
Dynamic Ensemble Modeling Approach to
Nonstationary Neural Decoding in Brain-Computer

Interfaces

Yu Qi1, Bin Liu2, Yueming Wang3,∗, Gang Pan1,4,∗

qiyu@zju.edu.cn, bins@ieee.org, ymingwang@zju.edu.cn, gpan@zju.edu.cn
1 College of Computer Science and Technology, Zhejiang University

2 School of Computer Science, Nanjing University of Posts and Telecommunications
3 Qiushi Academy for Advanced Studies, Zhejiang University

4 State Key Lab of CAD&CG, Zhejiang University

Abstract

Brain-computer interfaces (BCIs) have enabled prosthetic device control by de-
coding motor movements from neural activities. Neural signals recorded from
cortex exhibit nonstationary property due to abrupt noises and neuroplastic changes
in brain activities during motor control. Current state-of-the-art neural signal
decoders such as Kalman filter assume fixed relationship between neural activi-
ties and motor movements, thus will fail if this assumption is not satisfied. We
propose a dynamic ensemble modeling (DyEnsemble) approach that is capable
of adapting to changes in neural signals by employing a proper combination of
decoding functions. The DyEnsemble method firstly learns a set of diverse can-
didate models. Then, it dynamically selects and combines these models online
according to Bayesian updating mechanism. Our method can mitigate the effect of
noises and cope with different task behaviors by automatic model switching, thus
gives more accurate predictions. Experiments with neural data demonstrate that
the DyEnsemble method outperforms Kalman filters remarkably, and its advantage
is more obvious with noisy signals.

1 Introduction

Brain-computer interfaces (BCIs) decode motor intentions directly from brain signals for external
device control [1–3]. Intracortical BCIs (iBCIs) utilize neural signals recorded from implanted
electrode arrays to extract information about movement intentions. Advances in iBCIs have enabled
the development in control of prosthetic devices or computer cursors by neural activities [4].

In iBCI systems, neural decoding algorithm plays an important role. Many algorithms have been
proposed to decode motor information from neural signals [5–7], including population vector [8],
linear estimators [9], deep neural networks [10], and recursive Bayesian decoders [11]. Among these
approaches, Kalman filter is considered to provide more accurate trajectory estimation by incorporat-
ing the process of trajectory evolution as a prior knowledge [12], which has been successfully applied
to online cursor and prosthetic control, achieving the state-of-the-art performance [5, 13].

One critical challenge in neural decoding is the nonstationary property of neural signals [14]. Current
iBCI neural decoders mostly assume a static functional relationship between neural signals and
movements by using fixed decoding models. However, in an online decoding process, signals
from neurons can be temporarily noised or even lost, and brain activities can also change due to

∗Corresponding authors: Yueming Wang and Gang Pan

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

neuroplasticity [15]. With the presence of noises and changes, the functional mapping between neural
signals and movements can be nonstationary and changes continuously in time [16]. Static decoders
with fixed decoding functions can be inaccurate and unstable given nonstationary neural signals [14],
thus need to be retrained periodically to maintain the performance [17, 18].

Most existing neural decoders dealing with nonstationary problems can be classified into two groups.
The first group is recalibration-based, which uses a static model, and periodically recalibrates it
(with offline paradigms) or adaptively updates the parameters online (usually requires true inten-
tion/trajectory). Most approaches belong to this group [5, 18, 19]. The second group uses dynamic
models to track nonstationary changes in signals [20–22]. These approaches can avoid the expense of
recalibration, which is potentially more suitable for long-term decoding tasks. However, there are
very few studies in this group for the challenge in modeling nonstationary neural signals.

To obtain robust decoding performance with nonstationary neural signals, we improve upon the
Kalman filter’s measurement function by introducing a dynamic ensemble measurement model,
called DyEnsemble, capable of adapting to changes in neural signals. Different from static models,
DyEnsemble allows the measurement function to be adaptively adjusted online. DyEnsemble firstly
learns a set of diverse candidate models. In online prediction, it adaptively adjusts the measurement
function along with changes in neural signals by dynamically selecting and combining these models
according to the Bayesian updating mechanism. Experimental results demonstrate that DyEnsemble
model can effectively mitigate the effect of noises and cope with different task behaviors by automatic
model switching, thus gives more accurate predictions. The main contributions of this work are
summarized as follows:

• We propose a novel dynamic ensemble model (DyEnsemble) to cope with nonstationary
neural signals. We propose to use the particle filter algorithm for recursive state estimation in
DyEnsemble, which adaptively estimates the posterior probability of each candidate model
according to incoming neural signals, and combines them online with the Bayesian updating
mechanism. The process of dynamic ensemble modeling is illustrated in Fig. 1.

