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Abstract

We integrate information-theoretic concepts into the design and analysis of op-
timistic algorithms and Thompson sampling. By making a connection between
information-theoretic quantities and confidence bounds, we obtain results that
relate the per-period performance of the agent with its information gain about the
environment, thus explicitly characterizing the exploration-exploitation tradeoff.
The resulting cumulative regret bound depends on the agent’s uncertainty over
the environment and quantifies the value of prior information. We show applica-
bility of this approach to several environments, including linear bandits, tabular
MDPs, and factored MDPs. These examples demonstrate the potential of a gen-
eral information-theoretic approach for the design and analysis of reinforcement
learning algorithms.

1 Introduction

We consider an online decision problem where an agent repeatedly interacts with an uncertain
environment and observes outcomes. The agent has a reward function that specifies its preferences
over outcomes. The objective of the agent is to sequentially select actions so as to maximize the
long-term expected cumulative reward. One classic example is the multi-armed bandit problem,
where the agent observes only the reward of the action selected during each period. Another example
is episodic reinforcement learning, where the agent selects a policy at the beginning of each episode,
and observes a trajectory of states and rewards realized over the episode.

The agent’s uncertainty about the environment gives rise to a need to trade off between exploration
and exploitation. Exploring parts of the environment that are poorly understood could lead to better
performance in the future, while exploiting current knowledge of the environment could lead to
higher reward in the short term. Thompson sampling [20] and optimistic algorithms [9, 12] are
two classes of algorithms that effectively balance the exploration-exploitation tradeoff and achieve
near-optimal performance in many stylized online decision problems. However, most analyses of such
algorithms focus on establishing performance guarantees that only exploit the parametric structure of
the model [1, 2, 3, 5, 7, 9, 10, 11]. There has not been much focus on how prior information as well
as information gain during the learning process affect performance, with few exceptions [17, 18].

In our work, we leverage concepts from information theory to quantify the information gain of
the agent and address the exploration-exploitation tradeoff for Thompson sampling and optimistic
algorithms. By connecting information-theoretic quantities with confidence bounds, we are able to
relate the agent’s per-period performance with its information gain about the environment during the
period. The relation explicitly characterizes how an algorithm balances exploration and exploitation
on a single-period basis. The information gain is represented succinctly using mutual information,
which abstracts away from the specific parametric form of the model. The level of abstraction
offered by information theory shows promise of these information-theoretic confidence bounds
being generalizable to a broad class of problems. Moreover, the resulting cumulative regret bound
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explicitly depends on the agent’s uncertainty over the environment, which naturally exhibits the value
of prior information. We present applications of information-theoretic confidence bounds on three
environments, linear bandits, tabular MDPs, and factored MDPs.

One paper that is closely related to our work is [18], which proposes an upper confidence bound
(UCB) algorithm for bandit learning with a Gaussian process prior and derives a regret bound that
depends on maximal information gain. Some of their results parallel what we establish in the context
of the linear bandit, though our analysis extends to Thompson sampling as well. More importantly, our
work generalizes the information-theoretic confidence bound approach to problems with significantly
more complicated information structure, such as MDPs.

Another closely related paper is [17], which provides an information-theoretic analysis of Thompson
sampling for bandit problems with partial feedback. The paper introduces the notion of an information
ratio, which relates the one-period regret of Thompson sampling with one-period information gain
towards the optimal action. Using this concept, the authors are able to derive a series of regret bounds
that depend on the information entropy of the optimal action. While this is an elegant result, it is
unclear how to extend the approach to MDPs, as information gain about the optimal policy is hard to
quantify. In our paper, we consider information gain about the underlying environment rather than
the optimal action or policy, which may be seen as a relaxation of their method. The relaxation allows
us to leverage confidence bounds and obtain information-theoretic regret bounds for MDPs.

2 Problem formulation

We consider an online decision problem where an agent repeatedly interacts with an uncertain environ-
ment and observes outcomes. All random variables are defined on a probability space (Ω,F ,P). The
environment is described by an unknown model parameter θ which governs the outcome distribution.
The agent’s uncertainty over the environment is represented as a prior distribution over θ. Thus, θ
will be treated as a random variable in the agent’s mind. During each time period `, the agent selects
an action A` ∈ A and observes an outcome Y`,A`

∈ Y . We assume that the space of outcomes Y is a
subset of a finite dimensional Euclidean space. Conditioned on the model index θ, outcomes Y` are
i.i.d. for ` = 1, 2, . . . . The agent has a reward function r : Y → < that encodes its preferences over
outcomes. We make a simplifying assumption that rewards are bounded.

Assumption 1. There exists B ≥ 0 such that supy∈Y r(y)− infy∈Y r(y) ≤ B.

The objective of the agent is to maximize its long-term expected cumulative reward. Let
H` = (A1, Y1,A1

, . . . , A`−1, Y`−1,A`−1
) denote the history up to time `. An algorithm π is a

sequence of functions {π`}`≥1 that map histories to distributions over actions. For any a ∈ A,
let rθ(a) = E[r(Y1,a)|θ] denote the expected reward of selecting action a under model θ. Let
A∗ ∈ arg maxa∈A rθ(a) denote the optimal action under model θ. We define the Bayesian regret of
an algorithm π over L periods

E[Regret(L, π)] =

L∑
`=1

E[rθ(A
∗)− rθ(A`)],

where the expectation is taken over the randomness in outcomes, algorithm π, as well as the prior
distribution over θ.

Note that episodic reinforcement learning also falls in the above formulation by considering policies
as actions and trajectories as observations.

3 Preliminaries

3.1 Basic quantities in information theory

For two probability measures P and Q such that P is absolutely continuous with respect to Q, the
Kullback-Leibler divergence between them is

D(P ||Q) =

∫
log

(
dP

dQ

)
dP,
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where dP
dQ is the Radon-Nikodym derivative of P with respect to Q.

Let P (X) ≡ P(X ∈ ·) denote the probability distribution of a random variableX , and let P (X|Y ) ≡
P(X ∈ ·|Y ) denote the conditional probability distribution of X conditioned on Y .

The mutual information between two random variables X and Y

I(X;Y ) = D(P (X,Y ) ||P (X)P (Y ))

is the Kullback-Leibler divergence between their joint distribution and product distribution [6].
I(X;Y ) is always nonnegative, and I(X;Y ) = 0 if and only if X and Y are independent. In our
analysis, we will use I(θ;A, YA) to measure the agent’s information gain of θ from selecting an
action and observing an outcome.

The conditional mutual information between two random variables X and Y , conditioned on a third
random variable Z, is

I(X;Y |Z) = E[D(P (X,Y |Z) ||P (X|Z)P (Y |Z))],

where the expectation is taken over Z. An elegant property of mutual information is that the mutual
information between a random variable X and a collection of random variables Y1, . . . , Yn can be
decomposed into a sum of conditional mutual information using the chain rule.
Lemma 1. (Chain rule of mutual information)

I(X;Y1, Y2, . . . , Yn) =

n∑
i=1

I(X;Yi|Y1, . . . , Yi−1).

3.2 Notation under posterior distributions

We will use subscript ` on P and E to indicate quantities conditioned onH`, i.e., P`(·) ≡ P(·|H`) =
P(·|A1, Y1,A1

, . . . , A`−1, Y`−1,A`−1
), and similarly for E`[·]. Let P`(X) ≡ P`(X ∈ ·) denote the

conditional distribution of a random variable X conditioned on H`. We define filtered mutual
information

I`(X;Y ) = D(P`(X,Y ) ||P`(X)P`(Y )),

which is a random variable ofH`. Note that by the definition of conditional mutual information,

E[I`(X;Y )] = I(X;Y |H`) = I(X;Y |A1, Y1,A1 , . . . , A`−1, Y`−1,A`−1
).

3.3 Algorithms

Thompson sampling is a simple yet effective heuristic for trading off between exploration and
exploitation. Conceptually, it samples each action according to the probability that it is optimal. The
algorithm typically operates by starting with a prior distribution over θ. During each time period,
it samples from the posterior distribution over θ, and selects an action that maximizes the expected
reward under the sampled model. It then updates the posterior distribution with the observed outcome.

Another widely studied class of algorithms that effectively trade off between exploration and exploita-
tion are upper confidence bound (UCB) algorithms, which apply the principle of optimism in the face
of uncertainty. For each time period, they typically construct an upper confidence bound for the mean
reward of each action based on past observations, and then select the action with the highest upper
confidence bound.

