ>Pjxi)− κ], Vi =

k∑
j=1

v̂ja
>Pjxi.

By Lemma B.8, σ(w∗>Pjxi)−κ and σ(ŵ>Pjxi)−κ are centered sub-Gaussian random variables
with ‖σ(w∗>Pjxi)−κ‖ψ2

, ‖σ(ŵ>Pjxi)−κ‖ψ2
≤ C4Γ for some absolute constant C4. Therefore

by Lemma 5.9 in [36], we have ‖U∗i ‖ψ2 ≤ C5‖v∗‖2Γ and ‖Ui‖ψ2 ≤ C5D0Γ, where C5 is an
absolute constant. Similarly, we have ‖Vi‖ψ2 ≤ C6D0 for some absolute constant C6. Therefore, by
Lemma E.1 we have

‖[U∗i − Ui + εi + κ1>(v∗ − v̂)]Vi‖ψ1
≤ C7D0[(D0 + ‖v∗‖2)Γ +M + ν]

≤ C8D0(D0Γ +M + ν),

where C7 and C8 are absolute constants. By Proposition 5.16 in [36], with probability at least 1−δ/3,
we have

|a>[gw(ŵ, v̂)− gw(ŵ, v̂)]| ≤ C9ξ
−1D0(D0Γ +M + ν)

√
(r + k) log(90nk/δ)

n

for all ŵ ∈ N1, v̂ ∈ N2 and a ∈ N3, where C9 is an absolute constant. Therefore by Lemma 5.3 in
[36], we have

A2 ≤ C10ξ
−1D0(D0Γ +M + ν)

√
(r + k) log(90nk/δ)

n
(B.2)

for all ŵ ∈ N1, v̂ ∈ N2, where C10 is an absolute constant. For A3, by triangle inequality we have

A3 ≤ ‖gw(ŵ, v̂)− gw(w, v̂)‖2 + ‖gw(w, v̂)− gw(w,v)‖2
≤ ‖v̂‖22‖w − ŵ‖2 +

[∣∣‖v‖22 − ‖v̂‖22∣∣+
∣∣v∗>(v − v̂)

∣∣]
≤ D2

0‖w − ŵ‖2 + 3D0‖v − v̂‖2
≤ 4D0(D0 + 1)(nk)−1. (B.3)

By (B.1), (B.2), (B.3), and the assumptions on sample size n, we have

‖gw(w,v)− gw(w,v)‖2 ≤ C11ξ
−1D0(D0Γ +M + ν)

√
(r + k) log(90nk/δ)

n
,

where C11 is an absolute constant.

Proof of (5.6). By triangle inequality we have

‖gv(w,v)− gv(w,v)‖2 ≤ B1 +B2 +B3,

where

B1 = ‖gv(w,v)− gv(ŵ, v̂)‖2,
B2 = ‖gv(ŵ, v̂)− gv(ŵ, v̂)‖2,
B3 = ‖gv(ŵ, v̂)− gv(w,v)‖2.

For B1, by Lemma 5.2 we have

B1 ≤ ‖gv(w,v)− gv(ŵ,v)‖2 + ‖gv(ŵ,v)− gv(ŵ, v̂)‖2
≤ C12(ν +D0L

√
k)
√
k‖w − ŵ‖2 + C13L

2k‖v − v̂‖2
≤ C14(ν

√
k +D0Lk + L2k)/(nk), (B.4)

where C12, C13 and C14 are absolute constants. For B2, by direct calculation we have

gv(ŵ, v̂) = E[gv(ŵ, v̂)].

Let N4 = N (Sk−1, 1/2) be a 1/2-net covering Sk−1. Then by Lemma 5.2 in [36] we have
|N4| ≤ 5k. By definition, for any b ∈ N4 we have

b>gv(ŵ, v̂) = − 1

n

n∑
i=1

[U∗i − Ui + εi + κ1>(v∗ − v̂)](U ′i + κ1>b),
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where

U∗i =

k∑
j=1

v∗j [σ(w∗>Pjxi)− κ], Ui =

k∑
j=1

v̂tj [σ(ŵ>Pjxi)− κ], U ′i =

k∑
j=1

bj [σ(ŵ>Pjxi)− κ].

Similar to the proof of (5.5), we have ‖U∗i ‖ψ2
≤ C15‖v∗‖2Γ, ‖Ui‖ψ2

≤ C15D0Γ, and ‖U ′i‖ψ2
≤

C15Γ, where C15 is an absolute constant. Therefore by Lemma E.1, we have

‖[U∗i − Ui + εi + κ1>(v∗ − v̂)](U ′i + κ1>b)‖ψ2
≤ C16(Γ + κ

√
k)[D0Γ +M + ν],

where C16 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ/4 we
have

|b>[gv(ŵ, v̂)− gv(ŵ, v̂)]| ≤ C17(Γ + κ
√
k)[D0Γ +M + ν]

√
(r + k) log(90nk/δ)

n

for all ŵ ∈ N1, v̂ ∈ N2 and b ∈ N4, where C17 is an absolute constant. By Lemma 5.3 in [36], we
have

‖gv(ŵ, v̂)− gv(ŵ, v̂)‖2 ≤ C18(Γ + κ
√
k)[D0Γ +M + ν]

√
(r + k) log(90nk/δ)

n
(B.5)

for all ŵ ∈ N1, v̂ ∈ N2, where C18 is an absolute constant. For B3, by definition and Lemma B.9
we have

B3 ≤ (∆ + κk)‖v − v̂‖2 + ‖v∗‖2|φ(w,w∗)− φ(ŵ,w∗)|
≤ (∆ + κk)‖v − v̂‖2 + L‖v∗‖2‖w − ŵ‖2
≤ (∆ + κk +D0L)(nk)−1. (B.6)

By (B.4), (B.5), (B.6) and the assumptions on the sample size n, we have

‖gv(w,v)− gv(w,v)‖2 ≤ C19(Γ + κ
√
k)[D0Γ +M + ν]

√
(r + k) log(90nk/δ)

n
,

where C19 is an absolute constant. This completes the proof of (5.6).

B.4 Proof of Lemma 5.4

We remind the readers that L = 1 + |σ(0)| and Γ = 1 + |σ(0)− κ| are constants that only depends
on the activation function. We introduce the following notations. Let

gtw = gw(wt,vt), gtv = gv(w
t,vt),

ut+1 = wt − αgtw, vt+1 = vt − αgtv.

Then it is easy to see that for any fixed wt,vt, the vectors gtw,g
t
v,u

t+1,vt+1 defined above are
expectations of gtw,g

t
v,u

t+1,vt+1 respectively. We will also use the result of the following lemma.
Lemma B.9. Under Assumption 3.1, for any fixed unit vector w, φ(w, ·) is Lipschitz continuous
with Lipschitz constant L = 1 + |σ(0)|.

Proof of Lemma 5.4. We now list the proof of (5.7)-(5.10) as follows.

