
Interaction Hard Thresholding:
Consistent Sparse Quadratic Regression in

Sub-quadratic Time and Space

Shuo Yang ∗
Department of Computer Science

University of Texas at Austin
Austin, TX 78712

yangshuo_ut@utexas.edu

Yanyao Shen ∗
ECE Department

University of Texas at Austin
Austin, TX 78712

shenyanyao@utexas.edu

Sujay Sanghavi
ECE Department

University of Texas at Austin
Austin, TX 78712

sanghavi@mail.utexas.edu

Abstract

Quadratic regression involves modeling the response as a (generalized) linear
function of not only the features xj , but also of quadratic terms xj1xj2 . The
inclusion of such higher-order “interaction terms" in regression often provides an
easy way to increase accuracy in already-high-dimensional problems. However,
this explodes the problem dimension from linear O(p) to quadratic O(p2), and it is
common to look for sparse interactions (typically via heuristics).
In this paper we provide a new algorithm – Interaction Hard Thresholding (IntHT)
– which is the first one to provably accurately solve this problem in sub-quadratic
time and space. It is a variant of Iterative Hard Thresholding; one that uses the
special quadratic structure to devise a new way to (approx.) extract the top elements
of a p2 size gradient in sub-p2 time and space.
Our main result is to theoretically prove that, in spite of the many speedup-related
approximations, IntHT linearly converges to a consistent estimate under standard
high-dimensional sparse recovery assumptions. We also demonstrate its value via
synthetic experiments.
Moreover, we numerically show that IntHT can be extended to higher-order regres-
sion problems, and also theoretically analyze an SVRG variant of IntHT.

1 Introduction

Simple linear regression aims to predict a response y via a (possibly generalized) linear function θ>x
of the feature vector x. Quadratic regression aims to predict y as a quadratic function x>Θx of the
features x

Linear Model Quadratic Model
y ∼ θ>x y ∼ x>Θ x

The inclusion of such higher-order interaction terms – in this case second-order terms of the form
xj1xj2 – is common practice, and has been seen to provide much more accurate predictions in

∗equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

several high-dimensional problem settings like recommendation systems, advertising, social network
modeling and computational biology [23, 11, 3]. In this paper we consider quadratic regression with
an additional (possibly non-linear) link function relating y to x>Θ x.

One problem with explicitly adding quadratic interaction terms is that the dimension of the problem
now goes from p to p2. In most cases, the quadratic problem is high-dimensional and will likely
overfit the data; correspondingly, it is common to implicitly / explicitly impose low-dimensional
structure on the Θ – with sparsity of Θ being a natural choice. A concrete example for sparse
interaction would be the genome-wide association study, where for a given phenotype, the associated
genetic variants are usually a sparse subset of all possible variants. Those genes usually interact with
each other and leads to the given phenotype [15].

The naive approach to solving this problem involves recasting this as a big linear model that is now
in p2 dimensions, with the corresponding p2 features being all pairs of the form xj1xj2 . However,
this approach takes Ω(p2) time and space, since sparse linear regression cannot be done in time and
space smaller than its dimension – which in this case is p2 – even in cases where statistical properties
like restricted strong convexity / incoherence etc. hold. Fundamentally, the problem lies in the fact
that one needs to compute a gradient of the loss, and this is an Ω(p2) operation.

Our motivation: Can we learn a sparse quadratic model with time and space complexity that is
sub-quadratic? In particular, suppose we have data which is well modeled by a Θ∗ that is K-sparse,
with K being O(pγ) and γ < 1. Statistically, this can be possibly recovered from O(K log p)
samples, each of which is p-dimensional. Thus we have a setting where the input is sub-quadratic
with size O(Kp log p), and the final output is sub-quadratic with size O(K). Our aim is to have an
algorithm whose time and space complexity is also sub-quadratic for this case.

In this paper, we develop a new algorithm which has this desired sub-quadratic complexity, and
subsequently theoretically establish that it consistently recovers a sparse Θ∗. We briefly overview
our setting and results below.

1.1 Main Contributions

Given n samples {(xi, yi)}ni=1, we are interested in minimizing the following loss function corre-
sponding to a quadratic model:

(Quadratic Structure) min
Θ:‖Θ‖0≤K

1

n

n−1∑
i=0

f
(
x>i Θxi, yi

)
:= Fn (Θ) (1)

We develop a new algorithm – Interaction Hard Thresholding (IntHT), outlined in Algorithm 1
– for this problem, and provide a rigorous proof of consistency for it under the standard settings
(Restricted strong convexity and smoothness of the loss) for which consistency is established for
sparse recovery problems. At a high level, it is based on the following key ideas:

(1) Because of the special quadratic structure, we show that the top 2k entries of the gradient can
be found in sub-quadratic time and space, using ideas from hashing and coding. The subroutine
in Algorithm 2 for doing this is based on the idea of [21] and Theorem 1 characterizes its
performance and approximation guarantee.

(2) We note a simple but key fact: in (stochastic) iterative hard thresholding, the new k-sparse Θt+1

that is produced has its support inside the union of two sets of size k and 2k: the support of the
previous Θt, and the top-2k elements of the gradient.

(3) While we do not find the precise top-2k elements of the gradient, we do find an approximation.
Using a new theoretical analysis, we show that this approximate-top-2k is still sufficient to establish
linear convergence to a consistent solution. This is our main result, described in Theorem 4.

(4) As an extension, we show that our algorithm also works with popular SGD variants like SVRG
(Algorithm 4 in Appendix B), with provable linear convergence and consistency in Appendix C.
We also demonstrate the extension of our algorithm to estimate higher order interaction terms with
a numerical experiment in Section 5 .

Notation We use [n] to represent the set {0, · · · , n−1}. We use fB (Θ) to denote the average loss on
batch B, where B is a subset of [n] with batch size m. We define 〈A,B〉 = tr (A>B), and supp(A)

2

to be the index set of A with non-zero entries. We let PS to be the projection operator onto the index
set S. We use standard Big-O notation for time/space complexity analysis, and Big-Õ notation which
ignores log factors.

2 Related Work

Learning with high-order interactions Regression with interaction terms has been studied in the
statistics community. However, many existing results consider under the assumption of strong/weak
hierarchical (SH/WH) structure: the coefficient of the interaction term xj1xj2 is non-zero only when
both coefficients of xj1 and xj2 are (or at least one of them is) non-zero. Greedy heuristics [32, 11]
and regularization based methods [7, 3, 16, 25, 10] are proposed accordingly. However, they could
potentially miss important signals that only contains the effect of interactions. Furthermore, several
of these methods also suffer from scaling problems due to the quadratic scaling of the parameter size.
There are also results considering the more general tensor regression, see, e.g., [34, 9], among many
others. However, neither do these results focus on solutions with efficient memory usage and time
complexity, which may become a potential issue when the dimension scales up. From a combinatorial
perspective, [18, 13] learns sparse polynomial in Boolean domain using quite different approaches.

Sparse recovery, IHT and stochastic-IHT IHT [4] is one type of sparse recovery algorithms that is
proved to be effective for M-estimation [12] under the regular RSC/RSM assumptions. [20] proposes
and analyzes a stochastic version of IHT. [14, 26] further consider variance reduced acceleration
algorithm under this high dimensional setting, [35] studies IHT in high dimensional setting with
nonlinear measurement. Notice that IHT, if used for our quadratic problem, still suffers from quadratic
space, similar to other techniques, e.g., the Lasso, basis pursuit, least angle regression [29, 6, 8]. On
the other hand, [19] recently considers a variant of IHT, where for each sample, only a random subset
of features is observed. This makes each update cheap, but their sample size has linear dependence
on the ambient dimension, which is again quadratic. Apart from that, [20, 17] also show that IHT can
potentially tolerate a small amount of error per iteration .

Maximum inner product search One key technique of our method is extracting the top elements
(by absolute value) of gradient matrix, which can be expressed as the inner product of two matrices.
This can be formulated as finding Maximum Inner Product (MIP) from two sets of vectors. In
practice, algorithms specifically designed for MIP are proposed based on locality sensitive hashing
[27], and many other greedy type algorithms [2, 33]. But they either can’t fit into the regression
setting, or suffers from quadratic complexity. In theory, MIP is treated as a fundamental problem
in the recent development of complexity theory [1, 31]. [1, 5] shows the hardness of MIP, even for
Boolean vectors input. While in general hard, there are data dependent approximation guarantees,
using the compressed matrix multiplication method [21], which inspired our work.

Others The quadratic problem we study also share similarities with several other problem settings,
including factorization machine [23] and kernel learning [24, 22]. Different from factorization
machine, we do not require the input data to be sparse. While the factorization machine tries to learn
a low rank representation, we are interested in learning a sparse representation. Compared to kernel
learning, especially the quadratic / polynomial kernels, our task is to do feature selection and identify
the correct interactions.

3 Interaction Hard Thresholding

We now describe the main ideas motivating our approach, and then formally describe the algorithm.