Algorithm 1 Thompson Sampling

1: Input: prior p
2: for ` = 1, 2, . . . , L do
3: Sample: θ̂` ∼ p
4: Act: A` = arg max

a∈A
rθ̂`(a)

5: Observe: Y`,A`

6: Update: p← P(θ ∈ ·|p,A`, Y`,A`
)

7: end for

Algorithm 2 Upper Confidence Bound Algorithm

1: Input: upper confidence functions {U`}L`=1
2: for ` = 1, 2, . . . , L do
3: Act: A` = arg max

a∈A
U`(H`, a)

4: Observe: Y`,A`

5: Update: H`+1 ← H` ∪ {A`, Y`,A`
}

6: end for
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4 Information-theoretic confidence bounds

Information-theoretic confidence bounds are defined with the intention of capturing the exploration-
exploitation tradeoff for Thompson sampling and optimistic algorithms – if the regret is large, the
agent must have learned a lot about the environment. Let ∆` = rθ(A

∗)− rθ(A`) denote the regret
over the `th period. We aim to obtain per-period regret bound of the form

E`[∆`] ≤ Γ`

√
I`(θ;A`, Y`,A`

) + ε`, (1)

where I`(θ;A`, Y`,A`
) is the filtered mutual information between θ and the action-outcome pair

during the `th period, Γ` is the rate at which regret scales with information gain, and we also allow
for a small error term ε`. If (1) is satisfied with reasonable values for Γ` and ε`, a large expected
regret on the left-hand side would imply that the right-hand side must be large as well, meaning that
the agent should gain a lot of information about the environment.

If Γ` can be uniformly bounded over ` = 1, . . . , L, we obtain an information-theoretic regret bound
for any algorithm that satisfies (1).
Proposition 2. If (1) holds with Γ` ≤ Γ for all ` = 1, . . . , L, then

E[Regret(L, π)] ≤ Γ
√
L I(θ;A1, Y1,A1

, . . . , A`, Y`,A`
) + E

L∑
`=1

ε`.

The proof follows from Jensen’s and the Cauchy-Schwarz inequalities, and the chain rule of mutual
information. All complete proofs can be found in the appendix.

The mutual information term on the right-hand side shows how much the agent expects to learn about
θ over L periods. If θ already concentrates around some value, there is not much to learn, and the
result would suggest that the expected regret should be small. In general, the mutual information
term can be bounded by the maximal information gain under any algorithm over L periods, though a
more careful analysis specialized to the algorithm of interest might lead to a better bound.

One way to obtain a per-period regret bound of the form in Equation (1) is through construction of
information-theoretic confidence sets for mean rewards. For each action a, the width of the confidence
set is designed to depend on the information gain about θ from observing outcome Y`,a.
Lemma 3. Under Assumption 1, if

P`
(
|rθ(a)− E` [rθ(a)]| ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
,

then the per-period regret of Thompson sampling and UCB with upper confidence function U`(a) =

E` [rθ(a)] + Γ`

2

√
I`(θ;Y`,a) satisfies

E` [∆`] ≤ Γ`

√
I`(θ;A`, Y`,A`

) + δB.

The proof follows from the probability matching property of Thompson sampling, optimism of UCB,
and properties of mutual information.

When the reward function r(y) is Lipschitz continuous, we may alternatively construct confidence
sets on outcomes. Further, if the observation noise is additive, we may construct confidence sets on
the mean outcomes.
Lemma 4. If r(·) is K-Lipschitz continuous with respect to some norm ‖ · ‖ on Y , and if

P`
(
‖Y`,a − E` [Y`,a] ‖ ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
,

then the per-period regret of Thompson sampling

E` [∆`] ≤ K Γ`

√
I`(θ;A`, Y`,A`

) + δB.

Moreover, if there exists a function y : Θ×A → Y such that Y`,a − y(θ, a) is independent of θ for
all a ∈ A, then it is sufficient to have

P`
(
‖y(θ, a)− E` [y(θ, a)] ‖ ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2

for the one-period regret bound to hold.
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An analogous result would hold for a UCB algorithm if outcomes Y`,a are scalar valued and the
reward function is nondecreasing. We will push further details to the appendix.

5 Examples

In this section, we show applications of information-theoretic confidence bounds on linear ban-
dits, tabular MDPs, and factored MDPs. The per-period regret bounds highlight the single-period
exploration-exploitation tradeoff for Thompson sampling and the corresponding optimistic algorithms,
while the cumulative regret bounds show how the prior distribution over θ affects regret.

5.1 Linear bandits

Let A ⊂ <d be a finite action set, and assume that supa∈A ‖a‖2 ≤ 1. We assume a N(µ1,Σ1) prior
over the model parameter θ ∈ <d. At time `, an action A` ∈ A is selected, and Y`,A`

= θ>A` + w`
is observed, where w` are i.i.d. N(0, σ2

w). Conditioned onH`, the posterior distribution of θ is again
normal. Let µ` and Σ` denote the posterior mean and covariance matrix conditioned on H`. We
assume that r(·) is bounded under Assumption 1, and is nondecreasing and 1-Lipschitz.

By Lemma 4, since noise is additive, it is sufficient to construct confidence sets on Y a = θ>a.

Lemma 5. Under the assumptions stated in Section 5.1,

P`
(∣∣Y a − E`Y a

∣∣ ≤ Γ`
2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
,

for

Γ` = 4

√√√√ σ2
`,max

log
(

1 +
σ2
`,max

σ2
w

) log
4|A|
δ
, where σ2

`,max = max
a∈A

a>Σ`a.

Thus, it follows from Lemma 4 that the one-period regret of Thompson sampling and UCB with
U`(a) = E`Y a + Γ`

2

√
I`(θ;Y`,a) satisfies

E`[∆`] ≤ Γ`

√
I`(θ;A`, Y`,A`

) + δB.

By Proposition 2, we have the following Bayesian regret bound for Thompson sampling and UCB by
choosing δ = 1

L .

Proposition 6. Under the assumptions stated in Section 5.1, the Bayesian regret of Thompson
sampling and UCB over L periods is

E[Regret(L, π)] ≤ Γ
√
L I(θ;A1, Y1,A1

, . . . , AL, YL,AL
) +B

where

Γ = 4

√√√√ σ2
1,max

log
(

1 +
σ2
1,max

σ2
w

) log(4|A|L).

The following lemma bounds the maximal information gain over L time periods.

Lemma 7. For anyH`-adapted action sequence,

I(θ;A1, Y1,A1 , . . . , AL, YL,AL
) ≤ 1

2
d log

(
1 +

λmaxL

σ2
w

)
,

where λmax is the largest eigenvalue of Σ1.

It follows from Lemma 7 that the Bayesian regret of Thompson sampling and UCB is bounded by
O(
√
dL log |A| logL), which matches the result in [18]. For large action sets, it is possible to apply

a discretization argument and obtain a regret bound of order O(d
√
L logL).
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5.2 Tabular MDPs

We consider the problem of learning to optimize a random finite-horizon MDPM = (S,A, R, P, τ, ρ)
in repeated episodes. S is the state space, A is the action space, and we assume that both S and A
are finite. Assume that for each s, a, the reward distribution is Bernoulli with mean R(s, a), where
R(s, a) follows an independent Beta prior with parameter αR1,s,a ∈ <2. We further assume that for
each s, a, the transition distribution P (s, a, ·) follows an independent Dirichlet prior with parameter
αP1,s,a ∈ <|S|. τ is a fixed time horizon, and ρ is the initial state distribution. We make the following
simplifying assumption on the prior parameters.

Assumption 2. For all s ∈ S and a ∈ A, αR1,s,a(i) ≥ 1 for i ∈ {1, 2}, and αP1,s,a(j) ≥ 2
|S| for all

j ∈ {1, . . . , |S|}.

A (deterministic) policy µ is a sequence of functions (µ0, . . . , µτ−1) that map states to actions.
During each episode `, the agent selects a policy µ`, and observes a trajectory

Y`,µ`
= (s`,0, a`,0, r`,1, s`,1, . . . , s`,τ−1, a`,τ−1, r`,τ ).

We define the value function of a policy µ under an MDP M̃

V M̃µ,k(s) := E

[
τ−1∑
t=k

R(st, at)
∣∣∣M = M̃, µ, sk = s

]
.

Define the expected value of a policy µ under an MDP M̃

V
M̃

µ = E
[
V M̃µ,0(s0)

∣∣M = M̃, µ
]
.

Let µ∗ denote an optimal policy for the true environment M . The Bayesian regret of an algorithm π
over L episodes is

E[Regret(L, π)] =

L∑
`=1

E
[
V
M

µ∗ − V
M

µ`

]
,

where the expectation is taken over the randomness in observations, algorithm π, as well as the prior
distribution over M .

We will construct confidence bounds on value functions in the spirit of Lemma 3. As we will see
in the following two lemmas, the structure of MDPs allows us to break down the deviation of value
functions and the information gain at the level of state-action pairs. Thus, it would be sufficient to
construct confidence sets for the reward and transition functions for individual state-action pairs.

