
A Proofs for Section 2

A.1 Proof of Theorem 2

Proof. We will first show, that under model (1), the plug-in estimator (7) satisfies:
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This also establishes the upper bound on the minimax excess risk if m̂
n

is chosen in a minimax
rate-optimal way for the regression problem.

To prove (13), we study the excess risk of this estimator conditionally on the covariate X
n+1 of the

n + 1-th observation:
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The result follows by integrating over X
n+1 and rearranging.

A.2 Proof of Lemma 1

The idea of the proof follows the general paradigm in derivation of minimax optimal rates [Tsybakov,
2008, Duchi, 2019] in which we reduce the original problem to a multiple hypothesis testing problem.
More concretely, let us fix two functions m1, m2 2 C and call the induced distributions P1,P2. Say
we have a denoiser t(x, z) that performs extremely well under m1 with respect to the loss (3). Then
we will argue that it cannot do too well under m2. But then, given data (X1, Z1), . . . , (Xn

, Z
n

) we
may use the data-driven ˆt(x, z) as a proxy for a hypothesis test: If its risk is small under m1, but large
under m2, we would guess that m1 is true and vice versa. Thus our task reduces to lower bounding
the performance of a hypothesis test. These ideas will be made concrete in the arguments that follow.

Our proof strategy begins by studying the pointwise excess risk:
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Lemma 9. There exist universal constants c > 0, � > 0 such that when
|m1(x) � m2(x)| /

p
�2

+ A  � (where x is fixed, yet arbitrary) it holds for all t that:
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Proof. As a thought experiment, we consider the following generative model:

µ
n+1 ⇠ G

x

=

1

2

[N (m1(x), A) + N (m2(x), A)]

Z
n+1 | µ

n+1 ⇠ N
�

µ
n+1, �

2
�

Next consider the Bayes estimator for µ
n+1 under this prior, namely:
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Then, by definition of the Bayes estimator, it must hold that for any t : X ⇥ R ! R:
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In the preceding result we are really thinking of t as the curried function t(x, ·). Next, by definition
of G

x

, the LHS of the above expression is the same as:
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Note that the LHS depends on m1(x), m2(x) through the definition of G
x

. We provide the calcula-
tions and complete the proof in Appendix A.3.

Lemma 10. Let c > 0, � > 0 the constants from Lemma 9. Then, for all m1, m2 : X ! R, the
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Proof. We use the result from Lemma (9), noting that L(t; m, A) =
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Thus not both L(t; m1, A), L(t; m2, A) may be < than the RHS at the same time.

The above lemma allows us to prove lower bounds by reduction to hypothesis testing. In particular,
let us recall the statement from Lemma 1, now stated in slightly more generality and dropping explicit
notation for n in the constructed collection of functions {m

v
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n

}:
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Note that the original statement of Lemma 1 is subsumed by the above statement. We are ready to
prove Lemma 1.

Proof. Our construction closely follows Duchi [2019] and recent advances in proving minimax
results for general losses; see for example [Agarwal et al., 2009]. To start, we fix an estimated
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Combining with our original result, and averaging over all v, we see that:
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A.3 Proof of Lemma 9

Proof. It only remains to prove (16). To this end, let us note that the result is essentially univariate;
i.e. we may consider the following model:
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C(⌘̃), for some C(⌘̃), which we now turn to study. Our first

observation is that C(0) = E
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C(⌘̃) = 1 � ⌘̃2
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To this end, we break up C(⌘) into 6 components upon distributing terms, calling them
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⌘̃

, III
⌘̃

, where the subscript corresponds to integrating over eX ⇠ N (0, 1) or
eX ⇠ N (⌘̃, 1).

