
Supplementary Material for “On Frenchel Mini-Max Learning”

Chenyang Tao 1 Liqun Chen 1 Shuyang Dai 1 Junya Chen 1 2 Bai Ke 1 Dong Wang 1 Jianfeng Feng 3

Wenlian Lu 2 Georgiy Bobashev 4 Lawrence Carin 1

A. Notations and Assumptions
Capital letters (e.g.,X) are used to denote random variables,
and EX∼p[f(X)] denotes the expectation of function f(x)
wrt distribution p(x). ∇fθ denotes the gradient of function
fθ(x) wrt parameters θ, gradient wrt spatial parameters will
be denoted as ∇xfθ. ∆x is used to denote the Laplacian
operator wrt spatial variable x. We say pθ(x) is an explicit
likelihood if its evaluation does not involve marginalization
over latent variables. To simplify discussions, we always
assume continuous variables, and probability measures of
interest are defined on a compact domain Ω ⊂ Rd. Without
loss of generality, Ω is assumed to have unit volume.

B. Comparison of Popular Probabilistic
Modeling Procedures

We summarized popular probabilistic modeling schemes’
strength wrt the goals of inference, sampling, likelihood
evaluation and scalability in Table S1. Note that this table is
composed based on standard understand of these methods.
For some specialized applications some of these methods
can be extended beyond the limitations outlined in this table.

C. Biased Likelihood Estimation with Finite
Sample Monte-Carlo Estimation

Consider the following naive Monte-Carlo estimator for the
log-likelihood

log p̂ψ(x) = −ψθ(x)− log Ẑθ, (1)

where

log Ẑθ = log

 1

m

m∑
j=1

exp(−ψθ(X ′j))

 , (2)

*Equal contribution 1Electrical & Computer Engineer-
ing, Duke University, Durham, NC, USA 2School of
Mathematical Science, Fudan University, Shanghai, China
3ISTBI, Fudan University, Shanghai, China 4RTI Interna-
tional, Research Triangle Park, NC, USA. Correspondence to:
Chenyang Tao <chenyang.tao@duke.edu>, Lawrence Carin
<lcarin@duke.edu>.

33rd Conference on Neural Information Processing Systems
(NeurIPS 2019), Vancouver, Canada.

Table S1. Comparison of popular probabilistic modeling proce-
dures.

Model Inference Sampling Likelihood Scalability

FML (ours) Yes Yes Estimate Good
CD Yes Yes No Good
SM No No No Poor

NCE No No Estimate Depends
KEF No No No Poor
DDE No Yes Exact Low
VI Yes Yes Bound Good

Flow No Yes Exact Tricky
Stein No Yes No Medium
GAN No Yes No Good

is the finite sample estimator for the log-partition, with X ′j
sampled uniformly from Ω. Via the Jensen inequality (i.e.,
EX [log f(X)] ≤ log(EX [f(X)])), it is easy to see

EXj [log Ẑθ] ≤ log(EXj [Ẑθ]) = logZθ, (3)

which implies the naive MC estimator actually gives an
upper bound of the log-likelihood

EXj [log p̂ψ(x)] ≥ log pψ(x). (4)

To partly alleviate this issue, ? considered an alternative
estimator that lower bounds the log-likelihood.

D. Technical Assumptions for Robbins-Monro
Stochastic Approximation

Assumption D.1. (Standard regularity conditions for
Robbins-Monro stochastic approximation).

A1. h(θ) , Eω[h(θ;ω)] is Lipschitz continuous;

A2. The ODE θ̇ = h(θ) has a unique equilibrium point θ∗,
which is globally asymptotically stable;

A3. The sequence {θt} is bounded with prob 1;

A4. The noise sequence {ωt} is a martingale difference
sequence;

A5. For some finite constants A and B and some norm ‖ · ‖
on Rd, E[‖ωt‖2] ≤ A+B‖θt‖2 a.s. ∀t ≥ 1.

Supplementary Material for “On Frenchel Mini-Max Learning”

Remark. In the context of stochastic optimization, the glob-
ally asymptotic stability can be implied, for example, when
f(θ) is strict convex (recall h(θ) = ∇f(θ)).