Proof of (5.7). By the definition of ut+1 and gt we have

ut+1 = wt − αgtw = (1− α‖vt‖22)wt + α(v∗>vt)w∗.

The equation above implies that when 1− α‖vt‖22 ≥ 0, ut+1 is in the cone spanned by wt and w∗.
To simplify notation, we define û = ut+1/‖ut+1‖2. By 1− α‖vt‖22 < 1 and α(v∗>vt) ≥ αρ, we
have

w∗>û ≥ w∗>
αρw∗ + wt

‖αρw∗ + wt‖2
=

αρ+ w∗>wt

‖αρw∗ + wt‖2
≥ αρ+ w∗>wt

1 + αρ
. (B.7)

The first inequality in (B.7) is further explained in Figure 2. Moreover, by Lemma 5.3 we have
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(Worst position)

(Worst position)

Figure 2: Explanation of (B.7). The two arrows denotes w∗ and wt. The gray area shows all possible
positions of aw∗ + bwt with a ≥ αρ and 0 ≤ b ≤ 1. We use blue and green dots to represent
the worst case of ut+1 and û respectively. The first inequality in (B.7) is then easily obtained by
replacing û with its worst case value, which is αρw∗+wt

‖αρw∗+wt‖2 .

‖ut+1 − ut+1‖2 = α‖gtw − gtw‖2 ≤ αηw.

By Lemma E.2, we have

‖wt+1 − û‖2 ≤
2αηw

‖ut+1‖2
.

By w∗>wt > 0, we have

‖ut+1‖2 =
∥∥(1− α‖vt‖22)wt + αvt>v∗w∗

∥∥
2
≥ 1− α‖vt‖22 ≥ 1− αD2

0 ≥
1

2
.

Therefore,

‖wt+1 − û‖2 ≤ 4αηw. (B.8)

Since w∗, wt and û are all unit vectors, by (B.7) we have

1− 1

2
‖w∗ − û‖22 ≥

αρ

1 + αρ
+

1

1 + αρ

(
1− 1

2
‖w∗> −wt‖22

)
.

Rearranging terms gives

‖û−w∗‖2 ≤
1√

1 + αρ
‖wt −w∗‖2.

By (B.8) we have

‖wt+1 −w∗‖2 ≤
1√

1 + αρ
‖wt −w∗‖2 + 4αηw ≤

1√
1 + αρ

‖wt −w∗‖2 +
8α
√

1 + αρ

1 +
√

1 + αρ
ηw.

Rearranging terms again, we obtain

‖wt+1 −w∗‖2 − 8ρ−1(1 + αρ)ηw ≤
1√

1 + αρ
[‖wt −w∗‖2 − 8ρ−1(1 + αρ)ηw].

This completes the proof of (5.7).

Proof of (5.8). By the definition of gtv we have

1>gtv = 1>{(∆I + κ211>)vt − [φ(wt,w∗)I + κ211>]v∗}
= (∆ + κ2k)1>vt − [φ(wt,w∗) + κ2k]1>v∗

= (∆ + κ2k)1>(vt − v∗) + [∆− φ(wt,w∗)]1>v∗.

Therefore,

1>(vt+1 − v∗) = [1− α(∆ + κ2k)]1>(vt − v∗)− α[∆− φ(wt,w∗)]1>v∗.
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By Lemma 5.3, |1>(vt+1 − vt)| ≤ α|1>(gt − gt)| ≤ α
√
k‖gt − gt‖2 ≤ α

√
kηv. Therefore by

triangle inequality we have

|1>(vt+1 − v∗)| ≤ [1− α(∆ + κ2k)]|1>(vt − v∗)|+ α|∆− φ(wt,w∗)| · |1>v∗|+ α
√
kηv.

By lemma B.9, we have

|∆− φ(wt,w∗)| = |φ(w∗,w∗)− φ(wt,w∗)| ≤ L‖wt −w∗‖2.

Therefore,

|1>(vt+1 − v∗)| ≤ [1− α(∆ + κ2k)]|1>(vt − v∗)|+ αL‖wt −w∗‖2|1>v∗|+ α
√
kηv. (B.9)

This completes the proof of (5.8).

Proof of (5.9). By the definition of gtv , we have

gtv = (∆I + κ211>)vt − [φ(wt,w∗)I + κ211>]v∗

= ∆vt − φ(wt,w∗)v∗ + κ211>(vt − v∗)

= ∆(vt − v∗) + [∆− φ(wt,w∗)]v∗ + κ211>(vt − v∗). (B.10)

Therefore

(vt − v∗)>gtv ≥ ∆‖vt − v∗‖22 + [∆− φ(wt,w∗)](vt − v∗)>v∗

≥ ∆‖vt − v∗‖22 − |∆− φ(wt,w∗)| · ‖vt − v∗‖2‖v∗‖2.

By Lemma B.9, we have

|∆− φ(wt,w∗)| = |φ(w∗,w∗)− φ(wt,w∗)| ≤ L‖w∗ −wt‖2.

Therefore,

(vt − v∗)>gtv ≥ ∆‖vt − v∗‖22 − L‖w∗ −wt‖2‖vt − v∗‖2‖v∗‖2

≥ ∆‖vt − v∗‖22 −
1

2

(
L2

∆
‖v∗‖22‖w∗ −wt‖22 + ∆‖vt − v∗‖22

)
≥ ∆

2
‖vt − v∗‖22 −

L2

2∆
‖v∗‖22‖w∗ −wt‖22.

By Lemma 5.3, we have

(vt − v∗)>gtv ≥
∆

2
‖vt − v∗‖22 −

L2

2∆
‖v∗‖22‖w∗ −wt‖22 − ‖vt − v∗‖2ηv

≥ ∆

4
‖vt − v∗‖22 −

L2

2∆
‖v∗‖22‖w∗ −wt‖22 −

1

∆
η2v

Moreover, by (B.10) we have

‖gtv‖2 ≤ ∆‖vt − v∗‖2 + L‖v∗‖2‖wt −w∗‖2 + κ2
√
k|1>(vt − v∗)|.

By Lemma 5.3, we have

‖gtv‖2 ≤ ∆‖vt − v∗‖2 + L‖v∗‖2‖wt −w∗‖2 + κ2
√
k|1>(vt − v∗)|+ ηv,

Therefore,

‖vt+1 − v∗‖22 = ‖vt − αgtv − v∗‖22
= ‖vt − v∗‖22 − 2α(vt − v∗)>gtv + α2‖gtv‖22.

Plugging in the previous inequalities gives

‖vt+1 − v∗‖22 ≤(1− α∆ + 4α2∆2)‖vt − v∗‖22 +

(
αL2

∆
+ 4α2L2

)
‖v∗‖22‖w∗ −wt‖22

+ 4α2κ4k[1>(vt − v∗)]2 +

(
2α

∆
+ 4α2

)
η2v .
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This completes the proof of (5.9).

Proof of (5.10). We first check wt+1 ∈ W . By (B.7) and (B.8) we have

w∗>wt+1 ≥ αρ+ w∗>wt

1 + αρ
− 4αηw.