I0 := E0

h

eX2
i

= 1, I

⌘̃

:= E
⌘̃

h

eX2
i

= 1 + ⌘̃2

II0 := E0

"

⌘̃2 · `2

 

�⌘̃2
+ 2⌘̃ eX

2

!#

=

⌘̃2

4

+ o(⌘̃2
) (dominated convergence theorem)

II

⌘̃

:= E
⌘̃

"

⌘̃2 · `2

 

�⌘̃2
+ 2⌘̃ eX

2

!#

=

⌘̃2

4

+ o(⌘̃2
)

We may see the last result for example as follows, again using dominated convergence (⌘̃ ! 0):
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Then the regret is:
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In particular, there exist c > 0, � > 0 such that if ⌘̃  �:
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Recalling that ⌘̃ = ⌘/
p

A + �2, we conclude. We also note that we may let c be arbitrarily close to
1/4.

A.4 Proof and statement of Lemma 11

Lemma 11. Assume µ ⇠ g and Z | µ ⇠ N
�

µ, �2
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. Also call f
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the marginal density of Z and
define the Fisher information:
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Remark 12. This formula is quite well know, see for example [Cohen, Greenshtein, and Ritov, 2013].
Mukhopadhyay and Vidakovic [1995] call it Brown’s formula in light of [Brown, 1971]. We give a
proof for completeness; in which we do not justify switching integration and differentiation. For our
purposes we only need the result for g a mixture of two normals, in which case this is valid.
Remark 13. As a simple application, consider g = N (0, A), then f
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1
�

2+A

. The above result then states:
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µ̂

n

E
g

h

(µ̂ � µ)

2
io

= �2



1 � �2

�2
+ A

�

=

�2A

�2
+ A

Proof. We start with noting that the Bayes estimator is given by Tweedie’s [Efron, 2011] celebrated
formula:

E
g

[µ | Z = z] = z + �2 f 0
g

(z)

f
g

(z)

Then, the Bayes risk is given by (letting " := Z � µ ⇠ N
�

0, �2
�

):

inf

µ̂

n

E
g

h

(µ̂ � µ)

2
io

= E
g

"

✓

µ � Z � �2 f 0
g

(Z)

f
g

(Z)

◆2
#

= E
g

"

✓

�" � �2 f 0
g

(Z)

f
g

(Z)

◆2
#

= �2
+ �4I(f

g

) + 2�2E
g



"
f 0

g

(Z)

f
g

(Z)

�

= �2 � �4I(f
g

)
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It remains to justify that: E
g

h

"
f

0
g

(Z)

f

g

(Z)

i

= ��2I(f
g

). To this end, first note that upon conditioning on
µ, we may use Stein’s lemma, as follows:

E
g



"
f 0
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(Z)

f
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(Z)

�

= E
g



E


"
f 0

g

(" + µ)

f
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(" + µ)

| µ

��
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�2E


d

d"
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f
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| µ
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"
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f 00
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f
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(Z)

�
f 0

g

(Z)

2

f
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(Z)
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!#

= ��2I(f
g

)

The last step that remains to be shown is that E
g

h

f

00
g

(Z)

f

g

(Z)

i

= 0. But this is very similar to a standard
Fisher information calculation, in which we interchange integration and differentiation to get that
(here µ ⇠ g):

E
g



f 00
g

(Z)

f
g

(Z)

�

=

Z

f 00
g

(z)dz =

1p
2⇡�2

Z

d2

dz2
E

g

[�((z � µ)/�)] dz =

1p
2⇡�2

Z

E
g



d2

dz2
�((z � µ)/�)

�

dz

=

1p
2⇡�2

E
g



Z

d2

dz2
�((z � µ)/�)dz

�

= 0

A.5 Local Fano’s Lemma

In this section we provide a Lemma to lower bound the expression inf

V̂

n

P
h

ˆV
n

6= V
n

i

which appears
in Lemma 1. Below, we denote by PX ⌦ N

�

m
v

(·), �2
+ A

�

the joint distribution of (X,Z) when
X ⇠ PX and Z | X ⇠ N

�

m
v

(X), �2
+ A

�

.