The following lemma decomposes the planning error to a sum of on-policy Bellman errors. The proof
can be found in Section 5.1 of [13].

Lemma 8. For any MDP M̂ and policy µ,

V
M̂

µ − V
M

µ =

τ−1∑
t=0

E
[(
R̂(st, at)−R(st, at)

)
+
(
P̂ (st, at)− P (st, at)

)>
V M̂µ,t+1

∣∣∣∣M̂,M, µ

]
,

where R̂, P̂ are the reward and transition functions under M̂ .

Let H`t = (µ`, s`,0, a`,0, . . . , r`,t, s`,t) denote the history of episode ` up to time t and the policy
selected for episode `. The chain rule of mutual information gives us the following lemma.

Lemma 9. (information decomposition)

I` (M ; µ`, Y`,µ`
) =

τ−1∑
t=0

I` (M ; (s`,t, a`,t, r`,t+1, s`,t+1) | H`t) .

By Lemmas 8 and 9, we will construct information-theoretic confidence sets for reward and transition
distributions individually for each state-action pair.
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Lemma 10. Let r`,t,s,a ∼ Bernoulli(R(s, a)) |H`,H`t and s′`,t,s,a ∼ P (s, a, ·) |H`,H`t. Then,

P`

(
|R(s, a)− E`R(s, a)| ≤ ΓR

√
min
t̃,ht̃

I`(R; s, a, r`,t̃,s,a |H`t̃ = ht̃)

)
≥ 1− δ (2)

and

P`

(∣∣∣(P (s, a)− E`P (s, a)
)>
VMµ∗,t+1

∣∣∣ ≤ ΓP
√

min
t̃,ht̃

I`(P ; s, a, s′
`,t̃,s,a

|H`t̃ = ht̃)

)
≥ 1− δ (3)

for all t and all s, a such that 1>αR`,s,a ≥ τ − 1 and 1>αP`,s,a ≥ τ − 1, respectively, where

ΓR =
√

24 log 2
δ and ΓP = τ

√
24 log 2

δ .

The terms mint̃,ht̃
I`(R; s, a, r`,t̃,s,a |H`t̃ = ht̃) and mint̃,ht̃

I`(P ; s, a, s′
`,t̃,s,a

|H`t̃ = ht̃) measure
the minimum per-step information gain that the agent can obtain about the reward and transition
functions of a state-action pair during the `th episode, conditioned on H`, where the minimum is
taken over all possible values of the time step 0 ≤ t̃ ≤ τ − 1 and all possible realizations of the
trajectoryH`t̃.
Lemma 10 allows us to construct a high probability confidence set M` over M , which is dis-
cussed more in details in the appendix. The corresponding UCB algorithm will select µ` =

arg maxµ maxM̂∈M`
V
M̂

µ . Combining with Lemmas 8 and 9, we are able to obtain a per-period
regret bound for Thompson sampling and UCB in the form of (1), with Γ` = Õ(τ

√
τ). This leads to

the following proposition.

Proposition 11. The Bayesian regret of Thompson sampling and UCB over L episodes is

E[Regret(L, π)] = Õ

(
τ
√
τL I(M ;µ1, Y1,µ1 , . . . , µL, YL,µL

)

)
.

We show in the appendix that I(M ;µ1, Y1,µ1 , . . . , µL, YL,µL
) = Õ(S2A). Though we conjecture

that a bound of Õ(SA) may be attainable under appropriate conditions. The conjecture is supported
by our simulations, as discussed in the appendix.

5.3 Factored MDPs

Factored MDPs [4] are a class of structured MDPs where transitions are represented by a dynamic
Bayesian network [8], and can typically be encoded in a compact parametric form. Our information-
theoretic approach will lead to a regret bound for Thompson sampling and UCB that depends on the
prior of the model parameter, which typically has dimension exponentially smaller than the state
space and action space.

We start with some definitions common in the literature [19].

Definition 1. Let X = X1 × · · · ×Xd be a factored set. For any subset of indices Z ⊆ {1, 2, . . . , d},
we define the scope set X [Z] := ⊗i∈ZXi. Further, for any x ∈ X , define the scope variable
x[Z] ∈ X [Z] to be the value of the variables xi ∈ Xi with indices i ∈ Z. If Z is a singleton, we will
write x[i] for x[{i}].

Let P(X ,Y) denote the set of functions that map x ∈ X to a probability distribution on Y .

Definition 2. The reward function class R ⊂ P(X ,<) is factored over S × A = X = X1 ×
· · · × Xd with scopes Z1, . . . , Zm if and only if, for all R ∈ R, x ∈ X , there exist functions
{Ri ∈ P(X [Zi],<)}mi=1 such that

E[r] =

m∑
i=1

E[ri]

where r ∼ R(x) is equal to
∑m
i=1 ri with each ri ∼ Ri(x[Zi]) individually observed.
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Definition 3. The transition function classP ⊂ P(X ,S) is factored over S×A = X = X1×· · ·×Xd
and S = S1 × · · · × Sn with scopes Z1, . . . , Zn if and only if, for all P ∈ P , x ∈ X , s ∈ S, there
exist functions {Pj ∈ P(X [Zj ],Sj)}nj=1 such that

P (s|x) =

n∏
j=1

Pj(s[j] | x[Zj ]).

A factored MDP is an MDP with factored rewards and transitions. Let X = S ×A. A factored MDP
is fully characterized by

M =
(
{Xi}di=1; {ZRi }mi=1; {Ri}mi=1; {Sj}nj=1; {ZPj }nj=1; {Pj}nj=1; τ ; ρ

)
,

where {ZRi }mi=1 and {ZPj }nj=1 are the scopes for the reward and transition functions, which we
assume are known to the agent, τ is a fixed time horizon, and ρ is the initial state distribution.

We assume that |ZRi |, |ZPj | ≤ ζ � d and |Xi| ≤ K, so the domain of any reward and transition
function has size at most Kζ . Let DR =

∑m
i=1

∣∣X [ZRi ]
∣∣ and DP =

∑n
j=1

∣∣X [ZPj ]
∣∣ be the sum of

the cardinality of the domains, and let D = DR + DP � |S||A|. To simplify exposition, let us
assume that |Sj | ≤ K for all j = 1, . . . , n.

Let xRi denote an element in X [ZRi ], and xPj denote an element in X [ZPj ]. We assume that the
factorized rewards are Bernoulli. With a slight abuse of notation, we let Ri(xRi ) denote the mean
reward, and we assume that Ri(xRi ) ∼ Beta(αR

1,i,xR
i

), where αR
1,i,xR

i
∈ <2. We further assume that

Pj(x
P
j , ·) ∼ Dirichlet(αP

1,j,xP
j

), αP
1,j,xP

j
∈ <|Sj |. Similar to the tabular case, we assume that each

component of αR
1,i,xR

i
is at least 1, and each component of αP

1,j,xP
j

is at least 2
|Sj | for all i and j.

Lemmas 8 and 9 still hold. Since the reward and transition functions can be factorized, we will
construct information-theoretic confidence bounds on these factor functions.

Lemma 12. Let r`,t,i,xR
i
∼ Bernoulli(R(xRi )) |H`,H`t and s′

`,t,j,xP
j
∼ Pj(xPj , ·) |H`,H`t. Then,

P`

(∣∣Ri(xRi )− E`Ri(xRi )
∣∣ ≤ ΓR

√
min
t̃,ht̃

I`(Ri;xRi , r`,t̃,i,xR
i
| H`t̃ = ht̃)

)
≥ 1− δ (4)

and

P`

(
‖Pj(xPj )− E`Pj(xPj )‖1 ≤ ΓPj

√
min
t̃,ht̃

I`(Pj ;xPj , s
′
`,t̃,j,xP

j

| H`t̃ = ht̃)

)
≥ 1− δ (5)

for all s, a such that 1>αR
`,i,xR

i
≥ τ − 1 and 1>αP

`,j,xP
j
≥ τ − 1, respectively, with

ΓR = 2
√

6 log 2
δ and ΓPj = 4

√
6|Sj | log 2

δ .

The lemma allows us to obtain a per-period regret bound in the form of (1) for Thompson sampling
and a UCB algorithm that uses (4) and (5) to construct confidence sets. As shown in the appendix,
the scaling factor Γ` = Õ(mτ

√
(m+ n)Kτ), which leads to the following proposition.

Proposition 13. The Bayesian regret of Thompson sampling and UCB over L episodes is

E[Regret(L, π)] = Õ

(
mτ
√

(m+ n)KτL I (M ;µ1, Y1,µ1
, . . . , µL, YL,µL

)

)
.