Naively recasting as a linear model has p2 time and space complexity: As a first step to our
method, let us see what happens with the simplest approach. Specifically, as noted before, problem
(1) can be recast as one of finding a sparse (generalized) linear model in the p2 size variable Θ:

(Recasting as linear model) min
Θ:‖Θ‖0≤K

1

n

n−1∑
i=0

f (〈Xi,Θ〉, yi)

where matrix Xi := xix
>
i . Iterative hard thresholding (IHT) [4] is a state-of-the-art method (both in

terms of speed and statistical accuracy) for such sparse (generalized) linear problems. This involves

3

Algorithm 1 INTERACTION HARD THRESHOLDING (INTHT)
1: Input: Dataset {xi, yi}ni=1, dimension p
2: Parameters: Step size η, estimation sparsity k, batch size m, round number T
3: Output: The parameter estimation Θ̂
4: Initialize Θ0 as a p× p zero matrix.
5: for t = 0 to T − 1 do
6: Draw a subset of indices Bt from [n] randomly.
7: Calculate the residual ui = u(Θt,xi, yi) based on eq. (2), for every i ∈ Bt.
8: Set At ∈ Rp×m , where each column of At is uixi, i ∈ Bt.
9: Set Bt ∈ Rp×m, where each column of Bt is xi, i ∈ Bt. (where AtB

>
t

m gives the gradient)
10: Compute S̃t = ATEE(At,Bt, 2k). —-/* approximate top elements extraction */—-X

2

U>

11: Set St = S̃t ∪ supp(Θt). —-/* inaccurate hard thresholding update */—-X
2

U>

12: Compute PSt(G
t)← the gradient value Gt = 1

m

∑
i∈Bt uixix

>
i only calculated on St.

13: Update Θt+1 = Hk (Θt − ηPSt
(Gt)).

14: Return: Θ̂ = ΘT

Algorithm 2 APPROXIMATED TOP ELEMENTS EXTRACTION (ATEE)
1: Input: Matrix A, matrix B, top selection size k
2: Parameters: Output set size upper bound b, repetition number d, significant level ∆
3: Expected Output: Set Λ: the top-k elements in AB> with absolute value greater than ∆

4: Output: Set Λ̃ of indices, with size at most b (approximately contains Λ)

5: Short Description: This algorithm is adopted directly from [21]. It follows from the matrix
compressed product via FFT (see section 2.2 of [21]) and sub-linear result extraction by error-
correcting code (see section 4 of [21]), which drastically reduces the complexity. The whole
process is repeated for d times to boost the success probability. The notation here matches [21]
exactly, except that we use p for dimension while n is used in [21] instead.

6: Intuitively, the algorithm will put all the elements of AB> into b different "basket"s, with each
of the elements assigned a positive or negative sign. It then selects the "basket" whose magnitude
is greater than ∆. Further, one large element is recovered from each of the selected baskets.

the following update rule
(standard IHT) Θt+1 = Hk

(
Θt − η∇Fn(Θt)

)
where Fn(·) is the average loss defined in (1), and Hk(·) is the hard-thresholding operator that
chooses the largest k elements (in terms of absolute value) of the matrix given to it, and sets the rest
to 0. Here, k is the estimation sparsity parameter. In this update equation, the current iterate Θt has
k non-zero elements and so can be stored efficiently. But the gradient∇Fn(Θt) is p2 dimensional;
this causes IHT to have Ω(p2) complexity. This issue remains even if the gradient is replaced by a
stochastic gradient that uses fewer samples, since even in a stochastic gradient the number of variables
remains p2.

A key observation: We only need to know the top-2k elements of this gradient ∇Fn(Θt), because
of the following simple fact: if A is a k-sparse matrix, and B is any matrix, then

supp(Hk(A + B)) ⊂ supp(A) ∪ supp(H2k(B)).

That is, the support of the top k elements of the sum A + B is inside the union of the support of A,
and the top-2k elements of B. The size of this union set is at most 3k.

Thus, in the context of standard IHT, we do not really need to know the full (stochastic) gradient
∇Fn(Θt); instead we only need to know (a) the values and locations of its top-2k elements, and (b)
evaluate at most k extra elements of it – those corresponding to the support of the current Θt.

The key idea of our method is to exploit the special structure of the quadratic model to find the top-2k
elements of the batch gradient ∇fB in sub-quadratic time. Specifically, ∇fB has the following form:

∇fB(Θ) ,
1

m

∑
i∈B
∇f

(
x>i Θxi, yi

)
=

1

m

∑
i∈B

u(Θ,xi, yi)xix
>
i , (2)

4

where u(Θ,xi, yi) is a scalar related to the residual and the derivative of link function , and B
represents the mini-batch where B ⊂ [n] , |B| = m. This allows us to approximately find the
top-2k elements of the p2-dimensional stochastic gradient in Õ(k(p+ k)) time and space, which is
sub-quadratic when k is O(pγ) for γ < 1.

Our algorithm is formally described in Algorithm 1. We use Approximate Top Elements Extraction
(ATEE) to approximately find the top-2k elements of the gradient, which is briefly summarized in
Algorithm 2, based on the idea of Pagh [21]. The full algorithm is re-organized and provided in
Appendix A for completeness. Our method, Interaction Hard Thresholding (IntHT) builds on IHT,
but needs a substantially new analysis for proof of consistency. The subsequent section goes into the
details of its analysis.

4 Theoretical Guarantees

In this section, we establish the consistency of Interaction Hard Thresholding, in the standard setting
where sparse recovery is established.

Specifically, we establish convergence results under deterministic assumptions on the data and
function, including restricted strong convexity (RSC) and smoothness (RSM). Then, we analyze
the sample complexity when features are generated from sub-gaussian distribution in the quadratic
regression setting, in order to have well-controlled RSC and RSM parameters. The analysis of
required sample complexity yields an overall complexity that is sub-quadratic in time and space.

4.1 Preliminaries

We first describe the standard deterministic setting in which sparse recovery is typically analyzed.
Specifically, the samples (xi, yi) are fixed and known. Our first assumption defines how our intended
recovery target Θ? relates to the resulting loss function Fn(·).

Assumption 1 (Standard identifiability assumption). There exists a Θ? which is K-sparse such that
the following holds: given any batch B ⊂ [n] of m samples, the norm of batch gradient at Θ? is
bounded by constant G. That is, ‖∇fB(Θ?)‖F ≤ G, and ‖Θ?‖∞ ≤ ω.

In words, this says the the gradient at Θ? is small. In a noiseless setting where data is generated
from Θ?, e.g. when yi = x>i Θ?xi, this gradient is 0; i.e. the above is satisfied with G = 0, and Θ?

would be the exact sparse optimum of Fn(·). The above assumption generalizes this notion to noisy
and non-linear cases, relating our recovery target Θ? to the loss function. This is a standard setup
assumption in sparse recovery.

Now that we have specified what Θ? is and why it is special, we specify the properties the loss
function needs to satisfy. These are again standard in the sparse recovery literature [20, 26, 14].

Assumption 2 (Standard landscape properties of the loss). For any pair Θ1,Θ2 and s ≤ p2 such
that |supp(Θ1 −Θ2)| ≤ s

• The overall loss Fn satisfies αs-Restricted Strong Convexity (RSC):

Fn(Θ1)− Fn(Θ2) ≥ 〈Θ1 −Θ2,∇ΘFn(Θ2)〉+
αs
2
‖Θ1 −Θ2‖2F

• The mini-batch loss fB satisfies Ls-Restricted Strong Smoothness (RSM):

‖∇fB(Θ1)−∇fB(Θ2)‖F ≤ Ls ‖Θ1 −Θ2‖F , ∀B ⊂ [n] , |B| = m

• fB satisfies Restricted Convexity (RC) (but not strong):

fB(Θ1)− fB(Θ2)− 〈∇fB(Θ2),Θ1 −Θ2〉 ≥ 0, ∀B ⊂ [n] , |B| = m, s = 3k +K

Note: While our assumptions are standard, our result does not follow immediately from existing
analyses – because we cannot find the exact top elements of the gradient. We need to do a new
analysis to show that even with our approximate top element extraction, linear convergence to Θ?

still holds.

5

4.2 Main Results

Here we proceed to establish the sub-quadratic complexity and consistency of IntHT for parameter
estimation. Theorem 1 presents the analysis of ATEE. It provides the computation complexity
analysis, as well as the statistical guarantee of support recovery. Based on this, we show the per round
convergence property of Algorithm 1 in Theorem 3. We then establish our main statistical result, the
linear convergence of Algorithm 1 in Theorem 4.

Next, we discuss the batch size that guarantees support recovery in Theorem 5, focusing on the
quadratic regression setting, i.e. the model is linear in both interaction terms and linear terms.
Combining all the established results, the sub-quadratic complexity is established in Corollary 6. All
the proofs in this subsection can be found in Appendix E.

Analysis of ATEE Consider ATEE with parameters set to be b, d,∆. Recall this means that ATEE re-
turns an index set (Λ̃) of size at most b, which is expected to contain the desired index set (Λ).
Note that the desired index set (Λ) is composed by the top-2k elements of gradient ∇fB(Θ) whose
absolute value is greater than ∆. Suppose now the current estimate is Θ, and B is the batch. The
following theorem establishes when this output set (Λ̃) captures the top elements of the gradient.
Theorem 1 (Recovering top-2k elements of the gradient, modified from [21]). With the setting above,
if we choose b, d,∆ so that b∆2 ≥ 432 ‖∇fB(Θ)‖2F and d ≥ 48 log 2ck, then the index set (Λ̃)
returned by ATEE contains the desired index set (Λ) with probability at least 1− 1/c.

Also in this case the time complexity of ATEE is Õ (m(p+ b)), and space complexity is Õ (m(p+ b)).

Theorem 1 requires that parameter b,∆ are set to satisfy b∆2 ≥ 432 ‖∇fB(Θ)‖2F . Note that ∆
controls the minimum magnitude of top-k element we can found. To avoid getting trivial extraction
result, we need to set ∆ as a constant that doesn’t scale with p. In order to control the scale of ∆
and b, to get consistent estimation and to achieve sub-quadratic complexity, we need to upper bound
‖∇fB(Θ)‖2F . This is the compressibility estimation problem that was left open in [21]. In our case,
the batch gradient norm can be controlled by the RSM property. More formally, we have
Lemma 2 (Frobenius norm bound of gradient). The Frobenius norm of batch gradient at arbitrary
k-sparse Θ, with ‖Θ‖∞ ≤ ω, can be bounded as ‖∇fB(Θ)‖F ≤ 2L2k

√
kω + G, where G is the

uniform bound on ‖∇fB(Θ?)‖F over all batches B and ω bounds ‖Θ?‖∞ (see Assumption 1).