Lemma 14 (Local Fano). Assume there exists  > 0 such that for all v, v0 2 V
n

:

DKL
�

PX ⌦ N
�

m
v

(·), �2
+ A

�

|| PX ⌦ N
�

m
v

0
(·), �2

+ A
��

 2

If also:
log(|V

n

|) � 2(n2
+ log(2))

Then:

inf

V̂

n

P
h

ˆV
n

6= V
n

i

� 1

2

Proof. Let V
n

uniformly distributed on V
n

and ˆV
n

any estimator of V
n

. Then by Fano’s inequality
(Corollary 7.9 in Duchi [2019]):

P
h

ˆV
n

6= V
n

i

� 1 � I(V
n

; (X
i

, Z
i

)1in

) + log(2)

log(|V
n

)|

Here I(V
n

; (X
i

, Z
i

)1in

) is the mutual information between V
n

and (X
i

, Z
i

)1in

.

Next fix v, v0 2 V
n

and let P
v

, P
v

0 the induced distributions of (X1, Z1) induced by m
v

, resp. m
v

0

in model (1), then by (7.4.5) in Duchi [2019]:

I(V
n

; (X
i

, Z
i

)1in

)  1

|V|2
X

v,v

02V
n

DKL(Pn

v

||Pn

v

0)  n max

v,v

02V
n

DKL(P
v

||P
v

0
)  n2

The result follows.
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A.6 Fay Herriot results

Proof. For the upper bound, we will use Theorem 2, where our regression estimator is just the
ordinary least squares fit, i.e. m̂(x) = x>

ˆ� with ˆ� = (X>X)

�1X>Z1:n. By X we mean the usual
design matrix in which the vectors X1, . . . , Xn

are stacked as rows into a matrix.

We start by decomposing the error:

E
h

(m̂(X
n+1) � m(X

n+1))
2
i

= E


⇣

X>
n+1

ˆ� � X>
n+1�

⌘2
�

= E
h

tr

⇣

(

ˆ� � �)

>X
n+1X

>
n+1(

ˆ� � �)

⌘i

= E
h

tr

⇣

(

ˆ� � �)(

ˆ� � �)
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>
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⌘i

= tr

⇣

E
h

(

ˆ� � �)(

ˆ� � �)

>
i

⌃

⌘

Hence recalling that E
h

ˆ�
i

= �, we only need to study the covariance of ˆ�.

Cov

h

ˆ�
i

= E
h

Cov

h

ˆ� | X1:n

ii

+ Cov

h

E
h

ˆ� | X1:n

ii

= (�2
+ A)E

h

�

X>X
��1
i

+ 0

= (�2
+ A)⌃

�1 1

n � d � 1

The last equality holds because X>X follows a Wishart distribution. See Theorem 2 in Rosset and
Tibshirani [2018] and references therein for similar results. In total we get:

E
h

(m̂(X
n+1) � m(X

n+1))
2
i

= tr

✓

(�2
+ A)⌃

�1 1

n � d � 1

⌃

◆

=

d(�2
+ A)

n � p � 1

For the lower bound, we will apply Lemma 1. First we let V
n

be an 1/2 packing of the Euclidean
(`2) unit ball which has cardinality at least 2

d (Lemma 7.6. in Duchi [2019])

Then, for v 2 V
n

we define ✓
v

= "v (we will specify " later). Then we let �
v

= ⌃

�1/2✓
v

and note
that for two distinct v, v0:

E
h

�
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n+1�v
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0
�2
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E
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� �
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0k2
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� "2

4

In the last step we used the packing property of the set V
n

we defined.

On the other hand:
DKL

�

N (0, ⌃) ⌦ N
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h·, �
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�
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To apply Lemma 14 we need the following to hold for a constant C:

log(2

d

) � C
n"2

A + �2
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So we may pick "2
= cd(A+�

2)
n

for a constant c. Since " ! 0 as n ! 1, we may apply Lemma 1
for large enough n with separation say "2/10, by which we can conclude.