Since wt ∈ W , we have w∗>w0 ≤ 2w∗>wt. Moreover, by w∗>w0 ≤ 1, we have

w∗>wt+1 ≥ αρ

1 + αρ
w∗>w0 +

1

2

1

1 + αρ
w∗>w0 − 4αηw ≥

1

2
w∗>w0.

where the last inequality follows by the assumption that

4αηw ≤
1

2

αρ

1 + αρ
w∗>w0.

Since ‖wt+1‖2 = 1, we have wt+1 ∈ W . For vt+1, since vt ∈ V , by (5.9) and the definition of M
and D we have

‖vt+1 − v∗‖22 ≤ (1− α∆ + 4α2∆2)‖vt − v∗‖22 + α(∆−1 + 4α)L2‖v∗‖22 · 4
+ 4α2κ2M2k + 2α(∆−1 + 2α)

≤ (1− α∆ + 4α2∆2)D2 + α∆(1− 4α∆)D2

= D2.

Therefore we have ‖vt+1 − v∗‖2 ≤ D. Since vt ∈ V , by (B.9) and the definition of M we have

|κ1>(vt+1 − v∗)| ≤ [1− α(∆ + κ2k)]|κ1>(vt − v∗)|+ α|κ|L‖wt −w∗‖2|1>v∗|+ α|κ|
√
kηv

≤ [1− α(∆ + κ2k)]M + 2α|κ|L|1>v∗|+ α|κ|
√
k

≤ [1− α(∆ + κ2k)]M + α(∆ + κ2k)M

= M.

We now check v∗>vt+1 ≥ ρ. By assumption we have κ2(1>v∗)1>(vt − v∗) ≤ ρ. Therefore by
definition we have

v∗>gtv = ∆v∗>vt + κ2(1>v∗)(1>vt)− ψ(w∗>wt)‖v∗‖22 − κ2(1>v∗)2

≤ ∆v∗>vt − ψ(w∗>wt)‖v∗‖22 + ρ.

By Lemma 4.1, ψ(τ) is an increasing function. Therefore,

v∗>vt+1 = v∗>(vt − αgtv)

≥ v∗>vt − α[∆v∗>vt − ψ(w∗>wt)‖v∗‖22 + ρ]

≥ (1− α∆)v∗>vt + αψ(w∗>w0/2)‖v∗‖22 − αρ
≥ (1− α∆)ρ+ αψ(w∗>w0/2)‖v∗‖22 − αρ.

By the definition of ρ, we have

ψ(w∗>w0/2)‖v∗‖22 ≥ (2 + ∆)ρ.

Therefore we have

v∗>vt+1 ≥ (1− α∆)ρ+ α(2 + ∆)ρ− αρ = (1 + α)ρ.

Moreover,

|v∗>vt+1 − v∗>vt+1| ≤ α‖v∗‖2ηv.

By the assumptions on n we have ‖v∗‖2ηv ≤ ρ. Therefore

v∗>vt+1 ≥ (1 + α)ρ− α‖v∗‖2ηv ≥ ρ.
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Finally, we check κ2(1>v∗)1>(vt+1 − v∗) ≤ ρ. By definition we have

1>gtv = 1>{(∆I + κ211>)vt − [φ(wt,w∗)I + κ211>]v∗}
= (∆ + κ2k)1>vt − [φ(wt,w∗) + κ2k]1>v∗.

By Lemma 4.1, we have φ(wt,w∗) ≤ ∆. Therefore,

(1>v∗)(1>gtv) = (∆ + κ2k)(1>v∗)(1>vt)− [φ(wt,w∗) + κ2k](1>v∗)2

≥ (∆ + κ2k)(1>v∗)1>(vt − v∗),

and

(1>v∗)1>(vt+1 − v∗) ≤ (1>v∗)1>(vt − v∗)− α(∆ + κ2k)(1>v∗)1>(vt − v∗)

= [1− α(∆ + κ2k)](1>v∗)1>(vt − v∗).

Since vt ∈ V , by Lemma 5.3, when 1− α(∆ + κ2k) ≥ 0 we have

κ2(1>v∗)1>(vt+1 − v∗) ≤ [1− α(∆ + κ2k)][κ2(1>v∗)1>(vt − v∗)] + ακ2|1>v∗|
√
kηv

≤ [1− α(∆ + κ2k)]ρ+ ακ2|1>v∗|
√
kηv

≤ [1− α(∆ + κ2k)]ρ+ α(∆ + κ2k) · κ
2|1>v∗|

√
k

∆ + κ2k
· ηv

≤ [1− α(∆ + κ2k)]ρ+ α(∆ + κ2k) · |1
>v∗|√
k
· ηv.

By the assumption on n we have |1>v∗|k−1/2ηv ≤ ρ. Plugging it into the inequality above gives

κ2(1>v∗)1>(vt+1 − v∗) ≤ ρ.

Therefore we have (wt+1,vt+1) ∈ W × V .

B.5 Proof of Lemma 5.5

The following auxiliary lemma plays a key role in converting the recursive bounds to explicit bounds.

Lemma B.10. Let a, b ∈ (0, 1), c1, c2 > 0 be constants. If sequences {ut}t≥0, {vt}t≥0 satisfies

ut+1 ≤ aut + c1b
t + c2, vt+1 ≤ avt + c1t

2bt + c2

then it holds that

ut ≤ atu0 + c1t(a ∨ b)t−1 + c2
1

1− a
, vt ≤ atv0 +

c1
3
t3(a ∨ b)t−1 + c2

1

1− a
.

The proof of Lemma B.10 is given in Section E in appendix. We can now apply Lemma B.10 to the
recursive bounds (5.7), (5.8) and (5.9).

Proof of Lemma 5.5. The first convergence result for wt directly follows by Lemma 5.4 and (5.7).
To prove (4.4), we first derive the convergence rate of |1>(vt − v∗)|. By (4.3) and Lemma 5.4, we
have

|1>(vt+1 − v∗)| ≤ γ3|1>(vt − v∗)|+ αL|1>v∗|γt1‖w0 −w∗‖2 + 8αL|1>v∗|ρ−1γ1ηw
+ α
√
kηv.