E. Proof of Proposition 3.2
Proof. We only need to verify that convergence still holds
in probability when Robbins-Monro condition is satisfied in
expectation. Without loss of generality suppose

〈θ − θ∗, h(θ)〉 ≤ 0 (5)

holds for all θ. Define a Markov chain θt by taking θ1 to be
an arbitrary constant and define

θt+1 − θt = −ξtηth(θt). (6)

Let bn = E
[
‖θt − θ∗‖22

]
. We shall find conditions under

which limn→∞ bn = 0, no matter what the initial value θ1,
which implies the convergence in probability of θt to θ∗.
From (6), we have:

bn+1 = E
[
‖θt+1 − θ∗‖22

]
= E

[
‖(θt+1 − θt) + (θt − θ∗)‖22

]
= bn + 2E [〈θt+1 − θt, θt − θ∗〉] + E

[
‖θt+1 − θt‖22

]
= bn − 2E [ξtηt]E [〈θt − θ∗, h(θt)〉]

+ E[ξ2
t η

2
t]E

[
‖h(θt)‖22

]
Set dn = E [〈θt − θ∗, h(θt)〉] , et = E

[
‖h(θt)‖22

]
, we can

write

bn+1 − bn = −2E[ξ2
t η

2
t]dn + E[ξtηt]et. (7)

Note from (5), dn ≥ 0, while from the assumption on
function h(·), 0 ≤ et < ∞, together with

∑
E
[
ξ2
t η

2
t

]
<

∞, we have
∑

E
[
ξ2
t η

2
t

]
et converges. Summing (7) gives

bt+1 = b1 +

t∑
j=1

E
[
ξ2
j η

2
j

]
ej − 2

t∑
j=1

E [ξjηj] dj (8)

Since bn+1 ≥ 0, we obtain

t∑
j=1

E [ξjηj] dj ≤
1

2

b1 +

t∑
j=1

E
[
ξ2
j η

2
j

]
ej

 <∞
It follows from (8) that limn→∞ bn = b exists. b equals to
0 is proved in Robbins and Monro’s paper, more details can
be found in (Robbins & Monro, 1951) . �

F. Proof of Corollary 3.3
Proof. Based on analysis from Section 3.2, FML executes
SGD wrt MLE gradient with randomly perturbed step size
η̃t. Then result directly follows from Proposition 3.1. �

G. More general results on FML convergence
The following results relaxes the strong assumptions on
the uniqueness of global minimizer, proving that under
SGD FML training also reaches a stationary point of the
ground-truth likelihood function as standard MLE training
does. This results applies more generally to modern learning
frameworks such as deep neural net. We note that due to
the stochasticity and the nonlinearity involved, both FML
and MLE may reach different solutions in separate runs for
deep nets.

Assumption G.1. (Weaker regularity conditions for gener-
alized Robbins-Monro stochastic approximation).

B1. The objective function f(θ) is second-order differen-
tiable.

B2. The objective function f(θ) has a Lipschitz-continuous
gradient, i.e., there exists a constant L satisfying

−LI � ∇2f(θ) � LI,

B3. The noise has a bounded variance, i.e.,
there exists a constant σ > 0 satisfying
E
[
‖h(θt;ωt)−∇f(θt)‖2

]
≤ σ2.

Theorem G.2. Under the technical conditions listed in As-
sumption G.1, the SGD solution {θt}t>0 updated with gen-
eralized Robbins-Monro sequence (η̃t:

∑
t E[η̃t] =∞ and∑

t E[η̃2
t] < ∞) converges to a stationary point of f(θ)

with probability 1 (equivalently, E
[
‖∇f(θt)‖2

]
→ 0 as

t→∞).

Proof. Define a Markov chain θt by taking θ1 to be an
arbitrary constant vector:

θt+1 − θt = −ξtηth(θt;ωt) , −η̃tht(θt)

where η̃t = ξtηt and ht(θt) = h(θt;ωt).

By Taylor’s theorem, the objective will be

f(θt+1) = f(θt − η̃tht(θt))

= f(θt)− η̃tht(θt)>∇f(θt) +
η̃2
t

2
ht(θt)

>∇2f(θt)ht(θt)

Taking the expected value,

E
[
f(θt+1)

∣∣θt] ≤ f(θt)− E [η̃t]E
[
ht(θt)

>∇f(θt)
∣∣θt]

+
L

2
E[η̃2

t]E
[
‖ht(θt)‖2

∣∣θt]
≤ f(θt)−

(
E [η̃t]−

L

2
E
[
η̃2
t

])
‖∇f(θt)‖2

+
σ2L

2
E[η̃2

t]

Supplementary Material for “On Frenchel Mini-Max Learning”

If we set E[η̃t] small enough that

E[η̃t]−
E[η̃2

t]L

2
≥ 1

2
E[η̃t],

for t ≥ T0 which is guaranteed by the convergence of∑
t E[η̃2

t], then

E
[
f(θt+1)

∣∣θt] ≤ f(θt)−
1

2
E[η̃t] ‖∇f(θt)‖2 +

σ2L

2
E[η̃2

t].