Lemma 2 directly implies that Theorem 1 could allow b scale linearly with k while keep ∆ as a
constant2. This is the key ingredient to achieve sub-quadratic complexity and consistent estimation.
We postpone the discussion for complexity to later paragraph, and proceed to finish the statistical
analysis of gradient descent.

Convergence of IntHT: Consider IntHT with parameter set to be η, k. For the purpose of analysis,
we keep the definition of Λ and Λ̃ from the analysis of ATEE and further define k∆ to be the
number of top-2k elements whose magnitude is below ∆. Recall that K is the sparsity of Θ?, define
ν = 1 +

(
ρ+

√
(4 + ρ)ρ

)
/2, ρ = K/k, where ν measures the error induced by exact IHT (see

Lemma 9 for detail). Denote Bt = {B0,B1, ...,Bt}. We have
Theorem 3 (Per-round convergence of IntHT). Following the above notations, the per-round conver-
gence of Algorithm 1 satisfies the following:

• If ATEE succeeds, i.e., Λ ⊆ Λ̃, then

EBt

[∥∥Θt −Θ?
∥∥2

F

]
≤ κ1EBt−1

[∥∥Θt−1 −Θ?
∥∥2

F

]
+ σ2

GD + σ2
∆|GD,

where κ1 = ν
(
1− 2ηα2k + 2η2L2

2k

)
, σ2

∆|GD = 4
√
k∆η
√
kω∆ + 2k∆η

2∆2, and

σ2
GD = max

|Ω|≤2k+K

[
4νη
√
kω ‖PΩ (∇F (Θ?))‖F + 2νη2EBt

[
‖PΩ (∇fBt

(Θ?))‖2F
]]
.

• If ATEE fails, i.e., Λ 6⊂ Λ̃, then,

EBt

[∥∥Θt −Θ?
∥∥2

F

]
≤ κ2EBt−1

[∥∥Θt−1 −Θ?
∥∥2

F

]
+ σ2

GD + σ2
Fail|GD,

2For now, we assume L2k to be a constant independent of p, k. We will discuss this in Theorem 5.

6

where κ2 = κ1 + 2νηL2k, σ
2
Fail|GD = max|Ω|≤2k+K

[
4νη
√
kωEBt

[‖PΩ (∇fBt
(Θ?))‖F]

]
.

Remark 1. It is worth noting that σGD, σFail|GD are both statistical errors, which in the noiseless
case are 0. In the case that the magnitude of top-2k elements in the gradient are all greater than ∆,
we have k∆ = 0, which implies σ∆|GD = 0. In this case ATEE’s approximation doesn’t incur any
additional error compared with exact IHT.

Theorem 3 shows that by setting k = Θ(KL2
2k/α

2
2k), η = α2k/2L

2
2k, the parameter estimation can

be improved geometrically when ATEE succeeds. We will show in Theorem 5 that with suffciently
large batch size m, α2k, L2k are controlled and don’t scale with k, p. When ATEE fails, it can’t make
the Θ estimation worse by too much. Given that success rate of ATEE is controlled in Theorem 1, it
naturally suggests that we can obtain the linear convergence in expectation. This leads to Theorem 4.

Define σ2
1 = σ2

GD + σ2
∆|GD, and σ2

2 = σ2
GD + σFail|GD. Let φt to be the success indicator of

ATEE at time step t, and Φt = {φ0, φ1, ..., φt}. By Theorem 1, with d = 48 log 2ck, ATEE recovers
top-2k with probability at least (1− 1/c), we can easily show the convergence of Algorithm 1 as

Theorem 4 (Main result). Following the above notations, the expectation of the parameter recovery
error of Algorithm 1 is bounded by

EBt,Φt

[∥∥Θt −Θ?
∥∥2

F

]
≤
(
κ1 +

1

c
(κ2 − κ1)

)t ∥∥Θ0 −Θ?
∥∥2

F

+

[(
κ1 +

1

c
(κ2 − κ1)

)t
− 1

](
σ2

1

κ1 − 1

)
+

κ2 − 1

c− cκ1 + κ1 − κ2

(
σ2

2

κ2 − 1
− σ2

1

κ1 − 1

)
.

This shows that Algorithm 1 achieves linear convergence by setting c ≥ (κ2 − κ1)/(1− κ1). With c
increasing, the error ball converges to σ2

1/(1− κ1). The proof follows directly by taking expectation
of the result we obtain in Theorem 3 with the recovery success probability established in Theorem 1.

Computational analysis With the linear convergence, the computational complexity is dominated
by the complexity per iteration. Before discussing the complexity, we first establish the dependency
between Lk, αk and m in the special case of quadratic regression, where the link function is identity.
Notice that similar results would hold for more general quadratic problems as well.

Theorem 5 (Minimum batch size). For feature vector x ∈ Rp, whose first p − 1 coordinates
are drawn i.i.d. from a bounded distribution, and the p-th coordinate is constant 1. W.l.o.g., we
assume the first p− 1 coordinates to be zero mean, variance 1 and bounded by B. With batch size
m & kB log p/ε2 we have αk ≥ 1− ε, Lk ≤ 1 + ε with high probability.

Note that the sample complexity requirement matches the known information theoretic lower bound
for recovering k-sparse Θ up to a constant factor. The proof is similar to the analysis of restricted
isometry property in sparse recovery. Recall that by Theorem 1, we have the per-iteration complexity
Õ(m(p+ b)). Combining the results of Lemma 2, Theorems 4 and 5, we have the following corollary
on the complexity:

Corollary 6 (Achieving sub-quadratic space and time complexity). In the case of quadratic regres-
sion, by setting the parameters as above, IntHT recovers Θ? in expectation up to a noise ball with
linear convergence. The time and space complexity of IntHT is Õ(k(k + p)), which is sub-quadratic
when k is O(pγ) for γ < 1.

Note that the optimal time and space complexity is Ω(kp), since a minimum of Ω(k) samples
are required for recovery, and Ω(p) for reading all entries. Corollary 6 shows the time and space
complexity of IntHT is Õ(k(k + p)), which is nearly optimal.

5 Synthetic Experiments

To examine the sub-quadratic time and space complexity, we design three tasks to answer the
following three questions: (i) Whether Algorithm 1 maintains linear convergence despite the hard
thresholding not being accurate? (ii) What is the dependency between b and k to guarantee successful
recovery? (iii) What is the dependency betweenm and p to guarantee successful recovery? Recall that

7

the per-iteration complexity of Algorithm 1 is Õ(m(p+ b)), where b upper bounds the size of ATEE’s
output set, p is the dimension of features and m is batch size and k is the sparsity of estimation. It
will be clear as we proceed how the three questions can support sub-quadratic complexity.

Experimental setting We generate feature vectors xi, whose coordinates follow i.i.d. uniform
distribution on [−1, 1]. Constant 1 is appended to each feature vector to model the linear terms and
intercept. The true support is uniformly selected from all the interaction and linear terms, where
the non-zero parameters are then generated uniformly on [−20,−10] ∪ [10, 20]. Note that for the
experiment concerning minimum batch size m, we instead use Bernoulli distribution to generate both
the features and the parameters, which reduces the variance for multiple random runs and makes our
phase transition plot clearer. The output yis, are generated following x>i Θ?xi. On the algorithm
side, by default, we set p = 200, d = 3, K = 20, k = 3K, η = 0.2. Support recovery results with
different b-K combinations are averaged over 3 independent runs, results for m-p combinations are
averaged over 5 independent runs. All experiments are terminated after 150 iterations.

0 20 40 60 80 100 120 140
Iteration

5

10

20

50

100

Pa
ra

m
et

er
 E

st
im

at
io

n
Er

ro
r

Inaccurate recovery using different b s

b=120
b=240
b=360
b=480
b=600
Exact

(a) Inaccurate recovery using differ-
ent ATEE’s output set sizes b

30 130 230 330 430 530
b

30

25

20

15

10

5

K
b-K-dependency

0.0

0.2

0.4

0.6

0.8

1.0

(b) Support recovery results with
different b and K

10 210 410 610 810
p

99

79

59

39

19

m

m-p-dependency

0.0

0.2

0.4

0.6

0.8

1.0

(c) Support recovery results with dif-
ferent m and p

Figure 1: Synthetic experiment results: note b,m are the parameters we used for IntHTand ATEE,
where b upper bounds the size of ATEE’s output set and m is the batch size used for IntHT. Recall
p is the dimension of features and K is the sparsity of Θ?. (a) the convergence behavior with
different choices of b. Linear convergence holds for small b, e.g., 360, when the parameter space is
around 20, 000. (b) Support recovery results with different choices of (b,K). We observe a linear
dependence between b and K. (c) Support recovery results with different choices of (m, p). m scales
sub-linearly with p to ensure a success recovery.

Inaccurate support recovery with different b’s Figure 1-(a) demonstrates different convergence
results, measured by ‖Θ−Θ?‖F with multiple choices of b for ATEE in Algorithm 1. The dashed
curve is obtained by replacing ATEE with exact top elements extraction (calculates the gradient
exactly and picks the top elements). This is statistically optimal, but comes with quadratic complexity.
By choosing a moderately large b, the inaccuracy induced by ATEE has negligible impact on the
convergence. Therefore, Algorithm 1 can maintain the linear convergence despite the support recovery
in each iteration is inaccurate. This aligns with Theorem 3. With linear convergence, the per iteration
complexity will dominate the overall complexity.