By Lemma B.10, we have

|1>(vt − v∗)| ≤ γt3|1>(v0 − v∗)|+ t(γ1 ∨ γ3)tαL|1>v∗|‖w0 −w∗‖2

+
8L|1>v∗|ρ−1γ1ηw +

√
kηv

∆ + κ2k
.
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Therefore, by Lemma 5.4 we have

‖vt+1 − v∗‖22 ≤ γ22‖vt − v∗‖22 + 2(∆−1 + 4α)αL2‖v∗‖22(γ2t1 ‖w0 −w∗‖22 + 64ρ−2γ−41 η2w)

+ 12α2κ4k

{
γ2t3 |1>(v0 − v∗)|2 + t2(γ1 ∨ γ3)2tα2L2|1>v∗|2‖w0 −w∗‖22

+

(
8L|1>v∗|ρ−1γ1ηw +

√
kηv

∆ + κ2k

)2
}

+

(
2α

∆
+ 4α2

)
η2v

≤ γ22‖vt − v∗‖22 +R′1t
2(γ1 ∨ γ3)2t +R′2.

where

R′1 = 2(∆−1 + 4α)αL2‖v∗‖22‖w0 −w∗‖22 + 12α2κ4k[|1>(v0 − v∗)|2

+ α2L2|1>v∗|2‖w0 −w∗‖22],

R′2 = 128(∆−1 + 4α)αL2‖v∗‖22ρ−2γ−41 η2w + 12α2κ4k

(
8L|1>v∗|ρ−1γ1ηw +

√
kηv

∆ + κ2k

)2

+

(
2α

∆
+ 4α2

)
η2v .

We can then further apply the second bound in Lemma B.10 to the above inequality and obtain

‖vt − v∗‖2 ≤ R1t
3/2(γ1 ∨ γ2 ∨ γ3)t + (R2 +R3|κ|

√
k)(ηw + ηv),

where

R1 =
√

2(∆−1 + 4α)αL2‖v∗‖2‖w0 −w∗‖2 + 4ακ2
√
k[|1>(v0 − v∗)|+ ‖v0 − v∗‖2

+ αL|1>v∗|‖w0 −w∗‖2],

R2 =
1

∆
√

1− 4α∆

[
16
√

(1 + 4α∆)L2‖v∗‖2ρ−1γ−21 + 32
√
α∆κL|1>v∗|ρ−1γ1 +

√
2 + 4α∆

]
,

R3 =

√
12α

∆(1− 4α∆)
.

This completes the proof of convergence of vt.

C Proofs of Lemmas in Appendix A

C.1 Proof of Lemma A.1

The following lemma gives a generalized version of Hoeffding’s Covariance Identity [21]. This result
is mentioned in [31], and a version for bounded random variables is proved by [9]. We give the proof
of the version we present in Appendix E.

Lemma C.1. Let X1, X2 be two continuous random variables. For right-continuous monotonic
functions f and g we have

Cov[f(X1), g(X2)] =

∫
R2

Cov[1(X1 ≤ x1),1(X2 ≤ x2)]df(x1)df(x2).

We also need the following lemma, which is a Gaussian comparison inequality given by [34].

Lemma C.2 ([34]). Let X,Y ∈ Rd be two centered Gaussian random vectors. If E(X2
i ) = E(Y 2

i )
and E(XiXj) ≤ E(YiYj) for all i, j = 1, . . . , d, then for any real numbers τ1, . . . , τd, we have

P(X1 ≤ τ1, . . . , Xd ≤ τd) ≤ P(Y1 ≤ τ1, . . . , Yd ≤ τd).
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Proof of Lemma A.1. It directly follows by Lemma C.1 and Lemma C.2 that Cov[f(Z1), g(Z2)] is
an increasing function of θ. Moreover, let U1 and U2 be independent standard Gaussian random
variables. Then it is easy to check that

d

dθ
P(U1 ≤ x1, θU1 +

√
1− θ2U2 ≤ x2)

∣∣∣∣
θ=0

> 0

for all x1, x2 ∈ R. Therefore for non-trivial increasing functions f and g, by Lemma C.1 and the
definition of Lebesgue-Stieltjes integration, we have Cov[f(Z1), g(Z2)] > 0.

D Proofs of Lemmas in Appendix B

D.1 Proof of Lemma B.1

Proof of Lemma B.1. Let N1 = N (Sr−1, 1/8), N2 = N (Sk−1, 1/8) be 1/8-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 17r and |N2| ≤ 17k. Denote

A(â, â′, b̂, b̂′) =
1

n

n∑
i=1

k∑
j=1

|̂bj â>Pjxi| ·

∣∣∣∣∣
k∑

j′=1

b̂′j′ â
′>Pj′xi

∣∣∣∣∣.
It is easy to see that

∑k
j′=1 b̂

′
j′ â
′>Pj′xi, i = 1, . . . , n are independent standard normal random

variables. Moreover, for each i = 1, . . . , n, â>Pjxi, j = 1, . . . , k are independent standard Gaussian
random vectors. By triangle inequality we have∥∥∥∥∥

k∑
j=1

|̂bj â>Pjxi|

∥∥∥∥∥
ψ2

≤ C1‖b̂‖1 ≤ C1

√
k,

where C1 is an absolute constant. Therefore, by Lemma E.1 we have∥∥∥∥∥
k∑
j=1

|̂bj â>Pjxi| ·

∣∣∣∣∣
k∑

j′=1

b̂′j′ â
′>Pj′xi

∣∣∣∣∣
∥∥∥∥∥
ψ1

≤ C2

√
k,

where C2 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ1 we
have

|A(â, â′, b̂, b̂′)− E[A(â, â′, b̂, b̂′)]| ≤ C3

√
k

√
(r + k) log(34/δ1)

n

for all â, â′ ∈ N1 and b̂, b̂′ ∈ N2, where C3 is an absolute constant. By the assumptions on n we
have

|A(â, â′, b̂, b̂′)− E[A(â, â′, b̂, b̂′)]| ≤ C3

√
k.

Moreover, by the definition of ψ1-norm we have

E[A(â, â′, b̂, b̂′)] ≤ ‖A(â, â′, b̂, b̂′)‖ψ1
≤ C2

√
k.

Therefore

|A(â, â′, b̂, b̂′)| ≤ C4

√
k

for all â, â′ ∈ N1 and b̂, b̂′ ∈ N2, where C4 is an absolute constant.

For any a,a′ ∈ Sr−1 and b,b′ ∈ Sk−1, there exists â, â′ ∈ N1 and b̂, b̂′ ∈ N2 such that

‖a− â‖2, ‖a′ − â′‖2, ‖b− b̂‖2, ‖b′ − b̂′‖2 ≤ 1/8.

Therefore

A(a,a′,b,b′) ≤ C4

√
k + I1 + I2 + I3 + I4, (D.1)
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where

I1 = |A(a,a′,b,b′)−A(a,a′,b, b̂′)|,

I2 = |A(a,a′,b, b̂′)−A(a,a′, b̂, b̂′)|,

I3 = |A(a,a′, b̂, b̂′)−A(a, â′, b̂, b̂′)|,

I4 = |A(a, â′, b̂, b̂′)−A(â, â′, b̂, b̂′)|.
Let

A = sup
a,a′∈Sr−1

b,b′∈Sk−1

A(a,a′,b,b′).

Then we have

I1 ≤ A(a,a′,b,b′ − b̂′)

= ‖b′ − b̂′‖2A
(

a,a′,b,
b′ − b̂′

‖b′ − b̂′‖2

)
≤ ‖b′ − b̂′‖2A.