Similar to the tabular case, we show that I (M ;µ1, Y1,µ1
, . . . , µL, YL,µL

) is Õ(KD) for any algo-
rithm, while we conjecture that this may be Õ(D) under appropriate conditions. The resulting regret
bound matches the one in [14] if the conjecture proves to be true. Again, our bound in Proposition 13
reveals an explicit dependence on the prior uncertainty, which is not captured by previous work.
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6 Conclusion

We introduce information-theoretic confidence bounds for analyzing Thompson sampling and deriving
optimistic algorithms. We show that the information-theoretic approach allows us to formally
quantify the agent’s information gain of the unknown environment, and to explicitly characterize
the exploration-exploitation tradeoff for linear bandits, tabular MDPs, and factored MDPs. This
work opens up multiple directions for future research. It would be interesting to extend information-
theoretic confidence bounds to a broader range of problems and see whether a general information-
theoretic framework is plausible for addressing online decision problems. It would also be interesting
to think about whether an information-theoretic perspective could lead to tighter regret bounds for
Thompson sampling and optimistic algorithms. One may also consider the practical implications of
these confidence bounds and how they can be used to design better reinforcement learning algorithms.
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A Proofs for Section 4

Proposition 2. If (1) holds with Γ` ≤ Γ for all ` = 1, . . . , L, then

E[Regret(L, π)] ≤ Γ
√
L I(θ;A1, Y1,A1

, . . . , A`, Y`,A`
) + E

L∑
`=1

ε`.

Proof. We have

E[Regret(L, π)] = E
L∑
`=1

E`[∆`]

≤
L∑
`=1

EΓ`

√
I`(θ;A`, Y`,A`

) + ε`

≤ Γ

(
L∑
`=1

E
√
I`(θ;A`, Y`,A`

)

)
+ E

L∑
`=1

ε`

≤ Γ

(
L∑
`=1

√
EI`(θ;A`, Y`,A`

)

)
+ E

L∑
`=1

ε`

≤ Γ

√√√√L

L∑
`=1

EI`(θ;A`, Y`,A`
) + E

L∑
`=1

ε`

= Γ

√√√√L

L∑
`=1

I(θ;A`, Y`,A`
|A1, Y1,A1 , . . . , A`−1, Y`−1,A`−1

) + E
L∑
`=1

ε`

= Γ
√
LI(θ;A1, Y1,A1

, . . . , AL, YL,AL
) + E

L∑
`=1

ε`,

where the first two inequalities follow from our assumptions, the third inequality follows from
Jensen’s inequality, the fourth inequality follows from Cauchy-Schwarz, and the last equality follows
from the chain rule of mutual information.

Lemma 3. Under Assumption 1, if

P`
(
|rθ(a)− E` [rθ(a)]| ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
,

then the per-period regret of Thompson sampling and UCB with upper confidence function U`(a) =

E` [rθ(a)] + Γ`

2

√
I`(θ;Y`,a) satisfies

E` [∆`] ≤ Γ`

√
I`(θ;A`, Y`,A`

) + δB.

Proof. By the probability matching property of Thompson sampling,

E`[∆`] = E` [rθ(A
∗)− rθ(A`)] = E`

[
rθ̂`(A`)− rθ(A`)

]
,

where θ̂` is the parameter sampled by Thompson sampling for period `. Define

Θ` =

{
θ ∈ Θ :

∣∣rθ(a)− E` [rθ(a)]
∣∣ ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

}
.
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The probability matching property then implies that P`(θ̂` ∈ Θ`) = P`(θ ∈ Θ`) ≥ 1− δ/2. Thus,

E`[∆`] ≤ E`[1θ,θ̂`∈Θ`
(rθ̂`(A`)− rθ(A`))] + δB

≤ E`

[
Γ`
∑
a∈A

1A`=a

√
I`(θ;Y`,a)

]
+ δB

≤ Γ`
∑
a∈A

P`(A` = a)
√
I`(θ;Y`,a) + δB

≤ Γ`

√∑
a∈A

P`(A` = a)I`(θ;Y`,a) + δB

= Γ`

√∑
a∈A

P`(A` = a)I`(θ;Y`,A`
|A` = a) + δB

= Γ`

√
I`(θ;Y`,A`

|A`) + δB

= Γ`

√
I`(θ;A`, Y`,A`

) + δB,

where the first and the last equalities follow from the conditional independence between A` and θ
conditioned onH`. Therefore, the one-period regret of Thompson sampling is

E` [∆`] ≤ Γ`

√
I`(θ;A`, Y`,A`

) + δB.

For a UCB algorithm with upper confidence functions U`(a) = E`[rθ(a)] + Γ`

2

√
I`(θ;Y`,a), we

have

E`[∆`] ≤ E`[1θ∈Θ`
(rθ(A

∗)− rθ(A`))] +
1

2
δB

≤ E`[1θ∈Θ`
(rθ(A

∗)− U`(A∗) + U`(A`)− rθ(A`))] +
1

2
δB

≤ E`[1θ∈Θ`
(U`(A`)− rθ(A`))] +

1

2
δB

≤ E`

[
Γ`
∑
a∈A

1A`=a

√
I`(θ;Y`,a)

]
+

1

2
δB.

The rest of the proof follows similarly.

Lemma 4. If r(·) is K-Lipschitz continuous with respect to some norm ‖ · ‖ on Y , and if

P`
(
‖Y`,a − E` [Y`,a] ‖ ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
,

then the per-period regret of Thompson sampling

E` [∆`] ≤ K Γ`

√
I`(θ;A`, Y`,A`

) + δB.

Moreover, if there exists a function y : Θ×A → Y such that Y`,a − y(θ, a) is independent of θ for
all a ∈ A, then it is sufficient to have

P`
(
‖y(θ, a)− E` [y(θ, a)] ‖ ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2

for the one-period regret bound to hold.

Proof. Let θ̂` be the parameter sampled by Thompson sampling during period `. Let Ŷ` be a random
variable drawn from the outcome distribution indexed by θ̂`. Define Y` = {y` ∈ Y |A| : ‖y`,a −

12



E` [Y`,a] ‖ ≤ Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A}. Since Ŷ` and Y` are identically distributed conditioned on

H`, we have P`(Y` ∈ Y`) = P`(Ŷ` ∈ Y`) ≥ 1− δ/2. Thus,

E`[∆`] = E`
[
rθ̂`(A`)− rθ(A`)

]
= E`[r(Ŷ`,A`

)− r(Y`,A`
)]

≤ E`
[
1Y`,Ŷ`∈Y`

(
r(Ŷ`,A`

)− r(Y`,A`
)
)]

+ δB

≤ KE`
[
1Y`,Ŷ`∈Y`

‖Ŷ`,A`
− Y`,A`

‖
]

+ δB.

On Y`, Ŷ` ∈ Y`, ‖Ŷ`,A`
− Y`,A`

‖ ≤ Γ`
∑
a∈A 1A`=a

√
I`(θ;Y`,a). The rest of the analysis follows

similarly to the proof of Lemma 3.

Now we show that if the observation noise is additive, it is sufficient to construct confidence
sets around mean outcomes. Suppose that there exists a function y : Θ × A → Y such that
w`,a = Y`,a − y(θ, a) is independent of θ. Let Ŷ`,a = y(θ̂`, a) + w`,a. Then (θ, Y`) and (θ̂`, Ŷ`)

are identically distributed conditioned on H`. Let Θ` = {θ̃ ∈ Θ : ‖y(θ̃, a) − E` [y(θ, a)] ‖ ≤
Γ`

2

√
I`(θ;Y`,a) ∀a ∈ A}. We have

E`[∆`] = E`
[
rθ̂`(A`)− rθ(A`)

]
= E`[r(Ŷ`,A`

)− r(Y`,A`
)]

≤ E`
[
1θ,θ̂`∈Θ`

(
r(Ŷ`,A`

)− r(Y`,A`
)
)]

+ δB

≤ KE`
[
1θ,θ̂`∈Θ`

‖Ŷ`,A`
− Y`,A`

‖
]

+ δB

= KE`
[
1θ,θ̂`∈Θ`

‖y(θ̂`, A`)− y(θ,A`)‖
]

+ δB.

The rest of the proof follows similarly.

If outcomes are scalar-valued and r(·) is nondecreasing, then a similar result holds for a UCB
algorithm with upper confidence functions

U`(a) = E`[Y`,a] +
Γ`
2

√
I`(θ;Y`,a),

and moreover if the observation noise is additive and independent of θ and actions,

U`(a) = E`[y(θ, a)] +
Γ`
2

√
I`(θ;Y`,a).