Now taking the full expectation

E [f(θt+1)] ≤ E [f(θt)]−
1

2
E[η̃t]E

[
‖∇f(θt)‖2

]
+
σ2L

2
E[η̃2

t],

and summing up from T0 to T ,

E [f(θT)] ≤ E [f(θT0
)]− 1

2

T−1∑
t=T0

E[η̃t]E
[
‖∇f(θt)‖2

]
+
σ2L

2

T−1∑
t=T0

E[η̃2
t],

rearranging the terms,

1

2

T−1∑
t=T0

E[η̃t]E
[
‖∇f(θt)‖2

]
≤

E [f(θT0
)]− E [f(θT)] +

σ2L

2

T−1∑
t=T0

E[η̃2
t].

Let T →∞, and notice that
∑
t E[η̃t] =∞,

∑
t E
[
η̃2
t

]
<

∞, then
∞∑
t=T0

E[η̃t]E
[
‖∇f(θt)‖2

]
<∞,

Hence E
[
‖∇f(θt)‖2

]
→ 0 as t→∞.

H. Rate-Distortion Theory and Mutual
Information Bounds

We further define the q-rate score Rq and q-distortion score
Dq as

Rq , E(X,Z)∼q[log q(Z|X)− log ρ(Z)],

Dq , −E(X,Z)∼q[log ρ(X|Z)],
(9)

and similarly define ρ-rate score Rρ and ρ-distortion score
Dρ. Here {Rρ, Rq, Dρ, Dq} are collectively referred to as
the rate-distortion scores. We note the distortion score D
differs from the distortion regularizer Dt defined in main
text, as a compromise to avoid notational clutter. The fol-
lowing link between rate-distortion scores and mutual infor-
mation can be readily verified:

Algorithm 1 Amortized FML for Latent Variable model
Learning rate schedule {ηt}, annealing schedule {τt},
regularization strength λ
Initialize parameters θ, β, φ
% Optional pre-training with VAE
for t = 1, 2, · · · do

Sample {xt,j}mj=1 ∼ p̂d(x), {zt,j}mj=1 ∼ qβ(z|xt,j),
{x′t,j , z′t,j}mj=1 ∼ pθ(x, z)

ut,j = uφ(xt,j),
It,j = exp{τt log pθ(xt,j |zt,j) + log p(zt,j)

− log qβ(zt,j |xt,j)}
Jt =

∑
j{ut,j + exp(−ut,j)It,j}

Dρ,t =
∑
j log pθ(xt,j |zt,j)

Dq,t =
∑
j log qβ(z′t,j |x′t,j)

Dt = Dρ,t +Dq,t

u-update: φ = φ− ηt∇φJt
ψ-update: [θ, β] = [θ, β] + ηt∇[θ,β]{Jt − λDt}

end for

Proposition H.1 (Rate-distortion inequalities (Berger,
1971; Alemi et al., 2018)).

H(pd)−Dq ≤ Iq ≤ Rq, H(pz)−Dρ ≤ Iρ ≤ Rρ. (10)

These bounds are tight as the proposal qβ(z|x) approaches
the true posterior pα(z|x) (Lemma 5.1, Chen et al. (2016)).

I. Algorithm of Amortized FML for Latent
Variable Models

The pseudocode for latent variable FML is summarized in
Algorithm 1.

J. Connection to Langevin Gradient Flow
We remark our procedure described in Section 5 actually
simulates the discrete Langevin gradient flow (Chen et al.,
2018)

xt+∆t ← xt −∆t∇x{log pθ(xt)− log pψ∗(xt)} (11)

to solve the Fokker-Plank system

∂tpθt +∇x · (pθt∇x log
pθt
pψ∗

) = 0. (12)

It is well known that the solution pθt(x) of (12) converges
to pψ∗(x) when t→∞ under mild technical assumptions
(Jordan et al., 1998).

K. Empirical Evaluation of FML’s
Consistency

We experimentally verify the proposed FML is a consistent
estimator, that is to say FML estimate converges to ground

Supplementary Material for “On Frenchel Mini-Max Learning”

truth as sample size n grows to infinity.

L. Competing Solutions
For completeness, we briefly describe competing solutions
used in this study.

L.1. Score matching (SM)

Hyvärinen (2005) proposed score matching (SM) to esti-
mate an unnormalized density. In particular, score matching
directly models the (data) score function ∇x log pθ(x), and
seek to minimize the score discrepancy metric

F(pd, pθ) , 1
2EX∼pd(x)[‖∇x log pd(X)

−∇x log pθ(X)‖22]

= EX∼pd(x)[∆x log pθ(X)

+ 1
2‖∇x log pθ(X)‖22] + C,

(13)
where C is a constant wrt θ. Note (13) does not involve the
partition function Z(θ), and other than the constant term it
only depends on pd(x) through the expectation. As such, it
can be easily estimated with a Monte Carlo average. A major
drawback for score matching in a modern differentiable
learning setting is that, the computation involves taking
second-order derivatives (if the score function is directly
modelled), which is costly in practice.