Similarly, we have

I2 ≤ ‖b− b̂‖2A,
I3 ≤ ‖a′ − â′‖2A,
I4 ≤ ‖a− â‖2A.

Plugging the inequalities above into (D.1) gives

A ≤ C4

√
k +

1

2
A.

Therefore we have A ≤ 2C4

√
k. This completes the proof.

D.2 Proof of Lemma B.2

Proof of Lemma B.2. Let N1 = N (Sr−1, 1/8), N2 = N (Sk−1, 1/8) be 1/8-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 17r and |N2| ≤ 17k. Denote

A(â, â′, b̂, b̂′) =
1

n

n∑
i=1

k∑
j=1

b̂jσ(â>Pjxi) ·
k∑

j′=1

b̂′j′ â
′>Pj′xi.

For any â, â′ ∈ N1 and b̂, b̂′ ∈ N2, by Lemma B.8, σ(â>Pjxi), j = 1, . . . , r are independent sub-
Gaussian random variables with ‖σ(â>Pjxi)‖ψ2

≤ C1L for some absolute constant C1. Therefore
by triangle inequality, we have ∥∥∥∥∥

k∑
j=1

b̂jσ(â>Pjxi)

∥∥∥∥∥
ψ2

≤ C2L
√
k,

where C2 is an absolute constant. Moreover, since Pj′xi, j′ = 1, . . . , k are independent Gaussian
random vectors, we have ∥∥∥∥∥

k∑
j′=1

b̂′j′ â
′>Pj′xi

∥∥∥∥∥
ψ2

≤ C3

for some absolute constant C3. Therefore, by Lemma E.1 we have ‖A(â, â′, b̂, b̂′)‖ψ1 ≤ C4L
√
k,

where C4 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ2/2, we
have

|A(â, â′, b̂, b̂′)− EA(â, â′, b̂, b̂′)| ≤ C5L
√
k

√
(r + k) log(68/δ2)

n
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for all â, â′ ∈ N1 and b̂, b̂′ ∈ N2, where C5 is an absolute constant. Therefore by the assumptions
on n we have

|A(â, â′, b̂, b̂′)| ≤ C6L
√
k + |EA(â, â′, b̂, b̂′)|,

where C6 is an absolute constant. Moreover, by the definition of ψ1-norm we have

EA(â, â′, b̂, b̂′) ≤ ‖A(â, â′, b̂, b̂′)‖ψ1
≤ C4L

√
k.

Therefore we have

|A(â, â′, b̂, b̂′)| ≤ C7L
√
k

for some absolute constant C7. Now for any a,a′ ∈ Sr−1 and b,b′ ∈ Sk−1, there exists â, â′ ∈ N1

and b̂, b̂′ ∈ N2 such that

‖a− â‖2, ‖a′ − â′‖2, ‖b− b̂‖2, ‖b′ − b̂′‖2 ≤ 1/8.

Therefore

A(a,a′,b,b′) ≤ C7L
√
k + I1 + I2 + I3 + I4,

where

I1 = |A(a,a′,b,b′)−A(a,a′,b, b̂′)|,

I2 = |A(a,a′,b, b̂′)−A(a,a′, b̂, b̂′)|,

I3 = |A(a,a′, b̂, b̂′)−A(a, â′, b̂, b̂′)|,

I4 = |A(a, â′, b̂, b̂′)−A(â, â′, b̂, b̂′)|.

Let

A = sup
a,a′∈Sr−1

b,b′∈Sk−1

A(a,a′,b,b′).

Since A(a,a′,b,b′) is linear in a′, b and b′, we have

I1 ≤ ‖b′ − b̂′‖2A, I2 ≤ ‖b− b̂‖2A, I3 ≤ ‖a′ − â′‖2A

Moreover, by the Lipschitz continuity of σ(·), we have

I4 ≤
1

n

n∑
i=1

k∑
j=1

|̂bj(a− â)>Pjxi| ·

∣∣∣∣∣
k∑

j′=1

b̂′j′ â
′>Pj′xi

∣∣∣∣∣.
Therefore by Lemma B.1 with δ1 = δ2/2 we have

I4 ≤ C8

√
k‖a− a′‖2

for some absolute constant C8. Summing the bounds on I1, . . . , I4 gives

A ≤ C9L
√
k +A/2,

where C9 is an absolute constant. Therefore we have A ≤ 2C9L
√
k. This completes the proof.

D.3 Proof of Lemma B.3

Proof of Lemma B.3. Let N1 = N (Sr−1, 1/8), N2 = N (Sk−1, 1/8) be 1/8-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 17r and |N2| ≤ 17k. Denote

A(â, â′, b̂, b̂′) =
1

n

n∑
i=1

k∑
j=1

|̂bj â>Pjxi| ·
k∑

j′=1

|̂b′j′ â′>Pj′xi|.
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For any â, â′ ∈ N1 and b̂, b̂′ ∈ N2, by triangle inequality, we have∥∥∥∥∥
k∑
j=1

b̂j′ â
>Pjxi

∥∥∥∥∥
ψ2

,

∥∥∥∥∥
k∑

j′=1

b̂′j′ â
′>Pj′xi

∥∥∥∥∥
ψ2

≤ C1

√
k

for some absolute constant C1. Therefore, by Lemma E.1 we have ‖A(â, â′, b̂, b̂′)‖ψ1 ≤ C2k, where
C2 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ3, we have

|A(â, â′, b̂, b̂′)− E[A(â, â′, b̂, b̂′)]| ≤ C3k

√
(r + k) log(34/δ3)

n

for all â, â′ ∈ N1 and b̂, b̂′ ∈ N2, where C3 is an absolute constant. Therefore by the assumptions
on n we have

|A(â, â′, b̂, b̂′)| ≤ C3k + |E[A(â, â′, b̂, b̂′)]|.

By the definition of ψ1-norm we have

E[A(â, â′, b̂, b̂′)] ≤ ‖A(â, â′, b̂, b̂′)‖ψ1 ≤ C2k.

Therefore we have

|A(â, â′, b̂, b̂′)| ≤ C4k,

where C4 is an absolute constant. Now for any a,a′ ∈ Sr−1 and b,b′ ∈ Sk−1, there exists
â, â′ ∈ N1 and b̂, b̂′ ∈ N2 such that

‖a− â‖2, ‖a′ − â′‖2, ‖b− b̂‖2, ‖b′ − b̂′‖2 ≤ 1/8.

Therefore

A(a,a′,b,b′) ≤ C4k + I1 + I2 + I3 + I4,

where

I1 = |A(a,a′,b,b′)−A(a,a′,b, b̂′)|,

I2 = |A(a,a′,b, b̂′)−A(a,a′, b̂, b̂′)|,

I3 = |A(a,a′, b̂, b̂′)−A(a, â′, b̂, b̂′)|,

I4 = |A(a, â′, b̂, b̂′)−A(â, â′, b̂, b̂′)|.

Let

A = sup
a,a′∈Sr−1

b,b′∈Sk−1

A(a,a′,b,b′).