To see this, note that

E`[∆`] = E` [r(Y`,A∗)− r(Y`,A`
)]

≤ E` [1Y`∈Y`
(r(Y`,A∗)− r(Y`,A`

))] +
1

2
δB

≤ E` [1Y`∈Y`
(r(Y`,A∗)− r (U`(A

∗)) + r (U`(A`))− r(Y`,A`
))] +

1

2
δB

≤ E` [1Y`∈Y`
(r (U`(A`))− r(Y`,A`

))] +
1

2
δB

≤ KE` [1Y`∈Y`
(U`(A`)− Y`,A`

)] +
1

2
δB

≤ KE`

[
Γ`
∑
a∈A

1A`=a

√
I`(θ;Y`,a)

]
+

1

2
δB.

The rest of the proof is similar to the proof of Lemma 3.
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If the observation noise w` is additive and independent of θ and actions, we have

E`[∆`] = E` [r(Y`,A∗)− r(Y`,A`
)]

= E` [r(y(θ,A∗) + w`)− r(y(θ,A`) + w`)]

≤ E` [1θ∈Θ`
(r(y(θ,A∗) + w`)− r(y(θ,A`) + w`))] +

1

2
δB

≤ E`
[
1θ∈Θ`

(
r(y(θ,A∗) + w`)− r(U`(A∗) + w`)

+r(U`(A`) + w`)− r(y(θ,A`) + w`)
)]

+
1

2
δB

≤ E` [1θ∈Θ`
(r(U`(A`) + w`)− r(y(θ,A`) + w`))] +

1

2
δB

≤ KE` [1θ∈Θ`
(U`(A`)− y(θ,A`))] +

1

2
δB

≤ KE`

[
Γ`
∑
a∈A

1A`=a

√
I`(θ;Y`,a)

]
+

1

2
δB

≤ KΓ`

√
I`(θ;A`, Y`,A`

) +
1

2
δB.

B Linear bandits

The following lemma gives a formula for the mutual information between a normal random variable
and a linear observation corrupted by gaussian noise. We use h(·) to denote the differential entropy
of a continuous random variable.

Lemma 14. If θ ∈ <d followsN(µ,Σ), and Y = a>θ+w where a ∈ <d is fixed andw ∼ N(0, σ2
w),

then

I(θ;Y ) =
1

2
log

(
1 +

a>Σa

σ2
w

)
.

Proof. We have

I(θ;Y ) = h(θ)− h(θ|Y )

=
1

2
log det(2πeΣ)− 1

2
log det

(
2πe

(
Σ−1 +

aa>

σ2
w

)−1
)

=
1

2
log det

(
Id +

Σaa>

σ2
w

)
=

1

2
log

(
1 +

a>Σa

σ2
w

)
,

where the last step follows from Sylvester’s determinant theorem.

Since noise is additive in a linear bandit, by Lemma 4, it is sufficient to construct confidence sets
around mean outcomes Y a = a>θ.

Lemma 5. Under the assumptions stated in Section 5.1,

P`
(∣∣Y a − E`Y a

∣∣ ≤ Γ`
2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
,

for

Γ` = 4

√√√√ σ2
`,max

log
(

1 +
σ2
`,max

σ2
w

) log
4|A|
δ
, where σ2

`,max = max
a∈A

a>Σ`a.
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Proof. Note that Y a = a>θ is distributed as N(a>µ`, a
>Σ`a) conditioned onH`. By the Chernoff

bound,

P`
(
|Y a − E`Y a| ≥

Γ`
2

√
I`(θ;Y`,a)

)
≤ 2 exp

−
(

Γ`

2

√
I`(θ;Y`,a)

)2

2a>Σ`a


= 2 exp

(
−Γ2

`I`(θ;Y`,a)

8a>Σ`a

)

≤ 2 exp

− σ2
`,max

log
(

1 +
σ2
`,max

σ2
w

) log
(

1 + a>Σ`a
σ2
w

)
a>Σ`a

log
4|A|
δ


≤ δ

2|A|
,

where the last inequality follows from the monotonicity of x
log(1+x) for x > 0 and the fact that

a>Σ`a ≤ σ2
`,max. Applying a union bound over actions gives

P`
(∣∣Y a − E`Y a

∣∣ ≤ Γ`
2

√
I`(θ;Y`,a) ∀a ∈ A

)
≥ 1− δ

2
.

Proposition 6. Under the assumptions stated in Section 5.1, the Bayesian regret of Thompson
sampling and UCB over L periods is

E[Regret(L, π)] ≤ Γ
√
L I(θ;A1, Y1,A1

, . . . , AL, YL,AL
) +B

where

Γ = 4

√√√√ σ2
1,max

log
(

1 +
σ2
1,max

σ2
w

) log(4|A|L).

Proof. The result follows from Proposition 2, Lemma 4, and Lemma 5 by taking δ = 1
L .

Lemma 7. For anyH`-adapted action sequence,

I(θ;A1, Y1,A1 , . . . , AL, YL,AL
) ≤ 1

2
d log

(
1 +

λmaxL

σ2
w

)
,

where λmax is the largest eigenvalue of Σ1.

Proof. Let {A`}L`=1 be any H`-adaptive action sequence. Let h(·) denote the differential entropy.
We have

I(θ;A1, Y1,A1
, . . . , AL, YL,AL

) = h(θ)− h(θ|A1, Y1,A1
, . . . , AL, YL,AL

)

=
1

2
log det(2πeΣ1)− 1

2
E[log det(2πeΣL+1)]

=
1

2
E
[
log

det(Σ1)

det(ΣL+1)

]
.

Let λk(A) denote the kth largest eigenvalue of a matrix A. Let V = 1
σ2
w

∑L
`=1A`A

>
` . Since

Σ−1
L+1 = Σ−1

1 + V where both Σ−1
1 and V are symmetric, we have

λk(Σ−1
L+1) ≤ λk(Σ−1

1 ) + λ1(V ) for k = 1, . . . , d.

Further, since V is positive semi-definite,

λ1(V ) ≤
d∑
k=1

λk(V ) = tr(V ) ≤ L

σ2
w

.
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Thus,

log
(
det(Σ1) det(Σ−1

L+1)
)
≤ log

(
d∏
k=1

λi(Σ1)

(
1

λi(Σ1)
+

L

σ2
w

))
≤ d log

(
1 +

λmaxL

σ2
w

)
.

Therefore,

I(θ;A1, Y1,A1 , . . . , AL, YL,AL
) ≤ 1

2
d log

(
1 +

λmaxL

σ2
w

)
.

C Tabular MDPs

The following lemma gives a formula for the mutual information between a Dirichlet random variable
and a Categorical observation.
Lemma 15. If p ∼ Dirichlet(α) for some α ∈ <N+ , and Y is drawn from distribution p, then

I(p;Y ) =

N∑
i=1

αi
α

(ψ(αi + 1)− logαi)− (ψ(α+ 1)− logα) ,

where α = 1>α and ψ(·) is the digamma function. Further, if αi ≥ 2/N for all i = 1, . . . , N , then

I(p;Y ) ≥ 1

6α
.

Proof. The differential entropy of a Dirichlet random variable is

h(p) = logB(α) + (α−N)ψ(α)−
N∑
j=1

(αj − 1)ψ(αj),

where B(·) is the multivariate Beta function and ψ(·) is the digamma function. Then,

I(p;Y ) = h(p)− h(p|Y )

=

logB(α) + (α−N)ψ(α)−
N∑
j=1

(αj − 1)ψ(αj)


−

N∑
i=1

αi
α

logB(α+ ei) + (α+ 1−N)ψ(α+ 1)−
∑
j 6=i

(αj − 1)ψ(αj)− αiψ(αi + 1)


=

N∑
i=1

αi
α

(ψ(αi + 1)− logαi)− (ψ(α+ 1)− logα)

after simplifications. Moreover, if αi ≥ 2/N for all i = 1, . . . , N , we have I(p;Y ) ≥ 1
6α using the

digamma inequalities stated below in Lemma 16.

Lemma 16. (Digamma inequalities) For x > 0,

log(x+ 1
2 ) ≤ ψ(x+ 1) ≤ log x+

1

2x
.

Our confidence sets rely on the stochastic dominance results established in [15] and [16]. For
completeness, we restate the definition and results below.
Definition 4. (Stochastic optimism) Let X and Y be real-valued random variables with finite
expectation. We say that X is stochastically optimistic for Y if for any convex and increasing
u : < → <,

E[u(X)] ≥ E[u(Y )].

We will write X �so Y for this relation.
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Lemma 17. (Gaussian-Dirichlet dominance) For all fixed v ∈ [0, 1]N , α ∈ [0,∞)N with α =
1>α ≥ 2, if X = p>v for p ∼ Dirichlet(α) and Y ∼ N(α>v/α, 1/α), then E[X] = E[Y ] and
Y �so X .

One implication of Lemma 17 is that p>v will have sub-Gaussian tails with sub-Gaussian parameter
1/α. Now we are ready to construct confidence sets.