• We propose a candidate model generation strategy to learn a diverse candidate set from
neural signals. The strategy includes a neuron dropout step to deal with noisy neurons, and
a weight perturbation step to handle functional changes in neural signals.

Experiments are carried out with both simulation data and neural signal data. It is demonstrated that
the DyEnsemble method outperforms Kalman filters remarkably, and its advantage is more obvious
with noisy signals.

2 Dynamic Ensemble Modeling Algorithm

2.1 Classic state-space model

A classic state-space model consists of a state transition function f(.) and a measurement function
h(.) as follows:

xk = f(xk−1) + vk−1, (1)
yk = h(xk) + nk, (2)

where k denotes the discrete time step, xk ∈ Rdx is the state of our interest, yk ∈ Rdy is the
measurement or observation, vk and nk are i.i.d. state transition noise and measurement noise.

In the context of neural decoding, the state and the measurement represent the movement trajectory
and the neural signals, respectively. Given a sequence of neural signals y0:k, the task is to estimate
the probability density of xk recursively. For linear Gaussian cases, Kalman filter can provide an
analytical optimal solution to the above task.

2.2 DyEnsemble based state-space model

In the classic state-space model mentioned earlier, the measurement function h(.) is assumed to be
precisely determined beforehand, which can not adapt to functional changes in neural signals. In
DyEnsemble, we allow the measurement function to be adaptively adjusted online. Specifically, we

2

Figure 1: The dynamic ensemble modeling process.

consider an improved measurement model as follows:

yk = hHk
(xk) + nk, (3)

in whichHk ∈ {1, 2, . . . ,M} denotes the index of our hypotheses about the measurement function.
Specifically, we use the notation Hk = m to denote the hypothesis that the working measurement
function at time k is hm.

Here we adopt a set of functions, i.e. candidate models, to characterize the relationship between the
measurement and the state to be estimated. A Bayesian updating mechanism [23–25] is used for
dynamically switching among these models in a data-driven manner. Given an observation sequence
y0:k, the posterior of the state at time k is given by [26]:

p(xk|y0:k) =

M∑
m=1

p(xk|Hk = m,y0:k)p(Hk = m|y0:k), (4)

where p(xk|Hk = m,y0:k) is the posterior of the state corresponding to hypothesis Hk = m;
p(Hk = m|y0:k) denotes the posterior probability of the m-th hypothesis.

Now we consider how to derive p(Hk = m|y0:k) based on p(Hk−1 = m|y0:k−1). This is required
for developing a recursive algorithm. Following [27], we specify a model transition process in term
of forgetting, to predict the model indicator at k as follows:

p(Hk = m|y0:k−1) =
p(Hk−1 = m|y0:k−1)

α∑M
j=1 p(Hk−1 = j|y0:k−1)α

, (5)

where α (0 < α < 1) denotes the forgetting factor which controls the rate of reducing the impact
of historical data. Employing Bayes’ rule, the posterior probability of the m-th hypothesis at k is
obtained as below:

p(Hk = m|y0:k) =
p(Hk = m|y0:k−1)pm(yk|y0:k−1)∑M
j=1 p(Hk = j|y0:k−1)pj(yk|y0:k−1)

. (6)

The term of pm(yk|y0:k−1) is the marginal likelihood of model hm at time k, which is defined as:

pm(yk|y0:k−1) =

∫
pm(yk|xk)p(xk|y0:k−1)dxk, (7)

where pm(yk|xk) is the likelihood function associated with the m-th hypothesis.

2.3 Particle filter algorithm for state estimation in DyEnsemble

Here we develop a generic particle-based solution to Eqn. (4) by adapting the particle filter (PF) to
fit our model. In PF, the posterior distribution at each time step is approximated with a weighted
particle set [28]. As shown in Eqn. (4), to estimate p(xk|y0:k) with particles, we need to derive a
particle-based solution to: 1) p(xk|Hk = m,y0:k); and 2) p(Hk = m|y0:k).