L.2. Noise contrastive estimation (NCE)

Noise contrastive estimation (NCE) is a technique used to
estimated the parameters for unnormalized statistical mod-
els (Gutmann & Hyvärinen, 2010; 2012), i.e. models with
density function known up to a normalization constant. Let
pθ(x) = p̃θ(x)/Z(θ) the model density function, where
p̃θ(x) is the unnormalized pdf parameterized by α and
Z(θ) =

∫
p̃θ(x) dx is the partition function (normalizing

constant). Without loss of generality, we assume only the
knowledge of p̃θ(x) and Z(θ) is intractable. To address the
intractable normalizing constant, we introduce an additional
parameter c ∈ R for it, and define (unormalized) distribu-
tion pθ(x) = p̃θ(x)/C, where θ+ = (θ, c) and C = exp(c).
Note that pθ(x) does not necessarily integrate to one. Let
pd(x) be the unknown data distribution, and further intro-
duce a contrastive distribution q(x), also known as the noise
distribution, which is both tractable and easy to sample from.
Let Xn = {xi}ni=1 and Yn = {yi}ni=1 be the respective em-
pirical samples from data and contrastive distribution, then
the contrastive objective is given by

JNCE(θ) =
1

2n

∑
i

(log h(xi; θ) + log(1− h(yi; θ))) ,

(14)

where

h(u; θ) = σ(r(u; θ)), (15)
r(u; θ) = log pθ(u)− log q(u) (16)

= log p̃θ(u)− log q(u)− c,

and σ(t) = 1/(1 + exp(−t)) is the sigmoid function. This
objective function is essentially the likelihood function for
the class label of the mixture distribution 1

2 [pd+pβ], and the
NCE estimate of θ is given by θ̂ = arg max JNCE(θ), and
we denote the corresponding model density by p̂NCE(x) =
pθ̂(x). NCE follows the idea of “learning by compari-
son”, it learns the properties of the data in terms of a
statistical model by discriminating the samples between
data and noise. It is known that when the data distribu-
tion pd(x) is contained in the family of model distributions
Q = {pθ(x)}θ∈Θ, then p̂NCE(x) is a consistent estimator
for pd(x).

L.3. Dynamics dual embedding (DDE)

Dynamics dual embedding (DDE) considers the primal-dual
view of MLE (Dai et al., 2018). In particular, DDE exploited
the following fact:

Theorem L.1 (Theorem 1, (Dai et al., 2018)). Let H(q) ,
−
∫
q(x) log q(x) dx, we have

Z(θ) = max
q∈P
{〈q, p̃θ〉+H(q)} (17)

pθ = arg max
q∈P

{〈q, p̃θ〉+H(q)} (18)

where P denotes the space of distributions, 〈f, g〉 ,∫
Ω
f(x)g(x) dx is the regular L2 inner product.

Plugging the Frenchel dual formulation of the partition Z(θ)
into the likelihood estimator renders MLE into a saddle-
point optimization problem:

max
θ∈Θ
L(θ)⇔ max

f∈F
min
q∈P

J(θ, q) (19)

where

JDDE(θ, q) , EX∼pd [f̃θ(X)]− EX′∼q[f̃θ(X ′)]−H(q)
(20)

is the DDE objective. In the original paper, Hamiltonian
flow had been used to parameterize the dual embedding
distribution q.

L.4. Kernel exponential family estimation (KEF)

Kernel exponential family estimation (KEF) considers the
problem of nonparametric density estimation in infinite di-
mensional space (Sriperumbudur et al., 2017). More specifi-
cally, KEF seeks a solution of the following form

pψ ∝ exp(−ψθ(x))p0(x), (21)

Supplementary Material for “On Frenchel Mini-Max Learning”

where p0(x) is considered as prior regularization and ψ(x)
is constrained to an RKHS Hκ. To match the empirical
distribution pd, KEF optimizes the following regularized
score discrepancy:

JKEF(θ) , F (pd, pθ) + λ‖ψθ‖2H, (22)

where λ > 0 is the regularization strength and ‖ · ‖H is
the RKHS norm. Analytical solution can be derived with
provable convergence rates.