Since A(a,a′,b,b′) is Lipschitz continuous in a, a′, b and b′, we have

I1 ≤ ‖b′ − b̂′‖2A, I2 ≤ ‖b− b̂‖2A, I3 ≤ ‖a′ − â′‖2A, I4 ≤ ‖a− â‖2A.

Therefore,

A ≤ C4k +A/2,

Therefore we have A ≤ 2C4k. This completes the proof.

D.4 Proof of Lemma B.4

Proof of Lemma B.4. Let N1 = N (Sr−1, 1/8), N2 = N (Sk−1, 1/8) be 1/8-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 17r and |N2| ≤ 17k. Denote

A(â, â′, b̂, b̂′) =
1

n

n∑
i=1

k∑
j=1

|̂bj â>Pjxi| ·
k∑

j′=1

|̂b′j′σ(′â′>Pj′xi)|.
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For any â, â′ ∈ N1 and b̂, b̂′ ∈ N2, by Lemma B.8, σ(â′>Pj′xi), j′ = 1, . . . , r are independent sub-
Gaussian random variables with ‖σ(â′>Pjxi)‖ψ2 ≤ C1L for some absolute constant C1. Therefore
by triangle inequality, we have ∥∥∥∥∥

k∑
j=1

|̂bjσ(â>Pjxi)|

∥∥∥∥∥
ψ2

≤ C2L
√
k,

where C2 is an absolute constant. Similarly, we have∥∥∥∥∥
k∑

j′=1

|̂b′j′ â′>Pj′xi|

∥∥∥∥∥
ψ2

≤ C3

√
k

for some absolute constant C3. Therefore, by Lemma E.1 we have ‖A(â, â′, b̂, b̂′)‖ψ1
≤ C4Lk,

where C4 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ4/2, we
have

|A(â, â′, b̂, b̂′)− E[A(â, â′, b̂, b̂′)]| ≤ C5Lk

√
(r + k) log(68/δ4)

n

for all â, â′ ∈ N1 and b̂, b̂′ ∈ N2, where C5 is an absolute constant. Therefore by the assumptions
on n we have

|A(â, â′, b̂, b̂′)| ≤ C5Lk + |E[A(â, â′, b̂, b̂′)]|.
By the definition of ψ1-norm we have

E[A(â, â′, b̂, b̂′)] ≤ ‖A(â, â′, b̂, b̂′)‖ψ1
≤ C4Lk.

Therefore we have
|A(â, â′, b̂, b̂′)| ≤ C6Lk

for some absolute constant C6. Now for any a,a′ ∈ Sr−1 and b,b′ ∈ Sk−1, there exists â, â′ ∈ N1

and b̂, b̂′ ∈ N2 such that

‖a− â‖2, ‖a′ − â′‖2, ‖b− b̂‖2, ‖b′ − b̂′‖2 ≤ 1/8.

Therefore
A(a,a′,b,b′) ≤ C6Lk + I1 + I2 + I3 + I4,

where
I1 = |A(a,a′,b,b′)−A(a,a′,b, b̂′)|,

I2 = |A(a,a′,b, b̂′)−A(a,a′, b̂, b̂′)|,

I3 = |A(a,a′, b̂, b̂′)−A(a, â′, b̂, b̂′)|,

I4 = |A(a, â′, b̂, b̂′)−A(â, â′, b̂, b̂′)|.
Let

A = sup
a,a′∈Sr−1

b,b′∈Sk−1

A(a,a′,b,b′).

Since A(a,a′,b,b′) is Lipschitz continuous in a, b and b′, we have

I1 ≤ ‖b′ − b̂′‖2A, I2 ≤ ‖b− b̂‖2A, I4 ≤ ‖a− â‖2A.
Moreover, by the Lipschitz continuity of σ(·), we have

I3 ≤
1

n

n∑
i=1

k∑
j=1

|̂bja>Pjxi| ·
k∑

j′=1

|̂b′j′(a′ − â′)>Pj′xi|.

Therefore by Lemma B.3 with δ3 = δ4/2 we have
I3 ≤ C7k‖a′ − â′‖2

for some absolute constant C7. Since L ≥ 1, summing the bounds on I1, . . . , I4 gives

A ≤ C8Lk +A/2,

where C8 is an absolute constant. Therefore we have A ≤ 2C8Lk. This completes the proof.
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D.5 Proof of Lemma B.5

Proof of Lemma B.5. Let N1 = N (Sr−1, 1/8), N2 = N (Sk−1, 1/8) be 1/8-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 17r and |N2| ≤ 17k. Denote

A(â, â′, b̂, b̂′) =
1

n

n∑
i=1

k∑
j=1

b̂jσ(â>Pjxi) ·
k∑

j′=1

b̂′j′σ(′â′>Pj′xi).

For any â, â′ ∈ N1 and b̂, b̂′ ∈ N2, similar to the proof of Lemma B.4, we have∥∥∥∥∥
k∑
j=1

b̂jσ(â>Pjxi)

∥∥∥∥∥
ψ2

,

∥∥∥∥∥
k∑

j′=1

b̂′j′σ(â′>Pj′xi)

∥∥∥∥∥
ψ2

≤ C1L
√
k,

where C1 is an absolute constant. Therefore, by Lemma E.1 we have ‖A(â, â′, b̂, b̂′)‖ψ1
≤ C2L

2k,
where C2 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ5/3, we
have

|A(â, â′, b̂, b̂′)− E[A(â, â′, b̂, b̂′)]| ≤ C3L
2k

√
(r + k) log(102/δ5)

n

for all â, â′ ∈ N1 and b̂, b̂′ ∈ N2, where C3 is an absolute constant. Therefore by the assumptions
on n we have

|A(â, â′, b̂, b̂′)| ≤ C3L
2k + |E[A(â, â′, b̂, b̂′)]|.

Similar to the proofs of Lemma B.1-B.4, by the definition of ψ1-norm we have

E[A(â, â′, b̂, b̂′)] ≤ ‖A(â, â′, b̂, b̂′)‖ψ1
≤ C2L

2k.

Therefore we have

|A(â, â′, b̂, b̂′)| ≤ C4L
2k

for some absolute constant C4. Now for any a,a′ ∈ Sr−1 and b,b′ ∈ Sk−1, there exists â, â′ ∈ N1

and b̂, b̂′ ∈ N2 such that

‖a− â‖2, ‖a′ − â′‖2, ‖b− b̂‖2, ‖b′ − b̂′‖2 ≤ 1/8.

Therefore

A(a,a′,b,b′) ≤ C4L
2k + I1 + I2 + I3 + I4,

where

I1 = |A(a,a′,b,b′)−A(a,a′,b, b̂′)|,

I2 = |A(a,a′,b, b̂′)−A(a,a′, b̂, b̂′)|,

I3 = |A(a,a′, b̂, b̂′)−A(a, â′, b̂, b̂′)|,

I4 = |A(a, â′, b̂, b̂′)−A(â, â′, b̂, b̂′)|.
Let

A = sup
a,a′∈Sr−1

b,b′∈Sk−1

A(a,a′,b,b′).