3

Assume that we are standing at the beginning of the k-th time step, having at hand p(Hk−1 =

m|y0:k−1),m = 1, . . . ,M , and a weighted particle set {ωik−1,xik−1}
Ns
i=1, where Ns denotes the

particle size, xik−1 the i-th particle with importance weight ωik−1. Assume that p(xk−1|y0:k−1) '∑Ns

i=1 ω
i
k−1δ(xk−1 − xik−1), where δ(.) denotes the Dirac delta function, we show how to get a

particle solution to p(xk|Hk = m,y0:k) and p(Hk = m|y0:k), for m = 1, . . . ,M .

Step 1. Particle based estimation of p(xk|Hk = m,y0:k). To begin with, we draw particles xik
from the state transition prior p(xk|xik−1), for i = 1, . . . , Ns. Then according to the principle of
importance sampling, we have:

p(xk|Hk = m,y0:k) ≈
Ns∑
i=1

ωim,kδ(xk − xik), (8)

where ωim,k ∝ ωik−1pm(yk|xik),
∑Ns

i=1 ω
i
m,k = 1. ωim,k denotes the normalized importance weight

of the ith particle under the hypothesisHk = m.

Step 2. Particle based estimation of p(Hk = m|y0:k). Given p(Hk−1 = m|y0:k−1), first we
calculate the predictive probability of Hk = m using Eqn. (5). Then we can calculate p(Hk =
m|y0:k) using Eqn. (6) provided that pm(yk|y0:k−1),m = 1, . . . ,M is available. Now we show
how to make use of the weighted particle set in Step 1 to estimate pm(yk|y0:k−1),m = 1, . . . ,M .
Recall that, in Step 1, the state transition prior is adopted as the importance function, namely
q(xk|xk−1,y0:k) = p(xk|xk−1). It naturally leads to a particle approximation to the predictive
distribution of xk, which is shown to be p(xk|y0:k−1) ≈

∑N
i=1 ω

i
k−1δxi

k
. Then, according to Eqn.

(7), we have

pm(yk|y0:k−1) ≈
Ns∑
i=1

ωik−1pm(yk|xik). (9)

Note that PF usually suffers from the problem of particle degeneracy. That says, after several
iterations, only a few particles have large weights. Hence, we adopt a resampling procedure in our
method, which is a common practice in the literature for mitigating particle degeneracy by removing
particles with negligible weights and duplicate particles with large weights.

2.4 Candidate model generation

Here we propose a candidate model generation strategy to learn a diverse model set from neural
signals. The strategy includes two stages of neuron dropout and weight perturbation. To create proper
candidate models, we analyze the properties of neural signals. The details of neural signal data are
given in Section 4.1. The candidate model generation strategy is given in Algorithm 1.

Neuron dropout. Firstly, we evaluate the decoding ability of each neuron by mutual information
(MI) between its spike rate and target trajectory in Fig. 2 (a). It shows that only some of the neurons
contain useful information for motor decoding [29]. The activities of uncorrelated neurons can
decrease decoding performance, and the informative neurons can also be temporarily noised or even
lost. In neuron dropout, we randomly disconnect candidate models with several neurons to improve
the noise-resistant ability and increase model diversity. After neuron dropout, each candidate only
connects to a neuron subset containing s neurons, where s is the parameter of model size.

Weight perturbation. In Fig. 2 (b), we analyze the functional changes over time. Specifically, we
fit the linear mapping function between neuron’s firing rate and target trajectory in every 20-second
temporal window with a stride of 1 second, and illustrate the distribution of the slope parameter. The
red plus sign indicates the slope estimated with the whole time length. Results show that the mapping
function between neuron and motor activity swings slightly around the mean in time.

To track the functional changes in neural signals, we propose a weight perturbation process. After
model training, we randomly disturb the weights of each candidate model hm (hm ∈M) in a small
range:

w = w + p× ε, (10)

where ε is randomly sampled from Gaussian(0,1), p is the weight perturbation factor. The weight
perturbation step gives the model set better tolerance of functional changes.