Dependency between b and sparsity k We proceed to see the proper choice of b under different
sparsity k (we use k = 3K). We vary the sparsity K from 1 to 30, and apply Algorithm 1 with b
ranges from 30 to 600. As shown in Figure 1-(b), the minimum proper choice of b scales no more
than linearly with k. This agrees with our analysis in Theorem 1. The per-iteration complexity then
collapse to Õ(m(p+ k)).

Dependency between batch size m and dimension p Finally, we characterize the dependency
between minimum batch size m and the input dimension p. This will complete our discussion on the
per-iteration complexity. The batch size varies from 1 to 99, and the input dimension varies from 10
to 1000. In this experiment, we employ the Algorithm 1 with ATEE replaced by exact top-k elements
extraction. Figure 1-(c) demonstrates the support recovery success rate of each (k, p) combination. It
shows the minimum batch size scales in logarithm with dimension p, as we proved in Theorem 5.
Together with the previous experiment, it establishes the sub-quadratic complexity.

8

0 20 40 60 80 100
Iteration

1

2

5

10

20

50

Pa
ra

m
et

er
 E

st
im

at
io

n
Er

ro
r

Inaccurate recovery using different b s

b=40
b=80
b=120
b=160
b=200
Exact

Figure 2: 3-order regression support recovery using different ATEE’s output set sizes b

Higher order interaction IntHT is also extensible to higher order interactions. Specifically, by
exploiting similar gradient structure

∑
rixi ⊗ xi ⊗ xi, where ri denotes the residual for (Xi, yi),

⊗ denotes the outer product of vector, we can again combine sketching with high-dimensional
optimization to achieve nearly linear time and space (for constant sparsity).

For the experiment, we adopt the similar setting as for the Inaccurate support recovery with
different bs experiment. The main difference is that we change from yi = x>i Θ?xi to yi =∑

Θi,j,kxixjxk, where Θ is now a three dimension tensor. Further, we set the dimension of x to 30
and the sparsityK = 20. Figure 2 demonstrates the result of support recovering of 3-order interaction
terms with different setting of b, where b still bounds the size of ATEE’s output set. We can see that
IntHT still maintains the linear convergence in the higher order setting.

Acknowledgement

We would like to acknowledge NSF grants 1302435 and 1564000 for supporting this research.

9

References
[1] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness

of approximation in p. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 25–36. IEEE, 2017.

[2] Grey Ballard, Tamara G Kolda, Ali Pinar, and C Seshadhri. Diamond sampling for approximate
maximum all-pairs dot-product (mad) search. In 2015 IEEE International Conference on Data
Mining, pages 11–20. IEEE, 2015.

[3] Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A lasso for hierarchical interactions. Annals
of statistics, 41(3):1111, 2013.

[4] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

[5] Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
33rd Computational Complexity Conference (CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

[6] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by
basis pursuit. SIAM review, 43(1):129–159, 2001.

[7] Nam Hee Choi, William Li, and Ji Zhu. Variable selection with the strong heredity constraint
and its oracle property. Journal of the American Statistical Association, 105(489):354–364,
2010.

[8] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

[9] Botao Hao, Anru Zhang, and Guang Cheng. Sparse and low-rank tensor estimation via cubic
sketchings. arXiv preprint arXiv:1801.09326, 2018.

[10] Ning Hao, Yang Feng, and Hao Helen Zhang. Model selection for high-dimensional quadratic
regression via regularization. Journal of the American Statistical Association, 113(522):615–
625, 2018.

[11] Ning Hao and Hao Helen Zhang. Interaction screening for ultrahigh-dimensional data. Journal
of the American Statistical Association, 109(507):1285–1301, 2014.

[12] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for
high-dimensional m-estimation. In Advances in Neural Information Processing Systems, pages
685–693, 2014.

[13] Murat Kocaoglu, Karthikeyan Shanmugam, Alexandros G Dimakis, and Adam Klivans. Sparse
polynomial learning and graph sketching. In Advances in Neural Information Processing
Systems, pages 3122–3130, 2014.

[14] Xingguo Li, Raman Arora, Han Liu, Jarvis Haupt, and Tuo Zhao. Nonconvex sparse learning via
stochastic optimization with progressive variance reduction. arXiv preprint arXiv:1605.02711,
2016.

[15] Yun Li, George T. O’Connor, Josée Dupuis, and Eric D. Kolaczyk. Modeling gene-covariate
interactions in sparse regression with group structure for genome-wide association studies.
Statistical applications in genetics and molecular biology, 14 3:265–77, 2015.

[16] Michael Lim and Trevor Hastie. Learning interactions via hierarchical group-lasso regulariza-
tion. Journal of Computational and Graphical Statistics, 24(3):627–654, 2015.

[17] Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis. High dimensional robust
sparse regression. arXiv preprint arXiv:1805.11643, 2018.

10

[18] Yishay Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM
Journal on Computing, 24(2):357–368, 1995.

[19] Tomoya Murata and Taiji Suzuki. Sample efficient stochastic gradient iterative hard thresholding
method for stochastic sparse linear regression with limited attribute observation. In Advances in
Neural Information Processing Systems, pages 5317–5326, 2018.

[20] Nam Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic itera-
tive greedy algorithms with sparse constraints. IEEE Transactions on Information Theory,
63(11):6869–6895, 2017.

[21] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory
(TOCT), 5(3):9, 2013.

[22] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in neural information processing systems, pages 1177–1184, 2008.

[23] Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data
Mining, pages 995–1000. IEEE, 2010.

[24] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[25] Yiyuan She, Zhifeng Wang, and He Jiang. Group regularized estimation under structural
hierarchy. Journal of the American Statistical Association, 113(521):445–454, 2018.

[26] Jie Shen and Ping Li. A tight bound of hard thresholding. The Journal of Machine Learning
Research, 18(1):7650–7691, 2017.

[27] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search (mips). In Advances in Neural Information Processing Systems, pages
2321–2329, 2014.

[28] Michael Sipser and Daniel A Spielman. Expander codes. In Proceedings 35th Annual Sympo-
sium on Foundations of Computer Science, pages 566–576. IEEE, 1994.

[29] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[30] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[31] Ryan Williams. On the difference between closest, furthest, and orthogonal pairs: Nearly-linear
vs barely-subquadratic complexity. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1207–1215. Society for Industrial and Applied
Mathematics, 2018.

[32] Jing Wu, Bernie Devlin, Steven Ringquist, Massimo Trucco, and Kathryn Roeder. Screen
and clean: a tool for identifying interactions in genome-wide association studies. Genetic
Epidemiology: The Official Publication of the International Genetic Epidemiology Society,
34(3):275–285, 2010.

[33] Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S Dhillon. A greedy approach for budgeted
maximum inner product search. In Advances in Neural Information Processing Systems, pages
5453–5462, 2017.

[34] Rose Yu and Yan Liu. Learning from multiway data: Simple and efficient tensor regression. In
International Conference on Machine Learning, pages 373–381, 2016.

[35] Kaiqing Zhang, Zhuoran Yang, and Zhaoran Wang. Nonlinear structured signal estimation
in high dimensions via iterative hard thresholding. In International Conference on Artificial
Intelligence and Statistics, pages 258–268, 2018.

11

A Details of ATEE

In this section, we provide the formal algorithm for ATEE, stated in Algorithm 3. ATEE consists of
two sub-routines: an efficient sketching operation (line 5-11), and an efficient extraction operation
(line 12-15).

For the sketching part, the algorithm first generate expander code which maps [p] to {0, 1}l, where l
is the length of the codeword. Based on this encoding, we construct a table E ∈ {0, 1}p×l where the
i-th row is the codeword which encoded from i. Denote er as the r-th column of E, we construct
diagonal matrix Ier = diag(er). Then 2l different sub-matrices of A and B is constructed by
Cr = IerA,Cr+l = IerB,∀r ∈ [l]. It then sketches AC>r+l and CrB, each of the matrices into a
b length vector, where b � p2. The result is stored in S ∈ R2l×b. By exploiting the factorization
of this matrix, the matrix outer product can be sketched in O(b log(b)) using fast Fourier transform
(FFT) as used in [21](line 18 - 21).

For the sub-linear extraction, we first binarify the matrix S with threshold ∆/2. Then each column of
S becomes a codeword, where the first l bits encodes the row index of the elements whose absolute
value is greater than ∆/2, the last l bits encode its column index. By using expander code, it takes
linear time O(l) to finish decoding. The whole process will be repeated for d times and only the
elements that are recovered for more than d/2 times will be recorded for output. This can boost the
success probability of top-k support recovery.

Algorithm 3 APPROXIMATE TOP ELEMENTS EXTRACTION (ATEE-FORMAL)
1: Input: Matrix A, matrix B, top selection size k
2: Parameters: Output set size limit b, repetition number d, significant level ∆
3: Expected Output: A set Λ, which is the top-k elements in AB> whose absolute value is also

greater than ∆

4: Output: Set Λ̃ of indices, with size at most b and approximately contains Λ
5: for t = 0 to d− 1 do
6: Construct expander code table E ∈ {0, 1}p×l. Let er be the r-th column of E
7: Ier

= diag(er), Cr = Ier
A,Cr+l = Ier

B, ∀r ∈ [l]. Init S as a 2l × b matrix
8: Generate pairwise independent hash functions h1, h2 : [p]→ [b]
9: for r = 0 to l − 1 do

10: S[r, :] = COMPRESSED-PRODUCT(Cr,B, b, h1, h2)
11: S[r + l, :] = COMPRESSED-PRODUCT(A,Cr+l, b, h1, h2)
12: for q = 0 to b− 1 do
13: oq = 1(S[:, q] > ∆

2)
14: (i, j) = DECODE(oq; E)
15: S = S ∪ {(i, j)}
16: Return: {(i, j)|#(i, j) ∈ S ≥ d

2}

17: function COMPRESSED-PRODUCT(A,B, b, h1, h2):
18: Generate random sign functions s1, s2 : [p]→ {−1,+1} , column length of A,B are m
19: for i = 0 to m− 1 do
20: pai

←COUNT-SKETCH(ai, h1, s1, b) , pbi
←COUNT-SKETCH(bi, h2, s2, b)

21: si = IFFT (FFT (pai
) ◦ FFT (pbi

))

22: Return: s =
∑m−1
i=0 si

23: function COUNT-SKETCH(x, h, s, b)
24: Init p as a length b vector
25: for i = 0 to p− 1 do
26: p[h(i)] = p[h(i)] + s(i)x[i]
27: Return: p

12

B IntHT-VR Algorithm

The application of IntHT to SVRG follows a very similar path as we apply it to SGD. The only trick
is to ultilize the linearity of sketching. For SVRG, we will generate the hash function h1, h2, s1, s2

as described in SGD case at the begining of each outer iteration. They will be kept same through all
the inner iterations. The skeching result si of the full gradient at the beginning of i-th outer loop will
add up with the sketching result s̃ij of the corresponding j-th inner loop. The summation sij then goes
through the decoding process, which is the same as SGD.