Since A(a,a′,b,b′) is linear in b and b′, we have

I1 ≤ ‖b′ − b̂′‖2A, I2 ≤ ‖b− b̂‖2A.
Moreover, by the Lipschitz continuity of σ(·), we have

I3 ≤
1

n

n∑
i=1

k∑
j=1

|̂bjσ(a>Pjxi)| ·
k∑

j′=1

|̂b′j′(a′ − â′)>Pj′xi|,

I4 ≤
1

n

n∑
i=1

k∑
j=1

|̂bj(a− â)>Pjxi)| ·
k∑

j′=1

|̂b′j′σ(â′>Pj′xi)|,
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Therefore by Lemma B.4 with δ4 = 2δ5/3 we have

I3 ≤ C5k‖a′ − â′‖2, I4 ≤ C5k‖a− â‖2
for some absolute constant C5. Since we have L ≥ 1, summing the bounds on I1, . . . , I4 gives

A ≤ C6L
2k +A/2,

where C6 is an absolute constant. Therefore we have A ≤ 2C6L
2k. This completes the proof.

D.6 Proof of Lemma B.6

Proof of Lemma B.6. Let N1 = N (Sr−1, 1/4), N2 = N (Sk−1, 1/4) be 1/4-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 9r and |N2| ≤ 9k. Denote

A(â, b̂) =
1

n

n∑
i=1

εi ·
k∑
j=1

b̂j â
>Pjxi.

For any â ∈ N1 and b̂ ∈ N2, since Pjxi, j = 1, . . . , k are independent Gaussian random vectors,
we have ∥∥∥∥∥

k∑
j=1

b̂j â
>Pjxi

∥∥∥∥∥
ψ2

≤ C1

for some absolute constant C1. Therefore by Lemma E.1 we have ‖A(â, b̂)‖ψ1
≤ C2ν, where C2

is an absolute constant. Since EA(â, b̂) = 0, by Proposition 5.16 in [36], with probability at least
1− δ6, we have

|A(â, b̂)| ≤ C3ν

√
(r + k) log(18/δ6)

n

for all â ∈ N1 and b̂ ∈ N2, where C3 is an absolute constant. Therefore by the assumptions on n we
have

|A(â, b̂)| ≤ C3ν.

Now for any a ∈ Sr−1 and b ∈ Sk−1, there exists â ∈ N1 and b̂ ∈ N2 such that

‖a− â‖2, ‖b− b̂‖2 ≤ 1/4.

Therefore

A(a,b) ≤ C3ν + I1 + I2, (D.2)

where

I1 = |A(a,b)−A(a, b̂)|, I2 = |A(a, b̂)−A(â, b̂)|.

Let

A = sup
a∈Sr−1

b∈Sk−1

A(a,b).

Since A(a,b) is linear in a and b, we have

I1 ≤ ‖b− b̂‖2A, I2 ≤ ‖a− â‖2A.

Plugging the two inequalities above into (D.2) gives

A ≤ C3ν +A/2.

Therefore we have A ≤ 2C3ν. This completes the proof.
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D.7 Proof of Lemma B.7

Proof of Lemma B.7. Let N1 = N (Sr−1, 1/4), N2 = N (Sk−1, 1/4) be 1/4-nets covering Sr−1

and Sk−1 respectively. Then by Lemma 5.2 in [36] we have |N1| ≤ 9r and |N2| ≤ 9k. Denote

A(â, b̂) =
1

n

n∑
i=1

|εi| ·
k∑
j=1

|̂bj â>Pjxi|.

For any â ∈ N1 and b̂ ∈ N2, since Pjxi, j = 1, . . . , k are independent Gaussian random vectors,
by triangle inequality we have ∥∥∥∥∥

k∑
j=1

|̂bj â>Pjxi|

∥∥∥∥∥
ψ2

≤ C1

√
k

for some absolute constant C1. Therefore by Lemma E.1 we have ‖A(â, b̂)‖ψ1
≤ C2ν

√
k, where

C2 is an absolute constant. By Proposition 5.16 in [36], with probability at least 1− δ7, we have

|A(â, b̂)− E[A(â, b̂)]| ≤ C3ν
√
k

√
(r + k) log(18/δ7)

n

for all â ∈ N1 and b̂ ∈ N2, where C3 is an absolute constant. Therefore by the assumptions on n we
have

|A(â, b̂)| ≤ C3ν
√
k + |E[A(â, b̂)]|.

By the definition of ψ1-norm, we have

E[A(â, b̂)] ≤ ‖A(â, b̂)‖ψ1
≤ C2ν

√
k.

Therefore we have

|A(â, b̂)| ≤ C4ν
√
k

for some absolute constant C4. Now for any a ∈ Sr−1 and b ∈ Sk−1, there exists â ∈ N1 and
b̂ ∈ N2 such that

‖a− â‖2, ‖b− b̂‖2 ≤ 1/4.

Therefore

A(a,b) ≤ C4ν
√
k + I1 + I2, (D.3)

where

I1 = |A(a,b)−A(a, b̂)|, I2 = |A(a, b̂)−A(â, b̂)|.

Let

A = sup
a∈Sr−1

b∈Sk−1

A(a,b).

Since A(a,b) is Lipschitz continuous in a and b, we have

I1 ≤ ‖b− b̂‖2A, I2 ≤ ‖a− â‖2A.

Plugging the two inequalities above into (D.3) gives

A ≤ C4ν
√
k +A/2.

Therefore we have A ≤ 2C4ν
√
k. This completes the proof.
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D.8 Proof of Lemma B.8

Proof of Lemma B.8. By triangle inequality we have

|σ(z)| ≤ |σ(z)− σ(0)|+ |σ(0)| ≤ |z|+ |σ(0)|.
Since ‖z‖ψ2

≤ 1, by the definition of ψ2-norm we have

‖σ(z)‖ψ2
= sup

p≥1
p−1/2{E[|σ(z)|p]}1/p ≤ sup

p≥1
p−1/2{E[(|z|+ |σ(0)|)p]}1/p ≤ 2[1 + |σ(0)|].

Similarly, we have

|σ(z)− κ| ≤ |σ(z)− σ(0)|+ |σ(0)− κ| ≤ |z|+ |σ(0)− κ|.
By the definition of ψ2-norm, we have

‖σ(z)− κ‖ψ2
≤ 2[1 + |σ(0)− κ|].