4

Algorithm 1 Candidate Model Generation Strategy.
1: s: model size, M : model number, p: weight perturbation factor
2: D: training data, N : neuron set
3: InitM = {}
4: for i = 1, ...,M do
5: Nsubset = Neuron-dropout(N, s)
6: hi = Train-model(D,Nsubset)
7: for w in weights of hi do
8: w = Weight-perturbation(w, p)
9: end for

10: Add hi toM
11: end for

Figure 2: Neuron activity analysis.

3 Experiments with Simulation Data

The DyEnsemble approach is firstly evaluated with simulation data. In this experiment, we simulate a
time series data where the measurement model is formulated by a piecewise function, to see how
DyEnsemble tracks changes in functions.

The state transition function of the simulation data is given by:

xk+1 = 1 + sin(0.04π × (k + 1)) + 0.5xk + vk, (11)

where vk is a Gamma(3,2) random state process noise. The formulation of state transition function
follows [30]. The measurement function is defined as:

yk =

{
h1(x) = 2x− 3 + nk, 0 < k 6 100,
h2(x) = −x+ 8 + nk, 100 < k 6 200,
h3(x) = 0.5x+ 5 + nk, 200 < k 6 300,

(12)

where nk is Gaussian(0,1) random measurement noise. The goal is to estimate state xk given a
sequence of measurement y0:k. The length of simulation data is 300. In DyEnsemble, h1, h2, and h3
are adopted as candidate models. The forgetting factor α is set to 0.5, and the particle number is 200.

Fig. 3 shows the posterior probability of candidate models over time. In DyEnsemble, the weights of
the candidate models switch automatically along with changes in signals. Candidate h1, h2, and h3
takes the dominating weight alternately, which is highly consistent with the piecewise function. We
also evaluate the influence of forgetting factor α, which adjusts the smoothness of weight transition.
With a higher α, model weights change more smoothly in time.

Figure 3: Weights of candidate models with different α.

5

4 Experiments with Neural Signals

4.1 Neural signals and experiment settings

Neural signals were recorded from rats during lever-pressing tasks. The rats were trained to use
their right forelimb to press a lever for water rewards. 16-channel microwire electrode arrays (8×2,
diameter = 35 µm) were implanted in the primary motor cortex of rats. Neural signals were recorded
by a CerebusTM system at a sampling rate of 30 kHz. Spikes were sorted and binned by 100 ms
windows without overlap. The forelimb movements were acquired by lever trajectory, which was
recorded at a sampling rate of 500 Hz, and downsampled to 10 Hz, to align to the spike bins. The
experiments conformed to the Guide for the Care and Use of Laboratory Animals.

The neural signal dataset includes two rats, for each rat, the data length is about 400 seconds. We use
the first 200 seconds for training and the last 100 seconds for test. After spike sorting, there are 22
and 58 neurons for rat1 and rat2 respectively. We evaluate the neurons with mutual information (MI)
between the firing rate and lever trajectory, and select the top 20 neurons for movement decoding.

The movement trajectory at time step k is a 3× 1 vector xk = [pk, vk, ak]
T , where pk, vk and ak are

the position, velocity and acceleration, respectively. The binned neural signal yk is a 20× 1 vector
yk = [y1k, y

2
k, ..., y

20
k]T , where each element yik denotes the spike count of the i-th neuron.

4.2 Analysis of dynamic process

Adaptation to changing noises. To analyze the dynamic ensemble process with changing noises, we
add noise to neuron 2 and neuron 13 at around the 2nd and 4th second, as in Fig. 4 (a). The additional
noise is randomly distributed integers in [0,10]. Fig. 4 (b) shows the weights of candidate models
over time. There are a total of 20 candidate models with model size s = 15 and weight perturbation
factor p = 0.1. Specially, we set the forgetting factor α = 0.98 to force model weight transition to be
highly smooth, for analysis convenience.