Algorithm 4 INTHT WITH VARIANCE REDUCTION (INTHT-VR)

1: Input: Dataset {xi′ , yi′}n−1
i′=0, threshold ∆, dimension p, outer / inner round number T/t

2: Output: Θ̂
3: Parameters: Codeword length l, sketch size b, repetition number d
4: Initialize Θ0 as a p× p zero matrix.
5: for i = 0 to T − 1 do
6: Θi

0 = Θi, construct expander code table Ei ∈ {0, 1}p×l.
7: Generate hash functions h1, h2 : [p]→ [b], and s1, s2 : [p]→ {−1, 1}
8: si = INTERACTION-SKETCH({xi′ , ui′}n−1

i′=0,E
i, h1, h2, s1, s2)

9: Gi := 1
n

∑n−1
i′=0 ui′xi′x

>
i′

10: for j = 0 to t− 1 do
11: Randomly pick a sample (min-batch) Bij
12: ũi′ = ui′(Θ

i
j ,xi′ , yi′)− ui′(Θi

0,xi′ , yi′), ∀i′ ∈ Bij , G̃i
j := 1

|Bi
j |
∑
i∈Bi

j
ũi′xi′x

>
i′

13: s̃ij = INTERACTION-SKETCH({xi′ , ũi′}i′∈Bi
j
,Ei, h1, h2, s1, s2)

14: sij = si + s̃ij
15: S̃ij = INTERACTION-DECODE(sij ,∆,E

i)

16: Sij = S̃ij ∪ supp(Θi
j)

17: PSi
j
(Gi

j)← the gradient value Gi
j := Gi + G̃i

j calculated only on index set Sij ,

18: Θi
j+1 = Hk

(
Θi
j − ηPSi

j
(Gi

j)
)

19: Θi+1 = Θi
j′ , for j′ ∼ Unif({0, · · · , t− 1})

20: Return: Θ̂ = ΘT

21: function INTERACTION-SKETCH({xi, ui}i∈B,E, h1, h2, s1, s2) :
22: Set A ∈ Rp×|B|, where each column of A(B) is uixi, i ∈ B.
23: Set B ∈ Rp×|B|, where each column of A(B) is xi, i ∈ B.
24: Set s as a d× 2l × b tensor.
25: for t = 0 to d− 1 do
26: Let er be the r-th column of E, Ier

= diag(er), Cr = Ier
A,Cr+l = Ier

B, ∀r ∈ [l].
27: for r = 0 to l − 1do
28: s[t, r, :] = COMPRESSED-PRODUCT(Cr,B, b, h1, h2)
29: s[t, r + l, :] = COMPRESSED-PRODUCT(A,Cr+l, b, h1, h2)
30: Return: s

31: function INTERACTION-DECODE(s,∆,E) :
32: Set S = ∅
33: for t = 0 to d− 1 do
34: for q = 0 to b− 1 do
35: ot,q = 1(st,:,q > ∆

2)
36: (i, j) = DECODE(ot,q,E)
37: S = S ∪ {(i, j)}
38: Return: {(i, j)|#(i, j) ∈ S ≥ d

2}

13

C IntHT-VR Analysis

Here we proceed to provide theoretical guarantee for Appendix B.

Similar to the definitions for Theorem 3 and Theorem 4, we define Λ2k to be the set of top 2k
elements in Gi

j+1, Λ∆ to be the set of elements in Gi
j+1 whose magnitude is greater than ∆ and

the output set of ATEE to be Λ̃. We have the support of interest Λ = Λ2k ∩ Λ∆ and the number of
top-2k elements whose magnitude is below ∆ k∆ = |Λ2k\Λ∆|. Define Bi to be the set of samples
used during i-th outer loop. Recall that η is the step size and m is the batch size. We then have the
following result:

Theorem 7 (Per-round Convergence of Algorithm 4). If Λ ⊆ Λ̃, the per-round convergence of
Algorithm 4 is as follows:

EBi

[
F (Θi+1

0)− F (Θ?))
]
≤ κSV RG

[
F (Θi

0)− F (Θ?)
]

+ σSV RG

where ν = 1 +
ρ+
√

(4+ρ)ρ

2 , ρ = K/k, t is the inner round number, and

κSV RG =
1

α2kνη(1− 2ηL2k)t
+

2ηL2k

1− 2ηL2k
,

σSV RG =
4νησ′(4L2k

√
kω + σ′)t+ 2

α2k

√
kωσ′ + tσ2

∆|SV RG

2νη(1− 2ηL2k)t
,

σ′ = max
|Ω|=3k+K

‖PΩF (Θ∗)‖F , σ2
∆|SV RG = 4

√
k∆η
√
kω∆ + 2k∆η

2∆2.

To ensure the convergence, it requires that

η <
1

4L2k
, ν <

1

1− ηα2k
.

The proof can be found in Appendix F.1.

Remark 2. Similar to the Remark 1 case, σ′ is statistical error, which in noiseless case are 0. In the
case that the magnitude of top-2k elements in the gradient are all greater than ∆, we have Λ2k ⊆ Λ∆

and k∆ = 0, which implies σ∆|SV RG = 0.

To obtain the convergence result over all iterations, we adopt the same definition and assumption
as in Theorem 7. By setting c = Θ(p), d = 48 log(ck), we have that the inner loop of Algorithm 4
succeeds with high probability (recall that c was used to control the failure probability in Theorem 1,
and it is not hard to see that the property in Theorem 1 still holds for IntHT-VR). Then we have the
following result:

Theorem 8 (Convergence of IntHT-VR). Under the same parameter setting as in Theorem 1, with d
specifically defined as above, the convergence of Algorithm 4 is given by

EBt

[
F (Θt

0)− F (Θ?))
]
≤ κsSV RG

[
F (Θ0

0)− F (Θ?)
]

+
σSV RG

1− κSV RG
,

where the definitions of κSV RG and σSV RG follows from Theorem 7.

Proof. Given that ATEE succeeds with high probability, the contraction of each iteration is charac-
terized by Theorem 7. By solving the recursion, we have the desired convergence. �

Remark 3. Here we set ATEE to succeed with high probability, where in Theorem 4 it only requires
ATEE to succeed with constant probability. This is because in each inner loop, the iterations share
the same hash function s, h as specified in ATEE, which removes the independence of ATEE for each
iteration. Intuitively, once ATEE fails, it could fail on the entire inner loop and ruined the estimation
for Θ. By setting c = Θ(p), the high probability statement can be obtained without incurring more
than O(log p) factor higher complexity.

14

D Technical Lemmas and Corollaries

Lemma 9 (Tight Bound for Hard Thresholding [26]). Let B ∈ Rp×p be an arbitrary matrix and
Θ ∈ Rp×p be any K-sparse signal. For any k ≥ K, we have the following bound:

‖Hk(B)−Θ‖F ≤
√
ν ‖B−Θ‖F , ν = 1 +

ρ+
√

(4 + ρ)ρ

2
, ρ =

min{K, p2 − k}
k −K + min{K, p2 − k}

The provide a short proof in Appendix G.1.
Corollary 10 (similar to co-coercivity). For a given support set Ω, assume that the continuous
function f(·) is L|Ω|-RSS and K-RC. Then, for all matrices Θ,Θ′ with |supp(Θ−Θ′) ∪ Ω| ≤ K,

‖PΩ (∇f(Θ′)−∇f(Θ))‖2F ≤ 2L|Ω| (f(Θ′)− f(Θ)− 〈∇f(Θ),Θ′ −Θ〉) .

The proof can be found in Appendix G.2.
Corollary 11 (bounding ‖PΩ(Gt)‖22). Let Ω = supp(Θt−1) ∪ supp(Θt) ∪ supp(Θ?). For SGD
and SVRG, we have the following bound:

1. SGD: Gt = ∇fιt
(
Θt−1

)
Eιt
∥∥PΩ(Gt)

∥∥2

F
≤ 2L2

2k

∥∥Θt−1 −Θ?
∥∥2

F
+ 2 ‖PΩ (∇fιt(Θ?))‖2F

2. SVRG: Gi
j = ∇fbj

(
Θi
j

)
−∇fbj

(
Θi

0

)
+∇F

(
Θi

0

)
Ebj

∥∥PΩ(Gi
j)
∥∥2

F
≤4L2k

[
F (Θi

j)− F (Θ?)
]

+ 4L2k

[
F (Θi

0)− F (Θ?)
]

− 4L2k

〈
∇F (Θ?),Θi

j + Θi
0 − 2Θ?