Lemma 10. Let r`,t,s,a ∼ Bernoulli(R(s, a)) |H`,H`t and s′`,t,s,a ∼ P (s, a, ·) |H`,H`t. Then,

P`

(
|R(s, a)− E`R(s, a)| ≤ ΓR

√
min
t̃,ht̃

I`(R; s, a, r`,t̃,s,a |H`t̃ = ht̃)

)
≥ 1− δ (2)

and

P`

(∣∣∣(P (s, a)− E`P (s, a)
)>
VMµ∗,t+1

∣∣∣ ≤ ΓP
√

min
t̃,ht̃

I`(P ; s, a, s′
`,t̃,s,a

|H`t̃ = ht̃)

)
≥ 1− δ (3)

for all t and all s, a such that 1>αR`,s,a ≥ τ − 1 and 1>αP`,s,a ≥ τ − 1, respectively, where

ΓR =
√

24 log 2
δ and ΓP = τ

√
24 log 2

δ .

Proof. Let αR`,t,s,a and αP`,t,s,a denote the posterior parameters for the reward and transition functions
associated with state-action pair (s, a) conditioned onH` andH`t. Let αR`,s,a = 1>αR`,s,a, αP`,s,a =

1>αP`,s,a, and similarly, αR`,t,s,a = 1>αR`,t,s,a, αP`,t,s,a = 1>αP`,t,s,a.

If αR`,s,a ≥ τ − 1, then for any 0 ≤ t̃ ≤ τ − 1, αR
`,t̃,s,a

≤ αR`,s,a + τ − 1 ≤ 2αR`,s,a. Then, by Lemma
15, we have

1

αR`,s,a
≤ 2

αR
`,t̃,s,a

≤ 12I`
(
R; s, a, r`,t̃,s,a |H`t̃ = ht̃

)
for any 0 ≤ t̃ ≤ τ − 1 and trajectory ht̃. Similarly, αP`,s,a ≥ τ − 1 implies that

1

αP`,s,a
≤ 2

αP
`,t̃,s,a

≤ 12I`

(
P ; s, a, s′`,t̃,s,a |H`t̃ = ht̃

)
for any 0 ≤ t̃ ≤ τ − 1 and ht̃.

Then, by Lemma 17, we have for αR`,s,a ≥ τ − 1,

1− δ ≤ P`

(
|R(s, a)− E`R(s, a)| ≤

√
2

αR`,s,a
log

2

δ

)

≤ P`

(
|R(s, a)− E`R(s, a)| ≤ ΓR

√
min
t̃,ht̃

I`
(
R; s, a, r`,t̃,s,a |H`t̃ = ht̃

))
.

To obtain concentration around transitions, we cannot directly apply Lemma 17, since VMµ∗,t+1 is
correlated with P (s, a). We will use results in [16] that guarantee sub-Gaussian behavior despite the
correlation. By Lemma 3 in [16], we have for αP`,s,a ≥ τ − 1 and any t,

1− δ ≤ P`

(∣∣∣(P (s, a)− E`P (s, a))
>
VMµ∗,t+1

∣∣∣ ≤ τ√ 2

αP`,s,a
log

2

δ

)

≤ P`
(∣∣∣(P (s, a)− E`P (s, a))

>
VMµ∗,t+1

∣∣∣ ≤ ΓP
√

min
t̃,ht̃

I`

(
P ; s, a, s′

`,t̃,s,a
|H`t̃ = ht̃

))
.
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We now construct confidence sets around MDPs. Let R` and P ` denote the posterior mean of reward
and transition functions conditioned onH`, and define shorthands

Imin
` (R(s, a)) ≡ min

t̃,ht̃

I`
(
R; s, a, r`,t̃,s,a |H`t̃ = ht̃

)
,

Imin
` (P (s, a)) ≡ min

t̃,ht̃

I`

(
P ; s, a, s′`,t̃,s,a |H`t̃ = ht̃

)
.

Define confidence set

M` =

{
M̃ :

∣∣∣R̃(s, a)−R`(s, a)
∣∣∣ ≤ ΓR

√
Imin
` (R(s, a)) ∀s, a s.t. αR`,s,a ≥ τ − 1, and∣∣∣∣(P̃ (s, a)− P `(s, a)

)>
V M̃µ̃,t+1

∣∣∣∣ ≤ ΓP
√
Imin
` (P (s, a)) ∀t, s, a s.t. αP`,s,a ≥ τ − 1

}
,

(6)

where µ̃ is a greedy policy with respect to M̃ , and

ΓR =

√
24 log

8|S||A|τ
δ

and ΓP = τ

√
24 log

8|S||A|τ
δ

. (7)

By Lemma 10 and the union bound, we have P`(M ∈M`) ≥ 1− δ/2.

Together with Lemmas 8 and 9, we have the following result.

Proposition 11. The Bayesian regret of Thompson sampling and UCB over L episodes is

E[Regret(L, π)] = Õ

(
τ
√
τL I(M ;µ1, Y1,µ1 , . . . , µL, YL,µL

)

)
.

Proof. We will show that the one-period regret of Thompson sampling and UCB is

E`[∆`] ≤ Γ
√
I`(M ;µ`, Y`,µ`

) + ε` (8)

with

Γ = 4(τ + 1)

√
6τ log

8|S||A|τ
δ

and

ε` = τE`

[
τ−1∑
t=0

1(n`,s`,t,a`,t < τ − 3)

]
+ δτ,

where n`,s,a is the number of times (s, a) has been visited up to episode `. The proposition then
follows from Proposition 2 by letting δ = 1

L and noting that

E
L∑
`=1

ε` = E
L∑
`=1

[
τ

(
τ−1∑
t=0

1(n`,s`,t,a`,t < τ − 3)

)
+ δτ

]
≤ |S||A|τ2 + δτL.

We first show that (8) holds for Thompson sampling. Let M̂` denote the MDP sampled by Thompson
sampling during episode `. By the probability matching property, P`(M̂` ∈M`) = P`(M ∈M`) ≥
1− δ

2 , whereM` is defined in (6), Moreover, an argument similar to Lemma 10 gives

P`
( ∣∣R(s, a)−R`(s, a)

∣∣ ≤ ΓR
√
Imin
` (R(s, a)) ∀s, a s.t. αR`,s,a ≥ τ − 1, and∣∣∣(P (s, a)− P `(s, a)

)>
V M̂`
µ`,t+1

∣∣∣ ≤ ΓP
√
Imin
` (P (s, a)) ∀t, s, a s.t. αP`,s,a ≥ τ − 1

)
≥ 1− δ

2
,

with ΓR and ΓP are defined in (7). LetE` denote the intersection of the above event and {M̂` ∈M`}.
Then P`(E`) ≥ 1− δ.
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Denote x`,t ≡ (s`,t, a`,t). By the probability matching property and Lemma 8, we have

E` [∆`] = E`
[
V
M

µ∗ − V
M

µ`

]
= E`

[
V
M̂`

µ`
− VMµ`

]
≤ E`

[
1E`

(
V
M̂`

µ`
− VMµ`

)]
+ δτ

= E`

[
1E`

τ−1∑
t=0

E`
[(
R̂`(x`,t)−R(x`,t)

)
+
(
P̂`(x`,t)− P (x`,t)

)>
V M̂`
µ`,t+1

∣∣∣ M̂`,M, µ`

]]
+ δτ

=

τ−1∑
t=0

E`
[
1E`

((
R̂`(x`,t)−R(x`,t)

)
+
(
P̂`(x`,t)− P (x`,t)

)>
V M̂`
µ`,t+1

)]
+ δτ

≤
τ−1∑
t=0

E`

[∑
s,a

1(x`,t = (s, a))

(
2ΓR

√
Imin
` (R(s, a)) + 2ΓP

√
Imin
` (P (s, a))

)]

+

τ−1∑
t=0

E`
[
1
(
αR`,x`,t

< τ − 1
)

+ (τ − 1)1
(
αP`,x`,t

< τ − 1
)]

+ δτ

≤ 2

τ−1∑
t=0

E`

[∑
s,a

1(x`,t = (s, a))

(
ΓR
√
Imin
` (R(s, a)) + ΓP

√
Imin
` (P (s, a))

)]
+ ε`.

Let P`t(·) = P(·|H`,H`t), and let I`t(X;Y ) denote the mutual information under the base measure
P`t(·). By definition,

Imin
` (R(s, a)) ≤ I`t(R; s, a, r`,t,s,a) and Imin

` (P (s, a)) ≤ I`t(P ; s, a, s′`,t,s,a).