A.7 Lipschitz results

Proof. The upper bound follows from Theorem 2, where the regressor m̂
n

is the k-nearest neighbor
regression predictor (KNN) with optimally tuned number of neighbors, see Theorem 6.2 and Problem
6.7 in Györfi et al. [2006].

For the lower bound, we will apply Lemma 1. To this end, we start by constructing V
n

as in the proof
of Theorem 3.2. in Györfi et al. [2006]: We define M

n

2 N and partition [0, 1]

d (we will pick M
n

later) into Md

n

cubes A
n,j

of side length 1/M
n

and with centers a
n,j

. Next we take any function
m̄ : Rd ! R which is 1-Lipschitz, vanishes outside [� 1

2 , 1
2 ]

d and C
I

:=

R

m̄2
(x)dx > 0. We also

define m̄
L

(·) = L · m̄(·). Finally, for j = 1, . . . , Md

n

we define:

m̄
L,n,j

(x) =

1

M
n

m̄
L

(M
n

(x � a
n,j

))

Then we let V
n

⇢ {±1}M

d

n with |V
n

| � exp(Md

n

/8) and so that for all v, v0 2 V
n

:

M
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n
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1
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v
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6= v0
j

�
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n

4

Such a set exists by the Gilbert-Varshamov bound (Lemma 7.5 in Duchi [2019]). With V
n

in hand,
we define for v 2 V

n

:

m
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(x) =

M

d

n

X
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v
j

m̄
L,n,j

(x)

We argue that m
v

(x) indeed is L-Lipschitz: All m̄
L,n,j

are L-Lipschitz, since so is m̄
L

and further-
more observe that all m̄

L,n,j

, j = 1, . . . , Md

n

have disjoint support.

Next, take v 6= v0 2 V
n

. Then, since the m̄
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On the other hand, let us bound the KL divergence between the distributions induced by m
v

, m
v

0 :
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m
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Next, we will lower bound inf
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n

P
h
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n

i

by Lemma 14. To get the condition, we need that for
some C > 0:
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1
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m
v

, m
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We conclude by Lemma 1 upon noting that M
n

! 1 and hence sup

v2V
n

sup

x

|m
v

(x)| ! 0 as
n ! 1.

B Results for sample-split EB in Section 3

in Section 3 we made the following point: Even if we knew the true A, it would not be the optimal A
to plug into (7). We formalize this in the following proposition:
Proposition 15. Consider model (1). Fix any (deterministic) function m̃ : X ! R and define:

A
m̃

:= E
m,A

h

(m̃(X
n+1) � Z

n+1)
2
i

� �2 (20)

Then:

E
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. Furthermore, a direct consequence is that:
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Proof. Let us consider the following class of shrinkage rules, where � 2 [0, 1]:

t
�

(x, z) = �m̃(x) + (1 � �)z = � (m̃(x) � z) + z

Then our goal will be to minimize the following function over � 2 [0, 1]:

J(�) = E
m,A

h
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�
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2
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(21)
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To this end:
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The last step follows from the two following intermediate results:
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We may now directly minimizer over A to see that the optimal � is given by:
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The form of A
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then directly follows by noting the one-to-one correspondence � $ �

2

A

m̃

+�

2 .

We will now prove that for deterministic m̃, as in Proposition 15, parametric rates are possible in the
estimation of A

m̃

, which translate into O(1/n) decay of the regret.
Proposition 16. Consider n i.i.d. observations (X

i

, Z
i

) from model (1) with A, � > 0. Fix
any (deterministic) function m̃ : X ! R with E
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Proof. We consider again the J(�) from (21) and recall that J(�⇤
(m̃)) = min

��0 J(�). We note
that J(�) is a convex quadratic in � with:

J 0
(�) = 2�E

m,A

h

(m̃(X
n+1) � Z

n+1)
2
i

� 2�2, J 00
(�) = 2E

m,A

h

(m̃(X
n+1) � Z

n+1)
2
i

Thus, since J 0
(�⇤

(m̃)) = 0, we get for any �:

J(�) = J(�⇤
(m̃)) + E

m,A

h

(m̃(X
n+1) � Z

n+1)
2
i

(� � �⇤
(m̃))

2

This means that:

L(t
�

; m, A) = L(t
�

⇤(m̃); m, A) + E
m,A

h

(m̃(X
n+1) � Z

n+1)
2
i

(� � �⇤
(m̃))

2

Hence to conclude we will need to bound E
m,A



⇣

ˆ�
n

� �⇤
(m̃)

⌘2
�

, where:

ˆ�
n

=

�2

�2 _
⇣

1
n

P

n

k=1 (m̃(X
k

) � Z
k

)

2
⌘

24



Using the fact that both �2 _
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This is O(1/n) as long as Var
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h

(m̃(X
k

) � Z
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2
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is upper bounded, which is the case under the
given assumptions. The last statement follows from Proposition 15.

We are now in a position to prove Theorem 5

Theorem 5. We apply Proposition 16 for the data in fold I2 conditionally on the first fold, i.e.
conditionally on Z

I1 , µI1 , XI1 .

C Results under misspecification

C.1 Proof of Theorem 6 (James-Stein property)

Before proceeding with the proof, let us introduce the following lemma:
Lemma 17. Fix ⌫ 2 N, a fixed vector ⇠ = (⇠1, . . . , ⇠⌫

), a mean vector ✓ = (✓1, . . . , ✓⌫

) and
independent Y1, . . . , Y⌫

distributed as Y
i

⇠ N
�

✓
i

, �2
�

. Then consider the following positive-part
James-Stein type estimator, parametrized by a > 0:
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This estimator has risk:
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In particular, if ⌫ � 5 (resp. ⌫ � 3), ˆ✓
⌫

(resp. ˆ✓
⌫�2) has squared error risk < ⌫�2.

Proof. Estimator (22) where we do not take the positive part of
⇣

1 � a�

2

kY �⇠k2
2

⌘

+
has risk precisely

equal to the RHS in (23). This is well known, see for example Lemma 1 in [Green and Strawderman,
1991] and references therein. The positive part estimator then has smaller risk, as also follows from
well known results on James-Stein estimation, see e.g. [Baranchik, 1964]. Finally when a = ⌫ � 5,
a�2

[2(⌫ � 2) � a] = �2
[⌫ � 4] > 0.
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We are ready to prove Theorem 6:

Proof. Let eP
I1 [ · ] = P [ · | Z

I1 , µ1:n, X1:n]. Then w.r.t. eP
I1 [·], it holds that (Z

i

)

i2I2 are indepen-
dent and Z

i

⇠ N
�

µ
i

, �2
�

for i 2 I2. Furthermore m̂
I1(XI2) = (m̂

I1(Xi

))

i2I2 is deterministic w.r.t.
eP

I1 [·] and also recall that:

µ̂EBCF
I2

=

�2

ˆA
I2 + �2

m̂
I1(XI2) +

ˆA
I2

ˆA
I2 + �2

Z
I2

= m̂
I1(XI2) +

 

1 � �2

ˆA
I2 + �2

!

(Z
I2 � m̂

I1(XI2))

Also from (8) it holds that:

ˆA
I2 =

 

1

|I2|
X

i2I2

(m̂
I1(Xi

) � Z
i

)

2 � �2

!