〉
+ 4 ‖PΩ(∇F (Θ?))‖F

The proof can be found in Appendix G.3.
Corollary 12 (HT property). Let Λ2k be the support of the top-2k entries in G with largest absolute
value, for a k-sparse matrix Θ,

Hk (Θ− ηG) = Hk
(
Θ− ηPsupp(Θ)∪Λ2k

(G)
)

The proof can be found in Appendix G.4.
Corollary 13 (∆-Inexact Hard Thresholding). Define Λ∆ to be the set of elements in Gt whose
magnitude is greater than ∆. Further define Λ = Λ2k ∩ Λ∆, k∆ = |Λ2k\Λ∆|. Define,

Θ̃+ = Hk (Θ− ηGt)

Θ+ = Hk
(
Θ− ηPΛ̃∪supp(Θ)(Gt)

)
In the case Λ∆ ⊆ Λ̃ and Λ∆ ⊆ Λ̃, we have the bound,

‖Θ+ − Θ̃+‖F ≤ η∆
√

2k∆

The proof can be found in Appendix G.5.

E Proofs for Section 4

E.1 Proof of Theorem 1

Proof. The proof of Theorem 1 heavily relies on the analysis in [21]. Given that ∇fBi
(Θ) can be

expressed as multiplication of two matrices, we slightly abuse the notation A,B to denote the pair of
matrices that AB> = ∇fBi

(Θ).

Denote the output of COMPRESSED-PRODUCT as s. Define the hash function h1, h2 : [p]→ [b] and
s1, s2 : [p] → {−1, 1}. Let h be the hash function that satisfies h(i, j) = h1(i) + h2(j) mod b,
and s be s(i, j) = s1(i)s2(j). Let 1qi,j be the indicator of event {h(i, j) = q}. Define the index set

15

of the top 2k elements (with largest abstract value) of AB> to be Ψ2k. Denote the index set of the
elements with absolute value greater than ∆ as Ψ∆. Let Ψ = Ψ2k ∩Ψ∆, and we are interested in
finding all indices in Ψ.

Our proof consists of the following four main steps.

Step I: Bound the variance of a single decoded entry.

sq =
∑

(i,j)∈[p]×[p]

1qi,js(i, j)(AB>)ij

For (i?, j?) ∈ Ψ, with q? = h(i?, j?) we have:

sq? = s(i?, j?)(AB>)i?j? +
∑

(i,j)6=(i?,j?),(i,j)∈[p]×[p]

1q
?

i,js(i, j)(AB>)ij

Then,

|sq? | ≥s(i?, j?) sign
((

AB>
)
i?j?

)
sq?

=
∣∣(AB>)i?j?

∣∣+ s(i?, j?) sign
((

AB>
)
i?j?

) ∑
(i,j) 6=(i?,j?),(i,j)∈[p]×[p]

1q
?

i,js(i, j)(AB>)ij

Let s′q? = s(i?, j?) sign
((

AB>
)
i?j?

)∑
(i,j)6=(i?,j?),(i,j)∈[p]×[p] 1

q?

i,js(i, j)(AB>)ij . We have:

P (error in one bit) ≤ P
(
|s′q? | ≥

∆

2

)
≤

4var(s′q?)

∆2

Taking expectation over all possible partitions (based on h), we have:

Eh
[
var(s′q?)

]
=

1

b

∑
(i,j) 6=(i?,j?),(i,j)∈[p]×[p]

(AB>)2
ij ≤

∥∥AB>
∥∥2

F

b
.

Step II: Bound the failure probability of recovering a single large entry.

By Markov’s inequality, we have

P

(
var(s′q?) ≥

c
∥∥AB>

∥∥2

F

b

)
≤ 1

c
.

Given the upper bound on var(s′q?), which happens with probability at least 1 − 1
c due to the

randomness from h, the only left randomness comes from s(i, j). Note that we use the same h for
every t . Then,

P
(
|s′q? | ≥

∆

2

)
≤ 4c

∆2

∥∥AB>
∥∥2

F

b

The above inequality gives an error bound for each bit in the error-correcting code. Thus for a length
l code, the expected number of wrong bits is:

E [number of wrong bits] =

2l−1∑
r=0

P (the rth bit is wrong) ≤ 4lc

∆2

∥∥AB>
∥∥2

F

b

By using an expander code, we can tolerate a constant fraction of error δ which is independent of
message length log p, with a code length l = O(log p) [28]. By Markov’s inequality, and combining
with the probability bound on h,

P ((i?, j?) not recovered) ≤ P (more than δl wrong bits) ≤ 4c

∆2

∥∥AB>
∥∥2

F

bδ
+

1

c

16

Optimizing over the constant c (by setting c = ∆
√
bδ

2‖AB>‖F
), we have

P ((i?, j?) not recovered) ≤ 4

∆

∥∥AB>
∥∥
F√

bδ

By choosing b ≥
144‖AB>‖2

F

∆2δ , we have

P ((i?, j?) not recovered) ≤ 1

3
.

For simplicity, we take δ = 1
3 . Combining the assumption that

∥∥AB>
∥∥
F

= ‖∇fBi
(Θ)‖F . Taking

∆ ≥ ‖∇fB(Θ)‖F /
√

2k, which implies b ≥
432‖∇fBi (Θ)‖2

F

∆2 will give a constant probability to
successfully recover (i?, j?).

Step III: Union bound over all large entries. Repeat the count sketch and sub-linear extraction for d
times and take the (i, j) pair that are recovered more than d/2 times, we have that

P ((i?, j?) not recovered for more than d/2 times) ≤ exp

(
− d

48

)
.

Since the events of recovering different (i, j) ∈ Ψ are not independent (because of the dependency
induced by h functions), we use union bound over all the elements in Ψ. Thus we have

P (Ψ not recovered) ≤ |Ψ| exp

(
− d

48

)
≤ 2k exp

(
− d

48

)
By taking d = 48 log(2ck), we obtain the desired constant success rate 1− 1

c for recovering Ψ.

Step IV: For the overall time complexity of the Interaction Top Elements Extraction (ATEE), encoding
the index will take O(pl). Each compressed product step will take O(mp+mb log b) and it will be
repeatedly calculated for 2l times, where l is the length of the expander code. Given that expander
code has a linear decoding complexity, thus the extraction step can be done with O(bl). The above
mentioned procedure will be repeated for d times. Putting everything together, we have the time
complexity for ATEE is

O

 log(ck)︸ ︷︷ ︸
repeat d times

p log(p) + b log(p)︸ ︷︷ ︸
encode & decode

+ log(p) [mp+mb log(b)]︸ ︷︷ ︸
compressed product

which achieves sub-quadratic time complexity. Ignoring the logarithm term, the time complexity is
Õ(m(p+ b)), which naturally implies that the space complexity is Õ(m(p+ b)). �

E.2 Proof of Lemma 2

Proof. By RSM, we have

‖∇fBt
(Θ)−∇fBt

(Θ?)‖F ≤ L2k ‖Θ−Θ?‖F , ∀Θ s.t. |supp(Θ) ∪ supp(Θ?)| ≤ 2k

By triangle inequality,

‖∇fBt
‖F ≤ L2k ‖Θ−Θ?‖F + ‖∇fBt

(Θ?)‖F

By the fact that ‖Θ‖F ≤
√
kω, the first term can be directly bounded by L2k ‖Θ−Θ?‖F ≤

2L2k

√
kω. For the last term we have ‖∇fBt

(Θ?)‖F ≤ G. Thus we have,

‖∇fBt
(Θ)‖F ≤ 2L2k

√
kω +G

�

17

E.3 Proof of Theorem 3

Proof.
With stochastic gradient descent, we have Gt = ∇fBt(Θt−1) as the gradient at step t. The per-round
convergence can be separately analyzed for the two cases.
ATEE succeeds: Λ ⊆ Λ̃. Before analyzing Θt, we first construct an intermediate parameter Θ̃t as,

Θ̃t = Hk
(
Θt−1 − ηPΛ2k∪supp(Θt−1) (Gt)

)
= Hk

(
Θt−1 − ηGt

)
The second inequality directly comes from Corollary 12. This is actually the best situation we can
hope for. In this situation, the approximation projection in ATEE doesn’t affect the update. We will

start with the bound on
∥∥∥Θ̃t −Θ?

∥∥∥2

F
. Θt will then be compared with Θ̃t to obtain the error bound.

We will never refer to Θ̃t in practice, but this construction makes the proof much clear. Consider the
proxy

Zt = Θt−1 − ηGt

Let Ω = supp(Θt−1) ∪ supp(Θ̃t) ∪ supp(Θ?),∥∥∥Θ̃t −Θ?
∥∥∥2

F
=
∥∥Hk (Zt)−Θ?

∥∥2

F
=
∥∥Hk (PΩ

(
Zt
))
−Θ?

∥∥2

F
≤ ν

∥∥PΩ

(
Zt
)
−Θ?

∥∥2

F
(3)

Notice that ∥∥PΩ

(
Zt
)
−Θ?

∥∥2

F
(4)

=
∥∥Θt−1 −Θ? − ηPΩ(Gt)

∥∥2

F

≤
∥∥Θt−1 −Θ?

∥∥2

F
+ η2

∥∥PΩ(Gt)
∥∥2

F
− 2η

〈
Θt−1 −Θ?,Gt

〉
(5)

Notice that E[Gt] = ∇F (Θt−1). Equation (5) includes three terms: (i) the first term is the contraction
term which will be kept, (ii) the second term is controlled by first using Corollary 11 then taking
expectation, and (iii) the third term is controlled by first taking the expectation and then using the
RSC property. Therefore,

EBt

[∥∥∥Θ̃t −Θ?
∥∥∥2

F

]
≤EBt

[
ν
∥∥Θt−1 −Θ?

∥∥2

F
+ νη2

∥∥PΩ(Gt)
∥∥2

F
− 2νη

〈
Θt−1 −Θ?,Gt

〉]
(a)
≤ν
∥∥Θt−1 −Θ?