As shown in Fig. 4 (a) and (b), when there is no additional noise (the first 2 seconds), the 13th, 15th
and 19th candidate models are with high weights in assembling, as in Fig. 4 (c). When noise occurs
in the 2nd neuron (2-4 seconds), the weights of the 13th and 19th candidates become small because
they both connect to the 2nd neuron. While the 15th candidate, which does not connect to neuron
2, takes the dominating weight, as in Fig. 4 (d). When noise occurs in neuron 13 at the 4th second,
the weight of the 15th candidate decreases due to its connection to neuron 13, and the new winner is
the 4th candidate, which does not connect to both noisy neurons (Fig. 4 (e)). The results strongly
suggest that, given signals with changing noise, DyEnsemble approach can adaptively switch its
model combination to mitigate the effect of noise.

Adaptation to task behaviors. Fig. 5 (a) visualizes the model weight transition process with
α = 0.1 and α = 0.5. It is interesting to find that, the model assembling behaviors are different in
lever-pressing and non-pressing periods. As highlighted in the dashed boxes in Fig. 5 (a), during
lever-pressing, only several certain models are selected. In Fig. 5 (b) and (c), we illustrate the average
weights of some candidate models in both lever-pressing and non-pressing periods. The results
suggest that different models show different preferences to task behaviors, and DyEnsemble approach
can automatically switch to suitable candidate models to cope with changes of behaviors.

4.3 Performance of neural decoding

Experiments are carried out to compare the neural decoding performance of DyEnsemble with other
methods. The neural decoding performance is evaluated by commonly used criteria of correlation
coefficient (CC) between lever trajectory and estimations. The results are shown in Table. 1.

To simulate noisy situations with unpredictable noises, we randomly replace several neurons’ signals
by noise in the test data. In Table. 1, we replace two (Noisy #2) and four (Noisy #4) neurons’ signals
by random integer noises in a range of [0, 10].

Evaluation of neuron dropout and weight perturbation. Here we evaluate the two key parts of
neuron dropout and weight perturbation. In Table. 1, we compare the baseline approach (without neu-
ron dropout and perturbation), the DyEnsemble with perturbation (p=0.1) alone, and the DyEnsemble
with both perturbation (p=0.1) and dropout (DyEnsemble-2 and DyEnsemble-5 drop 2 and 5 neurons

6

Figure 4: Dynamic ensemble modeling with changing noises.

Figure 5: Comparison of model weights in lever-pressing and non-pressing periods.

respectively). Compared with the baseline, weight perturbation improves the performance by about
10% in noisy situations, and neuron dropout (DyEnsemble-5) leads to a further 20% performance
improvement with 4 noisy neurons.

Comparison with other decoders. The methods in comparison include: Kalman filter, which is a
baseline approach in neural motor decoding; long short-term memory (LSTM) [31] recurrent neural
network, which excels in learning from sequential data in machine learning field [32]; dual decoder
with a Kalman filter [21, 22], which can be regarded as the current state-of-the-art dynamic modeling
approach for nonstationary neural signals.

For a fair comparison, we use linear functions of f(.) and h(.), zero-mean Gaussian terms of vk and
nk in Kalman, dual decoder, and DyEnsemble. The f(.) and h(.) are estimated by the least square
algorithm. For LSTM, we use a 1-hidden-layer model with 8 hidden neurons. In DyEnsemble, the
forgetting factor α is 0.1, model number M is 20, weight perturbation factor p is 0.1, and the particle
number is 1000. For DyEnsemble-2 and DyEnsemble-5, the model sizes are 18 and 15, respectively.
All the methods are carefully tuned by validation and the validation set is the last 400 points of
training data. The results are averaged over three random runs.

In Table. 1, we highlighted the top two performances in bold. Without additional noises (Original
column), the CCs of DyEnsemble-2 and DyEnsemble-5 are 0.799 and 0.775 for Rat1, which are
slightly higher than Kalman (0.777) and LSTM (0.753), and comparable to dual decoder (0.779).
For Rat2, the best CC of DyEnsemble is 0.803 which is higher than Kalman (0.798) while slightly

Table 1: Correlation coefficient with different numbers of noisy neurons.