D.9 Proof of Lemma B.9

Proof of Lemma B.9. Let w1,w2 be two distinct unit vectors, and U1, U2 be jointly Gaussian random
variables with E(U1) = E(U2) = 0, E(U2

1 ) = E(U2
2 ) = 1 and E(U1U2) = w>(w1−w2)

‖w1−w2‖2 ∈ [−1, 1].
Then by the definition of φ, we have

|φ(w,w1)− φ(w,w2)| =
∣∣Ez∼N(0,I)

[
σ
(
w>z

)
σ
(
w>1 z

)]
− Ez∼N(0,I)

[
σ
(
w>z

)
σ
(
wt>

2 z
)]∣∣

≤ Ez∼N(0,I)[|σ(w>z)| · |(w1 −w2)>z|]
≤ |σ(0)|‖w1 −w2‖2E(|U2|) + ‖w1 −w2‖2E(|U1| · |U2|)
≤ [1 + |σ(0)|]‖w∗ −wt‖2
= L‖w∗ −wt‖2.

This completes the proof.

E Additional Auxiliary Lemmas

The following lemma is given by [37]
Lemma E.1 ([37]). For two sub-Gaussian random variables Z1 and Z2, Z1 · Z2 is a sub-exponential
random variable with

‖Z1 · Z2‖ψ1 ≤ C‖Z1‖ψ2 · ‖Z2‖ψ2 ,

where C is an absolute constant.
Lemma E.2. For any non-zero vectors u,v ∈ Rk, if ‖u− v‖2 ≤ ρ, then we have∥∥∥∥ u

‖u‖2
− v

‖v‖2

∥∥∥∥
2

≤ 2ρ

‖v‖2
, and

〈
u

‖u‖2
,

v

‖v‖2

〉
≥ 1− 2ρ2

‖v‖22
.

Proof of Lemma E.2. By triangle inequality, we have
∣∣‖v‖2 − ‖u‖2∣∣ ≤ ‖u− v‖2 ≤ ρ. Therefore,∥∥∥∥ u

‖u‖2
− v

‖v‖2

∥∥∥∥
2

≤
∥∥∥∥ u

‖u‖2
− u

‖v‖2

∥∥∥∥
2

+

∥∥∥∥ u

‖v‖2
− v

‖v‖2

∥∥∥∥
2

= ‖u‖2 ·
∣∣‖v‖2 − ‖u‖2∣∣
‖u‖2‖v‖2

+
‖u− v‖2
‖v‖2

≤ 2ρ

‖v‖2
.

Moreover, we have

−2

〈
u

‖u‖2
,

v

‖v‖2

〉
+ 2 =

∥∥∥∥ u

‖u‖2
− v

‖v‖2

∥∥∥∥2
2

≤ 4ρ2

‖v‖22
.
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Therefore we have 〈
u

‖u‖2
,

v

‖v‖2

〉
≥ 1− 2ρ2

‖v‖22
.

This completes the proof.

The following lemma follows directly from the standard Gaussian tail bound. A similar result is given
as Fact B.1 in [41].
Lemma E.3. ([41]) Let w ∈ Rk be a fixed vector. For any t ≥ 0, we have

Px∼N(0,Ik)

(
|w>x| ≤ ‖w‖2 · t

)
≥ 1− 2 exp(−t2/2).

E.1 Proof of Lemma C.1

Proof of Lemma C.1. Let (X̃1, X̃2) be an independent copy of (X1, X2). Then by definition we have

Cov[f(X1), g(X2)] = E{[f(X1)− f(X̃1)] · [g(X2)− g(X̃2)]},
Cov[[1(X1 ≤ x1),1(X2 ≤ x2)] = E{[1(X1 ≤ x1)− 1(X̃1 ≤ x1)] · [1(X2 ≤ x2)− 1(X̃2 ≤ x2)]}.
For f(X1)− f(X̃1), by the definition of Lebesgue-Stieltjes integration,

f(X1)− f(X̃1) =

∫
R
{1[x1 ≤ f(X1)]− 1[x1 ≤ f(X̃1)]}dx1

=

∫
R
[1(x1 ≤ X1)− 1(x1 ≤ X̃1)]df(x1).

Similarly, we have

g(X2)− g(X̃2) =

∫
R

[1(x2 ≤ X2)− 1(x2 ≤ X̃2)]dg(x2).

Therefore by Fubini’s Theorem we have

Cov[f(X1), g(X2)] =

∫
R2

Cov[1(X1 ≤ x1),1(X2 ≤ x2)]df(x1)dg(x2).

Proof fo Lemma B.10. For {ut}t≥0 We have

ut ≤ aut−1 + c1b
t−1 + c2

≤ a(aut−2 + c1b
t−2 + c2) + c1b

t−1 + c2

= a2ut−2 + c1(abt−2 + bt−1) + c2(1 + a)

≤ · · ·

≤ atu0 + c1(at−1 + at−2b+ · · ·+ abt−2 + bt−1) + c2
1

1− a

≤ atu0 + c1t(a ∨ b)t−1 + c2
1

1− a
.

This gives the first bound. Similarly, {ut}t≥0 for We have

vt ≤ avt−1 + c1(t− 1)2bt−1 + c2

≤ a(avt−2 + c1(t− 2)2bt−2 + c2) + c1(t− 1)2bt−1 + c2

= a2vt−2 + c1[(t− 2)2abt−2 + (t− 1)2bt−1] + c2(1 + a)

≤ · · ·

≤ atv0 + c1[02 · at−1 + 12 · at−2b+ · · ·+ (t− 2)2 · abt−2 + (t− 1)2 · bt−1] + c2
1

1− a

≤ atv0 + c1
t(t− 1)(2t− 1)

6
(a ∨ b)t−1 + c2

1

1− a

≤ atv0 +
c1
3
t3(a ∨ b)t−1 + c2

1

1− a
.

This completes the proof.
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F Additional Experiments

In this section we present some additional experimental results on non-Gaussian inputs. Here we
consider two types of input distributions: uniform distribution over unit sphere and a transelliptical
distribution (the distribution of a Gaussian random vector after an entry-wise monotonic transform
y = x3). The experiments are conducted in the setting k = 15, r = 5 for ReLU and hyperbolic
tangent activation functions, where w∗ and v∗ are generated in the same way as described in Section 6.
Specifically, Figures 3(a), 3(b) show the results for uniform distribution over unit sphere, while Figures
3(c), 3(d) are for the transelliptical distribution. Moreover, Figures 3(a), 3(c) are for ReLU networks,
and the results for hyperbolic tangent networks are given in Figures 3(b), 3(d). From these figures,
we can see that although it is not directly covered in our theoretical results, the approximate gradient
descent algorithm proposed in our paper is still capable of handling non-Gaussian distributions. In
specific, from Figures 3(a), 3(c), we can see that our proposed algorithm is competitive with Double
Convotron for symmetric distributions and ReLU activation, which is the specific setting Double
Convotron is designed for. Moreover, Figures 3(b), 3(d) clearly show that for hyperbolic tangent
activation function, Double Convotron fails to converge, while our approximated gradient descent
still converges linearly.
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(b) tanh+Unif. Sphere
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(c) ReLU+Transelliptical
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(d) tanh+Transelliptical

Figure 3: Experimental results for different non-Gaussian input distributions. (a) and (b) are for
uniform distribution over unit sphere, while (c) and (d) give the results for transelliptical distribiton.
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