L.5. Stein variational gradient descent (SVGD)

Stein variational gradient descent (SVGD) (Liu & Wang,
2016) considers the problem of steepest descent in the space
of probability distributions wrt KL-divergence, with descent
directions constrained in certain reproducing kernel Hilbert
space (RKHS). Formally, define the Stein operator Ap for
d-dim vector function φ(x) ∈ {C1(Ω)}d wrt distribution
p(x) as

Ap(φ) , φ(x)∇x log p(x)T +∇xφ(x), (23)

and the Stein discrepancy S(q, p) between distribution q and
p as

S(q, p) = max
φ∈F
{EX∼q[tr(Apφ(X))2]}, (24)

where F denotes some function space. Let κ(x, x′) be a
semi-positive definite function known as the kernel, which
defines RKHS H , Span{κ(·, x);x ∈ Ω}. Let qεφ(x) be
the distribution defined by the applying the following trans-
port operator to the mass of distribution q(x):

Tεφ(x) = x+ εφ(x). (25)

Then it can be shown that the steepest descent direction wrt
KL(qεφ ‖ p) from the unit ball inH is given by

φ∗q,p(x) = EX∼q[Apκ(X, ·)] (26)

with∇εKL(qεφ∗ ‖ p)|ε=0 = −S(q, p). In amortized SVGD
(Wang & Liu, 2016), one optimizes the following objective
to match model distribution pθ (implicitly defined by the
generator Gθ(Z), Z ∼ p(z)) to the unnormalized target
distribution p̃ψ

minθ JSVGD(θ) , EZ∼p(z)[{Gθ(Z)−
StopGrad(Gθ(Z) + ηtφ

∗
pθ,p̃ψ

(Gθ(Z)))}2],

(27)
where ηt denotes the learning rate.

L.6. Generative flow (FLOW)

Generative flows (FLOW) consider modeling distribution
pθ with an generator Gθ(z) with non-degenerative tractable

Jacobian (Tabak et al., 2010). More specifically, if Gθ(z) is
invertible wrt z, then

pθ(xz) = p(z)|det(∇xG−1
θ (xz))|, (28)

where xz , Gθ(z). While the constraint imposed is very
limiting, model flexibility can be significantly improved by
stacking such simpler transformations Gθ,l(zl−1) (Rezende
& Mohamed, 2015), e.g.,

log pθ(xz) = log p(z)−
M∑
m=1

log
∣∣det(∇zl−1

Gθ,l)
∣∣ . (29)

Different flow implementations differs in their specific
choices for Gθ,l(z).

L.7. Kernel density estimation (KDE)

Kernel density estimation (KDE) is a classical solution
to the problem of nonparametric estimation of likelihood,
which exploits the idea of smoothing the data with a ker-
nel. Formally, let κ(x) be a smoothing kernel satisfying∫
κ(x) dx = 1, then the simplest KDE likelihood estimate

is given by

p̂KDE
h =

1

nhd

∑
κ

(
x− xi
h

)
, (30)

where h > 0 is commonly known as the bandwidth param-
eter. Like almost all kernel-based solution, the choice of
bandwidth parameter h and smooth kernel κ are critical.
Isotropic Gaussian rbf is the most popular choice for ker-
nel, and standard practices for bandwidth selection include
cross-validation based estimate and rule-of-thumb estimator
hj = (4

d+2)
1
d+4n−1/(d+4)σj , where hj denotes the dimen-

sion specific bandwidth and σj is the standard deviation for
the j-th dimension.

L.8. Naive Monte-Carlo (MC)

See our discussion in Section C.

M. Validation of the normalizing constant
In order to verify the correctness of estimated normalizing
constant from FML (and NCE), we use the following estima-
tors: (i) Hamiltonian annealed importance sampling (HAIS)
(Sohl-Dickstein & Culpepper, 2012); and (ii) standard im-
portance sampling with GMM proposal. Our implementa-
tion of HAIS is modified from the tensorflow implemen-
tation found in https://github.com/JohnReid/
HAIS. Note sometimes the HAIS estimator will encounter
numerical issues when the nonparametric estimate is not
sufficiently smooth, in which cases we switch to (ii). We
confirmed FML training yields accurate estimate of the nor-
malizing constant. For HAIS estimator (i), we use 3k chains
with 5k steps. For standard IW estimator (ii), we use 50
component Gaussian and draw 50k samples.

Supplementary Material for “On Frenchel Mini-Max Learning”

Table S2. Summary of UCI datasets

Name Dimension Size

Yeast 6 1358
Wine-red 8 1458

Wine-white 8 4502
HTRU2 8 17898

N. Toy Model Experiments
We used the KEF implementation from https:
//github.com/karlnapf/kernel_exp_family.
We used our own implementation of SM, NCE and DDE.
For DDE, we replace the Hamiltonian flow used in the
original paper with a more expressive MAF flow. To
estimate the partition function, we use a 50k sample MC
estimator. † For the parameter estimation task, we rescale
the results by a factor of 100 to facilitate reading.

The exact mathematical form of the toy models we consid-
ered and the parameter specifications used are summarized
below.