∥∥2

F
− 2νη

〈
Θt−1 −Θ?,∇F

(
Θt−1

)〉
+ νη2

[
2L2

2k

∥∥Θt−1 −Θ∗
∥∥2

F
+ 2EBt

[
‖PΩ∇fBt (Θ∗)‖2F

]]
=ν
∥∥Θt−1 −Θ?

∥∥2

F
+ νη2

[
2L2

2k

∥∥Θt−1 −Θ∗
∥∥2

F
+ 2EBt

[
‖PΩ∇fBt (Θ∗)‖2F

]]
− 2νη

〈
Θt−1 −Θ?,∇F

(
Θt−1

)
−∇F (Θ?)

〉
+ 2νη

〈
Θt−1 −Θ?,∇F (Θ?)

〉
(b)
≤ν
∥∥Θt−1 −Θ?

∥∥2

F
+ νη2

[
2L2

2k

∥∥Θt−1 −Θ∗
∥∥2

F
+ 2EBt

[
‖PΩ∇fBt

(Θ∗)‖2F
]]

− 2νηα2k

∥∥Θt−1 −Θ?
∥∥2

F
+ 2νη

∥∥Θt−1 −Θ?
∥∥
F
‖PΩ∇F (Θ?)‖F

=ν
(
1− 2ηα2k + 2η2L2

2k

) ∥∥Θt−1 −Θ?
∥∥2

F

+ 2νη
∥∥Θt−1 −Θ?

∥∥
F
‖PΩ (∇F (Θ?))‖F + 2νη2EBt

‖PΩ (∇fBt
(Θ?))‖2F

where the first inequality is due to Equation (3) and Equation (5). (a) plugs in the result from
Corollary 11 and takes expectation over the gradient. (b) uses RSC property and Cauchy-Shwartz
inequality.
Suppose each coordinate of Θ is bounded by ω, we know that

∥∥Θt−1
∥∥
F
≤
√
kω and ‖Θ?‖F ≤

√
kω,

we further have

EBt

[∥∥∥Θ̃t −Θ?
∥∥∥2

F

]
≤ν
(
1− 2ηα2k + 2η2L2

2k

) ∥∥Θt−1 −Θ?
∥∥2

F

+ 4νη
√
kω ‖PΩ (∇F (Θ?))‖F + 2νη2EBt

‖PΩ (∇fBt
(Θ?))‖2F

18

where the second line in the statistical error in SGD. With the definition of κ1, σ
2
GD,

EBt

[∥∥∥Θ̃t −Θ?
∥∥∥2

F

]
≤ κ1

∥∥Θt−1 −Θ?
∥∥2

F
+ σ2

GD

Now we turn to Θt which is given by

Θt = Hk
(
Θt−1 − ηPΛ̃∪supp(Θt−1) (Gt)

)
It is very similar to Θ̃t, except that Λ2k is replaced by Λ̃, which is the support we actually obtain.
By definition, we have either Λ∆ ⊆ Λ2k or Λ2k ⊆ Λ∆. Recall that Λ = Λ2k ∩ Λ∆ and in this case
where ATEE recovers Λ, we have Λ ⊆ Λ̃. Thus it is either Λ2k ⊆ Λ̃ or Λ∆ ⊆ Λ̃.

1. Λ2k ⊆ Λ̃. In this case, simply applying corollary 12 with G = PΛ̃∪supp(Θt−1) (Gt), we
have

Θt = Hk
(
Θt−1 − ηPΛ̃∪supp(Θt−1) (Gt)

)
= Hk

(
Θt−1 − ηPΛ2k∪supp(Θt−1) (Gt)

)
= Θ̃t

Also, by Λ2k ⊆ Λ∆, we know that k∆ = |Λ2k\Λ∆| = 0, which indicates σ2
∆|GD = 0.

2. Λ∆ ⊆ Λ̃. Here we can apply Corollary 13 and have,

‖Θt − Θ̃t‖F ≤ 2η∆
√
k∆, ‖Θt − Θ̃t‖2F ≤ 2η2∆2k∆

Thus, we can bound the error EBt

[
‖Θt −Θ?‖2F

]
as,

EBt

[∥∥Θt −Θ?
∥∥2

F

]
= EBt

[∥∥∥Θ̃t −Θ?
∥∥∥2

F

]
+ 2EBt

[〈
Θ̃t −Θ?,Θt − Θ̃t

〉]
+ EBt

[
‖Θt − Θ̃t‖2F

]
≤ EBt

[∥∥∥Θ̃t −Θ?
∥∥∥2

F

]
+ 4
√
k∆η
√
kω∆ + 2k∆η

2∆2

= EBt

[∥∥∥Θ̃t −Θ?
∥∥∥2

F

]
+ σ2

∆|GD

Combining the two cases above, we have the desired convergence rate for Λ ⊆ Λ̃.

ATEE fails: Λ 6⊂ Λ̃. This is the worst case when support recovery completely fails and we have no
control over Λ̃. The update in this case is

Θt = Hk
(
Z̃t
)
, Zt = Θt−1 − η

[
Gt − PΛ̃C\supp(Θt−1)(G

t)
]

Similar as the previous case, let Ω = supp(Θt−1) ∪ supp(Θt) ∪ supp(Θ?), we have∥∥Θt −Θ?
∥∥2

F
≤ ν

∥∥PΩ

(
Zt
)
−Θ?

∥∥2

F

and ∥∥PΩ

(
Zt
)
−Θ?

∥∥2

F
≤
∥∥Θt−1 −Θ?

∥∥2

F
+ η2

∥∥∥PΩ

(
Gt − PΛ̃C\supp(Θt−1)(G

t)
)∥∥∥2

F

− 2η
〈
Θt−1 −Θ?,PΩ(Gt)

〉
+ 2η

〈
Θt−1 −Θ?,PΩPΛ̃\supp(Θt−1)(G

t)
〉

≤
∥∥Θt−1 −Θ?

∥∥2

F
+ η2

∥∥PΩ

(
Gt
)∥∥2

F
− 2η

〈
Θt−1 −Θ?,PΩ(Gt)

〉
+ 2η

〈
Θt−1 −Θ?,PΩPΛ̃\supp(Θt−1)(G

t)
〉

19

The bound for the first three terms are same as the bound for Equation (5). It left to bound the last
term,〈

Θt−1 −Θ?,PΩPΛ̃\supp(Θt−1)(G
t)
〉

≤
∥∥Θt−1 −Θ?

∥∥
F

∥∥∥PΩPΛ̃\supp(Θt−1)

(
∇fBt

(Θt−1)
)∥∥∥
F

≤
∥∥Θt−1 −Θ?

∥∥
F

∥∥PΩ

(
∇fBt

(Θt−1)−∇fBt
(Θ∗)

)∥∥
F

+
∥∥Θt−1 −Θ?

∥∥
F
‖PΩ (∇fBt

(Θ∗))‖F
≤
∥∥Θt−1 −Θ?

∥∥
F

∥∥∇fBt
(Θt−1)−∇fBt

(Θ∗)
∥∥
F

+
∥∥Θt−1 −Θ?

∥∥
F
‖PΩ (∇fBt

(Θ∗))‖F
≤L2k

∥∥Θt−1 −Θ?
∥∥2

F
+ 2
√
kω ‖PΩ (∇fBt

(Θ∗))‖F
Putting the bounds together, we have

EBt

[∥∥Θt −Θ?
∥∥2

F

]
≤ν
(
1− 2ηα2k + 2η2L2

2k + 2ηL2k

) ∥∥Θt−1 −Θ?
∥∥2

F

+ 4νη
√
kω ‖PΩ (∇F (Θ?))‖F + 2νη2EBt ‖PΩ (∇fBt (Θ?))‖2F

+ 4νη
√
kωEBt

‖PΩ (∇fBt
(Θ?))‖F

Define σ2
Fail|GD = max|Ω|≤2k+K

[
4νη
√
kωEBt

[‖PΩ (∇fBt
(Θ?))‖F]

]
Then,

EBt

[∥∥Θt −Θ?
∥∥2

F

]
≤ ν

(
1− 2ηα2k + 2η2L2

2k + 2ηL2k

) ∥∥Θt−1 −Θ?
∥∥2

F
+ σ2

GD + σ2
Fail|GD

�

E.4 Proof of Theorem 4

Proof. With the definition of σ2
1 , σ

2
2 , κ1, κ2, the per-round convergence result of Theorem 3 can be

rewritten as:

1. Success Case:

EBt+1

[∥∥Θt+1 −Θ?
∥∥2

F
+

σ2
1

κ1 − 1

]
≤ κ1EBt

[∥∥Θt −Θ?
∥∥2

F
+

σ2
1

κ1 − 1

]
2. Failure Case:

EBt+1

[∥∥Θt+1 −Θ?
∥∥2

F
+

σ2
1

κ1 − 1

]
≤ κ2EBt

[∥∥Θt −Θ?
∥∥2

F
+

σ2
1

κ1 − 1

]
+ (κ2 − 1)

(
σ2

2

κ2 − 1
− σ2

1

κ1 − 1

)
For each iteration, the count sketch succeeds with probability 1− 1

c . Denote the success indicator at
iteration t as φt, and let Φt = {φ0, φ1, ..., φt}, we can combine those two cases and obtain,

EBt+1,Φt+1

[∥∥Θt+1 −Θ?
∥∥2

F
+

σ2
1

κ1 − 1

]
≤
(
κ1 +

1

c
(κ1 − κ2)

)
EBt,Φt

[∥∥Θt −Θ?
∥∥2

F
+

σ2
1

κ1 − 1

]
+

1

c
(κ2 − 1)

(
σ2

2

κ2 − 1
− σ2

1

κ1 − 1

)
With a telescope sum, we have the desired error bound. �

E.5 Proof of Theorem 5

Proof. We first vectorize the quadratic features. For an arbitrary data point x, y, we know that
x ∈ Rp, where the first p−1 coordinates independently come from a zero mean, bounded distribution
and the last coordinate is a constant 1. Denote the i-th coordinate of x as xi, we first vectorize the
quadratic features, define

v = [x1x2, x1x3, ..., xp−1xp]
>

20

Here, for the quadratic terms, we only consider the interaction terms with no squared terms like x2
i .