Moreover,

ΓR
√
I`t(R; s, a, r`,t,s,a) + ΓP

√
I`t(P ; s, a, s′`,t,s,a) ≤ (ΓR + ΓP )

√
I`t(M ; s, a, r`,t,s,a, s′`,t,s,a),

and thus,

ΓR
√
Imin
` (R(s, a)) + ΓP

√
Imin
` (P (s, a)) ≤ (ΓR` + ΓP` )

√
I`t(M ; s, a, r`,t,s,a, s′`,t,s,a).

Therefore, we have

E` [∆`] ≤ 2(ΓR + ΓP )

τ−1∑
t=0

E`

[∑
s,a

1(x`,t = (s, a))
√
I`t(M ; s, a, r`,t,s,a, s′`,t,s,a)

]
+ ε`

= 2(ΓR + ΓP )

τ−1∑
t=0

E`
[√

I`t(M ; s`,t, a`,t, r`,t+1, s`,t+1)

]
+ ε`

≤ 2(ΓR + ΓP )

√√√√τ

τ−1∑
t=0

E`I`t(M ; s`,t, a`,t, r`,t+1, s`,t+1) + ε`

= 2(ΓR + ΓP )

√√√√τ

τ−1∑
t=0

I` (M ; s`,t, a`,t, r`,t+1, s`,t+1 | H`t) + ε`

= 2(ΓR + ΓP )
√
τI` (M ; µ`, Y`,µ`

) + ε`,

where the second inequality follows from Jensen’s inequality and Cauchy-Schwarz inequality, and
the last step follows from the information decomposition stated in Lemma 9. Define

Γ = 2
√
τ(ΓR + ΓP ) = 4(τ + 1)

√
6τ log

8|S||A|τ
δ

,
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Figure 1: Scaling of mutual information between a Dirichlet random variable and categorical
observations with respect to (a) number of categories N , and (b) number of observations (fixing
N = 800).

and we obtain (8).

Now we show that UCB with confidence sets M` defined by (6) also satisfies (8). Let µ` =

arg maxµ maxM̂∈M`
V
M̂

µ , and let M̂` denote the optimistic MDP that corresponds to µ`. Again, by
Lemmas 17 and 10 and the union bound,

P`
( ∣∣∣(P (s, a)− P `(s, a)

)>
V M̂`
µ`,t+1

∣∣∣ ≤ ΓP
√
Imin
` (P (s, a)) ∀t, s, a s.t. αP`,s,a ≥ τ − 1

)
≥ 1− δ

2
,

Let E` denote the intersection of the above event and {M ∈M`}. Then P`(E`) ≥ 1− δ. We have

E` [∆`] = E`
[
V
M

µ∗ − V
M

µ`

]
≤ E`

[
1E`

(
V
M

µ∗ − V
M

µ`

)]
+ δτ ≤ E`

[
1E`

(
V
M̂`

µ`
− VMµ`

)]
+ δτ.

The rest of the analysis follows similarly.

Let T = τL be the total number of time steps. We provide a bound on the maximal information
gain of order O

(
|S|2|A| log T

|S||A|

)
. Though we conjecture that a bound of order Õ(|S||A|) may be

attainable under appropriate conditions.
Conjecture 18. For any sequence ofH`-adapted policies {µ`}L`=1,

I(M ;µ1, Y1,µ1
, . . . , µL, YL,µL

) = Õ(|S||A|).

The conjecture follows from the following conjecture about the mutual information between a
Dirichlet random variable and categorical observations.
Conjecture 19. Suppose that p ∼ Dirichlet(α) with α ∈ <N and α = 1>α ≥ 2. Conditioned on p,
s1, . . . , sn are drawn i.i.d. from p. Then,

I(p; s1, . . . , sn) ≤ c log(N) log(n)

for some fixed constant c.

In Figure 1, we show simulation results that support the conjecture. We fix α = ( 2
N ,

2
N , . . . ,

2
N ) ∈

<N , and plot I(p; s1, . . . , sn) where p ∼ Dirichlet(α). We see in Figure 1(a) and 1(b) that the mutual
information appears to grow logarithmically with N and the number of observations.

We show how Conjecture 18 follows from Conjecture 19. Let Y ` =
{(r`sa1, . . . , r`saτ )sa, (s

′
`sa1, . . . , s

′
`saτ )sa} be a collection of random variables where for

each episode and each state-action pair, we sample τ rewards and τ next states from the true MDP.
The trajectory Y`,µ`

that the agent observes during episode ` is then a subset of Y `. We have

I(M ;µ1, Y1,µ1
, . . . µL, YL,µL

) ≤ I(M ;µ1, . . . , µL, Y 1, . . . , Y L)

= I(M ;Y 1, . . . , Y L) + I(M ;µ1, . . . , µL | Y 1, . . . , Y L).
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Let H(·) denotes the Shannon entropy of a discrete random variable. Since µ` isH`-adapted,

I(M ;µ1, . . . , µL | Y 1, . . . , Y L) =

L∑
`=1

I(M ;µ` | Y 1, . . . , Y L, µ1, . . . , µ`−1)

=

L∑
`=1

H(µ` | Y 1, . . . , Y L, µ1, . . . , µ`−1)−H(µ` | Y 1, . . . , Y L, µ1, . . . , µ`−1,M) = 0.

Therefore,
I(M ;µ1, Y1,µ1 , . . . µL, YL,µL

) ≤ I(M ;Y 1, . . . , Y L)

≤
∑
s,a

c (log 2 + log |S|) log T

= O(|S||A| log |S| log T ).

We here establish a looser bound on the maximal information gain by any agent with an extra factor
of |S|.
Lemma 20. Under assumption 2, for any sequence ofH`-adapted policies {µ`}L`=1,

I(M ;µ1, Y1,µ1
, . . . , µL, YL,µL

) ≤ (|S|+ 2)|S||A| log

(
1 +

T

|S||A|

)
.

The lemma relies on a simple bound on the information gain of a Dirichlet random variable under n
observations.
Lemma 21. Suppose that p ∼ Dirichlet(α) with α ∈ <N and α = 1>α ≥ 2. Conditioned on p, let
Y be drawn from Multinomial(n, p). Let y be a realization of Y . Then,

h(p)− h(p|Y = y) ≤ N log(α+ n).

Proof. By Lemma 15 and Lemma 16,
h(p)− h(p|Y = y)

=

 N∑
j=1

yj−1∑
k=0

(ψ(αj + k + 1)− log(αj + k))

−(n−1∑
k=0

(ψ(α+ k + 1)− log(α+ k))

)

−
N∑
j=1

yj−1∑
k=0

1

αj + k
+N

n−1∑
k=0

1

α+ k

≤ 1

2

N∑
j=1

yj−1∑
k=0

1

αj + k
−

N∑
j=1

yj−1∑
k=0

1

αj + k
+N

n−1∑
k=0

1

α+ k
≤ N

n−1∑
k=0

1

α+ k
≤ N log(1 + n).

Proof of Lemma 20. Let nsa denote the total number of times we have visited (s, a) by the end of L
episodes. We have

I(M ;µ1, Y1,µ1
, . . . , µL, YL,µL

) = h(M)− h(M |µ1, Y1,µ1
, . . . , µL, YL,µL

)

≤ E

[∑
s,a

2 log(1 + nsa) + |S| log(1 + nsa)

]

= (|S|+ 2)E

[∑
s,a

log(1 + nsa)

]

≤ (|S|+ 2)|S||A|E

[
log

(
1

|S||A|
∑
s,a

(1 + nsa)

)]

= (|S|+ 2)|S||A| log

(
1 +

T

|S||A|

)
,

where the second inequality follows from Jensen’s inequality.
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D Factored MDPs

Lemma 12. Let r`,t,i,xR
i
∼ Bernoulli(R(xRi )) |H`,H`t and s′

`,t,j,xP
j
∼ Pj(xPj , ·) |H`,H`t. Then,

P`

(∣∣Ri(xRi )− E`Ri(xRi )
∣∣ ≤ ΓR

√
min
t̃,ht̃

I`(Ri;xRi , r`,t̃,i,xR
i
| H`t̃ = ht̃)

)
≥ 1− δ (4)

and

P`

(
‖Pj(xPj )− E`Pj(xPj )‖1 ≤ ΓPj

√
min
t̃,ht̃

I`(Pj ;xPj , s
′
`,t̃,j,xP

j

| H`t̃ = ht̃)

)
≥ 1− δ (5)

for all s, a such that 1>αR
`,i,xR

i
≥ τ − 1 and 1>αP

`,j,xP
j
≥ τ − 1, respectively, with

ΓR = 2
√

6 log 2
δ and ΓPj = 4

√
6|Sj | log 2

δ .

Proof. (4) follows from the same proof as for Lemma 10. To prove (5), note that by Lemma 17, if
p ∼ Dirichlet(α) where α ∈ <N and α = 1>α ≥ 2, and and if v ∈ {−1, 1}N is a fixed vector, we
have

P

(
(p− Ep)>v ≥ 2

√
2

α
log

1

δ

)
≤ δ.