• banana: 1
2 (((x1−(x2/κ)2))2/σ2

1 +((x2−µ2))2/σ2
2);

• kidney: 1
2 ∗ ((‖x‖−µ1)/σ1)2− log(exp(−.5∗ ((x1−

µ2)/σ2)2) + exp(−.5 ∗ ((x1 + µ2)/σ2)2));

• rings: Cat([.25] × 4),Cat-1N (0, σ2
0), Cat − i :

N (‖x‖;µi, σ2
i);

• river: − log(a1(x) + a2(x)), where

a1(x) = exp(−.5 ∗ ((x2 − w1(x, σw,1))/σ4)2),

a2(x) =
exp(−.5 ∗ ((x2 − w1(x, σw,1)

+w3(x, σw,3, µ3))/σ3)2)

• wave: − log(a3(x) + a2(x)), where

a3(x) = exp(−.5 ∗ ((x2 − w1(x, σw,1))/σ3)2),

a2(x) =
exp(−.5 ∗ ((x2 − w1(x, σw,1)

+w2(x, σw,3, µ3))/σ3)2)

wherew3(x;µ, σ) = 3∗sigmoid((x1−µ)/σ), w1(x;σ) =
sin(2π x1

σ). For banana, we use µ2 = 0, σ2
1 = 1, σ2

2 =
2, σ3 = 0.35, σ4 = 0.4 and κ = 2. For kidney, river
and wave we set the parameters according to Rezende &
Mohamed (2015), for rings we set ri = i and σ2

i = 0.2.

O. UCI Data Experiments
We summarized basic info for all UCI datasets considered
in this study in Table S2.

Preprocessing. We removed all categorical variables and
normalized each dimension to zero mean and unit variance.
Entries with extreme values or missing values were removed
from our analysis.

For KDE, we use the default implementation from the scipy
package (scipy.stats.gaussian kde). Since these datasets are
all high dimensional, naive uniform proposal distribution is
bound to fail. In this study we first used isotropic Gaussian
mixture model to fit data, then the learned Gaussian mixture
model (GMM) is used as the proposal distribution for NCE
and FML. We use the GMM implementation from scikit-
learn package (sklearn.mixture.GaussianMixture). We spec-
ify the GMM with 50 components and full covariance, un-
less this choice yields severe overfit or underfit, which is
then handled on a case-by-case basis. For the flow model,
we used a 4-bijsctor MAF model with shift and scale trans-
formations, each block has 2 hidden layers with size 256. As
standard practice, permutation layers are inserted to avoid
degeneracy. Our flow model is implemented with tensor-
flow probability library package (tensorflow probability).
For FML and NCE, we used 3 layer feed-forward neural
net to model the nonparametric potential. Each layer has 64
hidden units.

P. VAE Image Data Experiments
We summarized the image datasets in Table S5 and the net-
work architectures used for respective datasets in Tables S3
and S4. As in standard VAE implementation, we used the
logit model instead of Gaussian model at pixel level. We
fixed our annealing factor to τ = 0.1 in our experiments,
which keeps all diagnostic statistics we used in a reason-
able range (which indicates our FML is working properly,
we omit details here). The results reported are from our
unregularized FML implementation, regularized FML im-
plementation show a similar trend, with improved sampling
efficiency (results not shown). We use 10 latent dims for
MNIST and 64 latent dims for CelebA.

Q. GAN Image Data Experiments
To investigate how FML learning can assist the training
of likelihood-free models such as GAN, we adopted the
variational annealing framework (Tao et al., 2019) to reg-
ularize GAN training with FML-learned likelihood esti-
mate. Specifically, we first encode image data using an auto-
encoder and then use FML to estimate its likelihood, e.g.,
training GAN with LVA = LGAN + λ log p̂θ, where LGAN is
the standard GAN loss and λ is the regularization parame-
ter. We compare FML-based likelihood regularization with
vanilla GAN and denoising feature matching (DFM) GAN,
which leverages a denoising auto-encoder as score estimator
(Alain & Bengio, 2014) to attain the likelihood signal. We

Supplementary Material for “On Frenchel Mini-Max Learning”

Table S3. MNIST experiment network architecture.

Network Architecture

Encoder conv2d(unit=32, kernel=5, stride=2) + BN + ReLU
conv2d(unit=64, kernel=5, stride=2) + BN + ReLU
fc(unit=1024) + BN + ReLU

Decoder fc(unit=1024) + BN + ReLU
fc(unit=64*7*7) + BN + ReLU
reshape to 7× 7× 64
deconv(unit=64, kernel=5, stride=2) + BN + ReLU
deconv(unit=64, kernel=1, stride=2) + BN + Sigmoid

u-net Same as Encoder net.

Table S4. CelebA experiment network architecture.