+

Thus µ̂
I2 takes precisely the form from (22) with a = |I2| and thus applying Lemma 17 (w.r.t.

eP
I1 [ · ], also by assumption |I2| � 5), we get:

X

i2I2

eE
I1

h

�

µ
i

� µ̂EBCF
i

�2
i

<
X

i2I2

eE
I1

⇥

(µ
i

� Z
i

)

2
⇤

= |I2| �2

Integrate w.r.t. Z
I1 , to get:

X

i2I2

E
h

�

µ
i

� µ̂EBCF
i

�2 �
�µ1:n, X1:n

i

< |I2| �2

Now apply the symmetric argument with the folds flipped to also get:

X

i2I1

E
h

�

µ
i

� µ̂EBCF
i

�2 �
�µ1:n, X1:n

i

< |I1| �2

Add both inequalities and divide by n to conclude.

C.2 SURE results

Below we prove Theorem 7. Throughout the proof we deal with the more general case of unequal
variances. In particular, we replace the assumption that (X

i

, Z
i

) satisfy (9) by the following model
(while keeping all other assumptions):

(X
i

, µ
i

) ⇠ P(X
i

,µ

i

), Z
i

| µ
i

, X
i

⇠
�

µ
i

, �2
i

�

, i.e. E [Z
i

| µ
i

, X
i

] = µ
i

, Var [Z
i

| µ
i

, X
i

] = �2
i

Theorem 7. Our proof closely follows Xie et al. [2012]. Let n2 = |I2|. We also use the same notation
as in the proof of Theorem 6, wherein eP

I1 [ · ] = P [ · | Z
I1 , µ1:n, X1:n]. For i 2 I2 we also write

m̃
i

= m̂
I1(Xi

). We rewrite the SURE expression as follows:

SURE

I2(A) =

1

n2

X

i2I2

✓

�2
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�4
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(A + �2
i

)

2
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�4
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1
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X
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�4
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i

)

2
(Z

i

� m̃
i

)

2
+

�2
i

(A � �2
i

)

A + �2
i

�

We also define `
I2(A), the average loss in fold I2 when we estimate µ

i

by t⇤
m̂

I1 ,A

(X
i

, Z
i

), i.e.:

`
I2(A) :=

1

n2

X

i2I2

⇣

µ
i

� t⇤
m̂

I1 ,A

(X
i

, Z
i

)

⌘2
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Next we collect the difference between the SURE risk estimate and the actual loss:

SUREI2(A) � `I2(A) =
1
n2

X

i2I2

"✓
�4

i

(A+ �2
i )

2
(Zi � m̃i)

2 +
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i

⇤�

= I + II

We consider each term independently. The first term does not depend on A, hence is easier to study.
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+ m̃4
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 8n2
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4
+ M4
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The second term depends on A and we want a result that is uniform in A. Without loss of generality,
we may assume that the indices in I2 = {i1, i2, . . . } are arranged such that �2

i1
 �2

i2
 ... (otherwise

we may just rearrange). Then, as observed in Li [1986], Xie et al. [2012]:
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Next notice that M
j

, j = 1, . . . , n2 is a martingale w.r.t. eP
I1 [·], so by the L2 maximal inequality, for

a constant C > 0:
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The results together imply that for a constant C 0 > 0:
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But by definition of ˆA
I2 , SURE

I2(
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I2)  inf

A�0 SURE

I2(A) and so for any A � 0:
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This holds for any A � 0, hence it remains valid after we take the infimum over A � 0.
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C.3 Proof of Corollary 8

Proof. By Theorem 7:

2
n
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i2I2

E
h
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Next integrate over X1:n, µ1:n, Z
I1 and pull the inf outside of the expectation and use the fact that

(X
i
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i

, µ
i

) are i.i.d. to get for fresh (X
n+1, Zn+1):

2

n

X

i2I2

E
⇥

(µ
i

� µ̂EBCF
i

)

2
⇤

 inf

A�0

⇢

E


⇣

µ
n+1 � t⇤

m̂

I1 ,A

(X
n+1, Zn+1)

⌘2
��

+ O

✓

1p
n

◆

Then, make the choice A = E
h
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to get:
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Repeat the same argument with I1, I2 flipped, add the results and divide by 2 to conclude.
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