Method Rat 1 Rat 2
Original Noisy (#2) Noisy (#4) Original Noisy (#2) Noisy (#4)

Kalman filter 0.777±0.000 0.696±0.012 0.560±0.009 0.798±0.000 0.580±0.039 0.381±0.093
LSTM 0.753±0.017 0.687±0.033 0.617±0.045 0.846±0.021 0.551±0.127 0.338±0.050

Dual decoder 0.779±0.000 0.694±0.010 0.575±0.013 0.803±0.000 0.585±0.025 0.387±0.030
DyEnsemble (w/o P, w/o D) 0.776±0.002 0.684±0.014 0.558±0.009 0.798±0.002 0.579±0.066 0.377±0.155
DyEnsemble (P(0.1), w/o D) 0.780±0.008 0.711±0.004 0.557±0.035 0.780±0.006 0.665±0.024 0.472±0.080
DyEnsemble-2 (P(0.1), D(2)) 0.799±0.012 0.735±0.006 0.583±0.090 0.788±0.009 0.633±0.064 0.516±0.092
DyEnsemble-5 (P(0.1), D(5)) 0.775±0.015 0.739±0.021 0.671±0.039 0.803±0.009 0.584±0.035 0.596±0.035

* w/o: without; P(k): weight perturbation with p=k; D(l): neuron dropout with l neurons dropped.

7

Figure 6: Evaluation of key parameters.

lower than LSTM (0.846). Overall, with original neural signals, the performance of DyEnsemble is
comparable to state-of-the-art approaches.

With noisy neurons, the performances of Kalman, LSTM and dual decoder decrease significantly. For
Rat1, when there are 2 noisy neurons, the CCs of Kalman, LSTM, and dual decoder are 0.696, 0.687
and 0.694, respectively. The CC of DyEnsemble-5 is 0.739, which improves by 6.2%, 7.6%, 6.5%
compared with Kalman, LSTM, and dual decoder, respectively. With 4 noisy neurons, DyEnsemble-5
achieves a CC of 0.671, which is 19.8%, 8.8% and 16.7% higher than Kalman, LSTM and dual
decoder, respectively. Similar results are observed with Rat2. DyEnsemble-5 is more stable and
robust than DyEnsemble-2 with noisy neurons especially when there are 4 noisy neurons. Since
Ensemble-2 only drops 2 neurons in candidate models, the performance decreases when more than 2
noisy neurons occur. Dropping more neurons can increase the robustness against noises, while it may
also harm estimation accuracy.

4.4 Influence of parameters

Here we evaluate the key parameters in DyEnsemble: model size (s), model number (M), forgetting
factor (α), and weight perturbation factor (p). The results are illustrated in Fig. 6.

Model size. Model size s defines the number of neurons connected to each candidate model. The rest
of the parameters is set to: α = 0.1, p = 0.1,M = 20. As shown in Fig. 6 (a), overall, CC improves
with increase of model size. While for Rat2, CC decreases slightly after model size reaches 18.
Commonly, a larger model size brings more information, while it also decreases the noise-resistant
ability as discussed in Section 4.3.

Model number. The model number denotes the number of candidate models inM. The rest of the
parameters is set to: α = 0.1, p = 0.1, s = 15. As shown in Fig. 6 (b), the performance increases
when we tune M from 5 to 20, while the improvement is subtle when M is larger than 20.

Forgetting factor. The parameter of forgetting factor from Eqn. (5) controls the inertia in the
candidate model transition. With a large α, the candidate models prefer to keep the weights from the
last time step. From Fig. 6 (c), we find that smaller α gives better performance in the neural decoding
task, which reflects the nonstationary properties of neural signals. The rest of the parameters is set to:
s = 15, p = 0.1,M = 20.

Weight perturbation factor. The weight perturbation factor p controls the range that candidate
models can deviate from the mean. A higher p can tolerate larger changes in functional relationships,
however, it also leads to inaccurate predictions. As shown in Fig. 6 (d), the performance improves
when p is adjusted from 0.01 to 0.1, while decreases rapidly when p is bigger than 0.2. The rest of
the parameters is set to: s = 15, α = 0.1,M = 20.

5 Conclusion

We proposed a dynamic ensemble modeling approach, called DyEnsemble, for robust movement
trajectory decoding from nonstationary neural signals. The DyEnsemble model improved upon the
classic state-space model by introducing a dynamic ensemble measurement function, which is capable
of adapting to changes in neural signals. Experimental results demonstrated that the DyEnsemble
approach could automatically switch to suitable models to mitigate the effect of noises and cope
with different task behaviors. The proposed method can provide valuable solutions for robust neural
decoding tasks and nonstationary signal processing problems.

8