Network Architecture

Encoder conv2d(unit=32, kernel=5, stride=2) + BN + ReLU
conv2d(unit=64, kernel=5, stride=2) + BN + ReLU
fc(unit=1024) + BN + ReLU⇒ Z

Decoder fc(unit=1024) + BN + ReLU
fc(unit=64*7*7) + BN + ReLU
reshape to 7× 7× 64
deconv(unit=64, kernel=5, stride=2) + BN + ReLU
deconv(unit=64, kernel=1, stride=2) + BN + Sigmoid

u-net Same as Encoder net.

Table S5. Summary of image datasets

Name Dim Train Test

MNIST 28× 28 55k 10k
CelebA 64× 64× 3 180k 20k
Cifar10 32× 32 60k -

evaluated model performance on Cifar10 with IS and FID
with fixed positive annealing (λ = 1, results reported in
main text), and studied the effect of regularization strength
λ on MNIST using IS (see Figure S1). We used the code-
base from the DFM paper for the Cifar10 experiment and
implemented our own MNIST experiment.

R. Language Data Experiments
We summarized the language datasets in Table S7 and the
network architectures used for respective datasets in Table
S6.

For text generation task, We use EMNLP2017 WMT News
dataset and MS COCO dataset. EMNLP News dataset con-
sist of 278686 training sentences, 10000 testing sentences,
with vocabulary size 5728. MSCOCO contains 120000 and
10000 sentences for training and testing respectively, vocab-

-1E-2 0 1E-3 1E-2 1E-1 5E-1 1 2 3 4 5 6 7
Annealing Strength λ

8.7

8.9

9.1

9.3

9.5

In
ce

pt
io

n
Sc

or
e

(IS
)

Variational Annealing for MNIST w/ FML

Figure S1. Effect of variational annealing strength on MNIST

ulary size = 27842. Our model consists of a 3-layer CNN
encoder and a LSTM decoder for both datasets.

S. Reinforcement Learning Experiments

S.1. Soft Q-learning

Reinforcement learning seeks to maximize some reward
function r(s,a) wrt actions a drawn from the policy distri-
bution π(a|s), where s denotes the state. Maximal entropy

Supplementary Material for “On Frenchel Mini-Max Learning”

Algorithm 2 FML Soft Q-learning
Require: Create replay memory D = ∅; Initialize policy network parameters θ , FML network parameters ψ, u, Q network

parameters φ; Assign target parameters: θ ← θ, φ← φ. The number of samples for each distribution M .
1: for each epoch do
2: for each t do

3: % Collect expereince

4: Sample an action for st using gθ: at ← gθ(ξ; st), where ξ ∼ N (0, I).
5: Sample next state and reward from the environment: st+1 ∼ Ps and rt ∼ Pr
6: Save the new experience in the replay memory: D ← D ∪ {st,at, rt, st+1}

7: % Sample a minibatch from the replay memory

8: {(s(i)
t ,a

(i)
t , r

(i)
t , s

(i)
t+1)}ni=0 ∼ D.

9: % Use FML to update ψ and u network

10: Sample actions for each s(i)
t from the stochastic policy via

a
(i,j)
t = fφ(ξ(i,j), s

(i)
t ;θ), where {ξ(i,j)}Mj=0 ∼ N (0, I)

11: Follow the Algorithm.1 to estimate logPψ,u(a
(i,j)
t |s(i)

t) and update ψ,u

12: % Update Q value network

13: Sample {a(i,j)}Mj=0 ∼ qa′ for each s(i)
t+1.

14: Compute the soft Q-values Qφ(at+1, st+1) and calculate the loss Lφ = ||Qφ(at+1, st+1) + rt −Qφ(at, st)||2
15: Compute gradient of Q-network and update φ

16: % Update policy network via KL Divergence

17: Calculate the KL Divergence, Lθ = KL(Pψ,u(a
(i,j)
t |s(i)

t)||Q(a
(i,j)
t |s(i)

t))
18: Compute gradient of policy network and update θ
19: end for
20: if epoch mod update interval = 0 then
21: Update target parameters: θ ← θ, φ← φ
22: end if
23: end for

Table S6. Summary of language datasets

Network Architecture

Encoder 3-layer CNN
Decoder LSTM

Table S7. Summary of language datasets

Name Vocab Train Test

WMT News 5, 728 278k 10k
MS COCO 27, 842 120k 10k

search tries to balance the exploration and exploitation wrt
the policy through the following objective:

Es,a∼E,π

[∞∑
t=0

γt(r(s,a) + αH(π(·|s)))

]
, (31)

α is a hyper parameter balancing the trade-off between ex-
ploitation (reward) and exploration (entropy). and 0 < γ <
1 is the discounting factor. It’s well known the optimal pol-

icy then would follow π∗(a|s) ∝ exp(Q(a, s)/α), where
Q(a, s) is known as the Q-function (Sutton & Barto, 2018).
Soft-Q learning (Haarnoja et al., 2017) leverages the current
policy πt to interact with the environment E to update Q-
function estimate Q̂(a, s), and then train the policy towards
the optimal distribution defined by Q̂(a, s).