Since ‖p − Ep‖1 = maxv∈{−1,1}N (p − Ep)>v, the union bound implies that with probability at
least 1− δ,

‖p− Ep‖1 ≤ 2

√
2

α
log

2N

δ
≤ 2

√
2N

α
log

2

δ
.

Hence, similar to Lemma 10, if αP
`,j,xP

j
= 1>αP

`,j,xP
j
≥ τ − 1, we have

1− δ ≤ P`

‖Pj(xPj )− E`Pj(xPj )‖1 ≤ 2

√√√√ 2|Sj |
αP
`,j,xP

j

log
2

δ


≤ P`

(
‖Pj(xPj )− E`Pj(xPj )‖1 ≤ 4

√
6|Sj |min

t̃,ht̃

I`(Pj ;xPj , s
′
`,t̃,j,xP

j

|H`t̃ = ht̃) log
2

δ

)
.

We will now construct information-theoretic confidence sets around MDPs. Let R`,i and P `,j denote
the posterior mean of the reward and transition functions. Define shorthands

Imin
`

(
Ri(x

R
i )
)
≡ min

t̃,ht̃

I`

(
Ri;x

R
i , r`,t̃,i,xR

i
| H`t̃ = ht̃

)
,

Imin
`

(
Pj(x

P
j )
)
≡ min

t̃,ht̃

I`

(
Pj ;x

P
j , s
′
`,t̃,j,xP

j
| H`t̃ = ht̃

)
.

LetM` be the set of MDPs M̃ such that∣∣∣R̃i(xRi )−R`,i(xRi )
∣∣∣ ≤ ΓR

√
Imin
`

(
Ri(xRi )

)
∀i, xRi s.t. αR`,i,xR

i
≥ τ − 1

and
‖P̃j(xPj )− P `,j(xPj )‖1 ≤ ΓP

√
Imin
`

(
Pj(xPj )

)
∀j, xPj s.t. αP`,j,xP

j
≥ τ − 1,

where

ΓR = 2

√
6 log

4Dτ

δ
and ΓP = 4

√
6K log

4Dτ

δ
. (9)

Then, by Lemma 12 and union bound, we have P`(M ∈ M`) ≥ 1 − δ
2 . The corresponding UCB

algorithm will have upper confidence functions U`(µ) = maxM̂`∈M`
V
M̂`

µ .
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Proposition 13. The Bayesian regret of Thompson sampling and UCB over L episodes is

E[Regret(L, π)] = Õ

(
mτ
√

(m+ n)KτL I (M ;µ1, Y1,µ1
, . . . , µL, YL,µL

)

)
.

Proof. Let M̂` = ({R̂`,i}mi=1 and {P̂`,j}nj=1) be the parameters sampled by Thompson sampling for
episode `. By the probability matching property of Thompson sampling, we have P`(M̂` ∈M`) ≥
1− δ

2 . Then, by probability matching and Lemma 8, we have

E` [∆`] = E`
[
V
M

µ∗ − V
M

µ`

]
= E`

[
V
M̂`

µ`
− VMµ`

]
≤

τ−1∑
t=0

E`
[
1M,M̂`∈M`

((
R̂`(x`,t)−R(x`,t)

)
+
(
P̂`(x`,t)− P (x`,t)

)>
V M̂`
µ`,t+1

)]
+ δmτ

≤
τ−1∑
t=0

E`
[
1M,M̂`∈M`

(∣∣∣R̂`(x`,t)−R(x`,t)
∣∣∣+mτ

∥∥∥P̂`(x`,t)− P (x`,t)
∥∥∥

1

)]
+ δmτ.

We bound the deviation of reward and transition separately. We have

E`
[
1M,M̂`∈M`

∣∣R(x`,t)−R`(x`,t)
∣∣]

≤ E`

[
1M,M̂`∈M`

m∑
i=1

∣∣Ri(x`,t[ZRi ])−R`,i(x`,t[ZRi ])
∣∣]

≤ E`

 m∑
i=1

∑
xR
i

1(x`,t[Z
R
i ] = xRi )ΓR

√
Imin
`

(
Ri(xRi )

)+ E`

[
m∑
i=1

1
(
αR`,i,x`,t[ZR

i ] < τ − 1
)]

≤ E`

[
m∑
i=1

ΓR
√
I`t(Ri;x`,t, r`,t+1,i)

]
+ E`

[
m∑
i=1

1
(
αR`,i,x`,t[ZR

i ] < τ − 1
)]

,

where ΓR is defined in (9), and similarly for the deviation of R̂`(x`,t).

To bound the deviation of transition functions, we will use Lemma 1 of [14], which allows us to
bound

‖P (x)− P (x)‖1 ≤
n∑
j=1

‖Pj(x[ZPj ])− P j(x[ZPj ])‖1

for any two factored transition functions. We have

E`
[
1M,M̂`∈M`

∥∥P (x`,t)− P `(x`,t)
∥∥

1

]
≤ E`

1M,M̂`∈M`

n∑
j=1

‖Pj(x`,t[ZPj ])− P j(x`,t[ZPj ])‖1


≤ E`

 n∑
j=1

∑
xP
j

1(x`,t[Z
P
j ] = xPj )ΓP

√
Imin
`

(
Pj(xPj )

)+ 2E`

 n∑
j=1

1
(
αP`,j,x`,t[ZP

j ] < τ − 1
)

≤ E`

 n∑
j=1

ΓP
√
I`t(Pj ;x`,t, s`,t+1)

+ 2E`

 n∑
j=1

1
(
αP`,j,x`,t[ZP

j ] < τ − 1
) .

where ΓP is defined in (9), and similarly for the deviation of P̂`(x`,t).

Define

ε` = δmτ + E`

τ−1∑
t=0

m∑
i=1

1
(
αR`,i,x`,t[ZR

i ] < τ − 1
)

+ 2mτ

n∑
j=1

1
(
αP`,j,x`,t[ZP

j ] < τ − 1
) .
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Then, similar to the tabular case, we have

E` [∆`] ≤
τ−1∑
t=0

E`

2ΓR
m∑
i=1

√
I`t(Ri;x`,t, r`,t+1,i) + 2mτΓP

n∑
j=1

√
I`t(Pj ;x`,t, s`,t+1)

+ ε`

≤ 2(ΓR +mτΓP )

τ−1∑
t=0

E`
[√

(m+ n) I`t ({Ri}i, {Pj}j ;x`,t, {r`,t+1,i}i, s`,t+1)

]
+ ε`

≤ 2(ΓR +mτΓP )
√

(m+ n)τ I`(M ;µ`, Y`,µ`
) + ε`

= Γ
√
I`(M ;µ`, Y`,µ`

) + ε`,

where

Γ = 2(ΓR +mτΓP )
√

(m+ n)τ = O

(
mτ

√
(m+ n)Kτ log

Dτ

δ

)
.

Take δ = 1
L . The sum of errors

E
L∑
l=1

ε` ≤ mτ + τDR + 2mτ2DP .

The regret bound for Thompson sampling then follows from Proposition 2.

For a UCB algorithm with upper confidence functions U`(µ) = maxM̂∈M`
V
M̂

µ , let µ` =

arg maxµ U`(µ) and let M̂` = arg maxM̂∈M`
V
M̂

µ`
. We have

E` [∆`] ≤ E`
[
1M∈M`

(
V
M

µ∗ − V
M

µ`

)]
+

1

2
δmτ ≤ E`

[
1M∈M`

(
V
M̂`

µ`
− VMµ`

)]
+

1

2
δmτ.

The rest of the analysis follows similarly.

Lemma 22. For any policy sequence, the information gain of a factored MDP over L episodes is

I
(
{Ri}mi=1, {Pj}nj=1;µ1, Y1,µ1

, . . . , µL, YL,µL

)
≤ KD log(1 + T ).

Proof. The proof is similar to the proof of Lemma 20. Let nR
i,xR

i
and nP

j,xP
j

denote the final counts of
the scope variables. We have

I
(
{Ri}mi=1, {Pj}nj=1;µ1, Y1,µ1

, . . . , µL, YL,µL

)
≤ E

 m∑
i=1

∑
xR
i ∈Xi[ZR

i ]

log
(

1 + nRi,xR
i

)
+

n∑
j=1

∑
xP
j ∈Xj [ZP

j ]

|Sj | log
(

1 + nPj,xP
j

)
≤ DR log

(
1 +

mT

DR

)
+KDP log

(
1 +

nT

DP

)
≤ KD log(1 + T ).

Similar to the tabular case, we conjecture that a bound of order Õ(D) may be attainable under
appropriate conditions.
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