SVGD-SQL In Soft Q-Learning (Haarnoja et al., 2017),
the policy network is trained amortised in two steps: (1),
draw action from the policy network and use these actions as
the initial points for SVGD update. (2), use the `2 distance
bewteen the origin samples and the updated ones to calculate
the gradient of the policy network. The first step suffers
from a risk that the updated samples are out of the action
space. Constraints should be added to prevent from this,
leading to the unexpected errors.

S.2. Experimental setup

Detailed architectures and parameter setting used in our ex-
periments are summarized in Tables S9 to S9. We used the
notation “X–H–H–Z” to denote a network with X as the in-

Supplementary Material for “On Frenchel Mini-Max Learning”

put size, H as the number of hidden units and Z is the output
size, and the notation + denotes concatenation. Rectified
linear units (ReLU) are used as the activation function for the
hidden layers in all our experiments. Hyper-tangent (tanh)
activation is applied to the policy network’s output. N de-
notes standard Gaussian noise with the same dimension as
the action space.

Table S8. Environment hyper-parameters for SQL experiments.

Environment Action Reward Replay
Space Scale Pool Size
Dim

Swimmer (rllab) 2 100 106

Hopper-v1 3 1 106

Walker2d-v1 6 3 106

Reacher-v1 2 10 106

Table S9. Neural architectures used for SQL experiments.

Network Architecture

Policy-Network |S +N|–128–128–|A|
Q-Network |S +A|–128–128–1
Φ-Network |S +A|–128–256–1
b-Network |S|–128–256–1

Table S10. Training hyper-parameters for SQL experiments.

Hyper-parameters Values

Learning rate for policy-net 3×10−4

Learning rate for Q-net 3×10−4

Batch-size 128
SVGD particle size 32

References
Alain, G. and Bengio, Y. What regularized auto-encoders

learn from the data-generating distribution. The Journal
of Machine Learning Research, 15(1):3563–3593, 2014.

Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A.,
and Murphy, K. Fixing a broken elbo. In ICML, pp.
159–168, 2018.

Berger, T. Rate distortion theory: A mathematical basis for
data compression. 1971.

Chen, C., Zhang, R., Wang, W., Li, B., and Chen, L.
A unified particle-optimization framework for scalable
bayesian sampling. 2018.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. InfoGAN: Interpretable representation

learning by information maximizing generative adversar-
ial nets. In NIPS, 2016.

Dai, B., Dai, H., He, N., Gretton, A., Song, L., and Schu-
urmans, D. Exponential family estimation via dynamics
embedding. In NIPS Bayesian Deep Learning Workshop,
2018.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized
statistical models. In AISTATS, pp. 297–304, 2010.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive es-
timation of unnormalized statistical models, with appli-
cations to natural image statistics. Journal of Machine
Learning Research, 13(Feb):307–361, 2012.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
ICML, 2017.

Hyvärinen, A. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 6(Apr):695–709, 2005.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational
formulation of the Fokker–Planck equation. SIAM journal
on mathematical analysis, 29(1):1–17, 1998.

Liu, Q. and Wang, D. Stein variational gradient descent: A
general purpose bayesian inference algorithm. In NIPS,
2016.

Rezende, D. J. and Mohamed, S. Variational inference with
normalizing flows. In ICML, 2015.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22:400,
1951.

Sohl-Dickstein, J. and Culpepper, B. J. Hamiltonian an-
nealed importance sampling for partition function estima-
tion. arXiv preprint arXiv:1205.1925, 2012.

Sriperumbudur, B., Fukumizu, K., Gretton, A., Hyvärinen,
A., and Kumar, R. Density estimation in infinite dimen-
sional exponential families. The Journal of Machine
Learning Research, 18(1):1830–1888, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tabak, E. G., Vanden-Eijnden, E., et al. Density estimation
by dual ascent of the log-likelihood. Communications in
Mathematical Sciences, 8(1):217–233, 2010.

Tao, C., Dai, S., Chen, L., Bai, K., Chen, J., Liu, C., Boba-
shev, G., and Carin, L. Variational annealing of GANs:
A Langevin perspective. In ICML, 2019.

Supplementary Material for “On Frenchel Mini-Max Learning”

Wang, D. and Liu, Q. Learning to draw samples: With
application to amortized mle for generative adversarial
learning. arXiv:1611.01722, 2016.