Given that there will only be p different squared terms, one can regress with the squared terms first,
and the residual model will have no dependency on the squared terms. Replace xp with 1, we have

v = [x1x2, x1x3, ..., xp−2xp−1, x1, ..., xp−1]>

Given that x1, ..., xp−1 are all i.i.d. and zero mean, after normalizing the variance of xi, it is not hard
to verify that

E[vv>] = I

Given that α,L are the smallest and largest eigenvalue of E[vv>], asymptotically, we have the strong
convexity and smoothness parameter α = L = 1, which directly implies that the restricted version
αk = Lk = 1. Thus the deterministic requirement can be easily satisfied with infinite sample. Now
we turn to the minimum sample we need to have the desired αk, Lk.

To show the k-restricted strong convexity and smoothness, we will first focus on an arbitrary k
sub-matrix of E[vv>] and show the concentration. Then the desired claim will follow by applying a
union bound over all k sub-matrices.

Denote a set of indices S ⊆ {1, ..., |v|}, where |S| = k. Define the corresponding sub-vector drawn
from v as z = vS . Define the restricted expected Hessian matrix as H = E[zz>], let the finite
sample Hessian matrix as Ĥ = 1

m

∑m
i=1 ziz

>
i . Denote the difference as

Di =
1

m
ziz
>
i −

1

m
E[zz>]

D =

m∑
i=1

Di =
1

m

m∑
i=1

ziz
>
i − E[zz>] = Ĥ−H

Given that H = I, we can show the concentration of αk, Lk as long as we can control D. Given
that v is bounded, we know that v is sub-gaussian. Thus, bounding ‖D‖ is equivalent to showing
concentration of the covariance matrix estimation of sub-gaussian random vectors. Using the
Corollary 5.50 in [30], we have that with m ≥ C(t/ε)2k, where C depends only on the sub-gaussian
norm ‖v‖ψ2

. It’s not hard to verify that ‖v‖ψ2
≤ B. Then we have that

P(‖D‖ ≥ ε) ≤ 2 exp(−t2k)

Thus we obtain the bound for one particular k-sub-matrix. Taking an union bound over all k-sub-
matrices, we have that

P(Lk ≥ 1 + ε) ≤
(
|v|
k

)
P(‖D‖ ≥ ε)

≤ exp
(
k log(2ep2/k)− t2k

)
By choosing t2 ≥ log(p), which implies that m & Bk log(p)/ε2, we have Lk ≤ 1 + ε with high
probability. With a symmetric argument, we know that under same condition, we have αk ≥ 1− ε
with high probability.

�

E.6 Proof of Corollary 6

Proof. With Theorem 4 showing the linear convergence, we know that the per iteration complexity
dominates the overall complexity of IntHT. By Theorem 1 and Lemma 2, we show setting b to O(k)
is sufficient for ATEE to recover the support. Theorem 5 provides that the minimum batch size
m required for quadratic regression is O(k log p). Combining those results, we conclude that the
complexity of IntHT is Õ(k(k + p)). In the regime when k is O(pγ) for γ < 1, IntHT achieves
sub-quadratic complexity. �

21

F Proofs for Appendix C

F.1 Proof of Theorem 7

Proof. Similar to the ATEE succeeds case, define

Θ̃i
j+1 = Hk

(
Θi
j − ηPΛ2k∪supp(Θi

j)

(
Gi
j

))
= Hk

(
Θi
j − ηGi

j

)
The second equality is given by Corollary 12. By applying Corollary 13, we can also have

‖Θi
j+1 − Θ̃i

j+1‖F ≤ 2η∆
√
k∆, ‖Θi

j+1 − Θ̃i
j+1‖2F ≤ 2η2∆2k∆

which further implies∥∥Θi
j+1 −Θ?

∥∥2

F
=
∥∥∥Θi

j+1 − Θ̃i
j+1

∥∥∥2

F
+
∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F
+ 2

〈
Θi
j+1 − Θ̃i

j+1, Θ̃
i
j+1 −Θ?

〉
≤
∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F
+ 4
√
k∆η
√
kω∆ + 2k∆η

2∆2

=
∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F
+ σ2

∆|SV RG

The last equality defines σ′2∆|SV RG. To bound
∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F
, the high level idea is similar to the

proof of Theorem 10 in [26]. We first define,

Zij+1 = Θi
j − ηGi

j

Let Ω = supp(Θi
j) ∪ supp(Θ̃i

j+1) ∪ supp(Θ?),∥∥∥Θ̃i
j+1 −Θ?

∥∥∥2

F
=
∥∥Hk (Zij+1

)
−Θ?

∥∥2

F
=
∥∥Hk (PΩ

(
Zij+1

))
−Θ?

∥∥2

F
≤ ν

∥∥PΩ

(
Zij+1

)
−Θ?

∥∥2

F

where the last inequality follows from Lemma 9. Thus we have

Ebj
[∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F

]
≤Ebj

[
ν
∥∥PΩ

(
Zij+1

)
−Θ?

∥∥2

F

]
=Ebj

[
ν
∥∥Θi

j −Θ?
∥∥2

F
+ νη2

∥∥PΩ(Gi
j)
∥∥2

F
− 2νη

〈
Θi
j −Θ?,Gi

j

〉]
The second term can be bounded by using Corollary 11 and we can take expectation directly on the
third term, since Ebj [Gi

j] = ∇F (Θi
j). For brevity, denote L = L|Ω|.We then have,

Ebj
[∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F

]
≤ν
∥∥Θi

j −Θ?
∥∥2

F
+ 4νη2L2k

[
F (Θi

j)− F (Θ?) + F (Θi
0)− F (Θ?)

]
− 2νη

〈
Θi
j −Θ?,∇F

(
Θi
j

)〉
− 4νη2L2k

〈
∇F (Θ?),Θi

j + Θi
0 − 2Θ?

〉
+ 4νη2 ‖PΩ (∇F (Θ?))‖2F

≤ν(1− ηα2k)
∥∥Θi

j −Θ?
∥∥2

F
− 2νη(1− 2ηL2k)

[
F (Θi

j)− F (Θ?)
]

+ 4νη2L2k

[
F (Θi

0)− F (Θ?)
]

+ 4νη2L2k ‖∇F (Θ?)‖F
∥∥Θi

j + Θi
0 − 2Θ?

∥∥
F

+ 4νη2 ‖PΩ (∇F (Θ?))‖2F

where the first inequality plugs in the result from Corollary 11 and takes expectation of Gi
j . The

second inequality uses RSC property and Cauchy-Shwartz inequality. For brevity, define σ′ =
max|Ω|=3k+K ‖PΩF (Θ∗)‖F , we have that

Ebj
[∥∥∥Θ̃i

j+1 −Θ?
∥∥∥2

F

]
≤ν(1− ηα2k)

∥∥Θi
j −Θ?

∥∥2

F
− 2νη(1− 2ηL2k)

[
F (Θi

j)− F(Θ
?))
]

+ 4νη2L2k

[
F (Θi

0)− F (Θ?)
]

+ 4νησ′(4L2k

√
kω + σ′)

22

Thus for Ebj
[∥∥Θi

j+1 −Θ?
∥∥2

F

]
, we have

Ebj
[∥∥Θi

j+1 −Θ?
∥∥2

F

]
≤ν(1− ηα2k)

∥∥Θi
j −Θ?

∥∥2

F
− 2νη(1− 2ηL2k)

[
F (Θi

j)− F(Θ
?))
]

+ 4νη2L2k

[
F (Θi

0)− F (Θ?)
]

+ 4νησ′(4L2k

√
kω + σ′) + σ2

∆|SV RG

By a telescope sum, define Bt = {b1, b2, ..., bt}

EBt

[∥∥Θi
t −Θ?

∥∥2

F

]
≤[ν(1− ηα2k)− 1]

t−1∑
j=0

∥∥Θi
j+1 −Θ?

∥∥2

F
+
∥∥Θi

0 −Θ?
∥∥
F

− 2νη(1− 2ηL2k)

t−1∑
j=0

[
F (Θi

j+1)− F (Θ?))
]

+ 4νη2L2km
[
F (Θi

0)− F (Θ?)
]

+ 4νησ′(4L2k

√
kω + σ′)m+mσ2

∆|SV RG

=[ν(1− ηα2k)− 1]mEBt,j′
∥∥Θi+1

0 −Θ?
∥∥2

F
+
∥∥Θi

0 −Θ?
∥∥
F

− 2νη(1− 2ηL2k)EBt,j′
[
F (Θi+1

0)− F (Θ?))
]

+ 4νη2L2km
[
F (Θi

0)− F (Θ?)
]

+ 4νησ′(4L2k

√
kω + σ′)m+mσ2

∆|SV RG

By using RSC, we have 2
α2k

[
F (Θi

0)− F (Θ?)−
〈
∇F (Θ?),Θi

0 −Θ?
〉]
≥
∥∥Θi

0 −Θ?
∥∥2

F
, thus

EBt

[∥∥Θi
t −Θ?

∥∥2

F

]
≤[ν(1− ηα2k)− 1]mEBt,j′

∥∥Θi+1
0 −Θ?

∥∥2

F

− 2νη(1− 2ηL2k)EBt,j′
[
F (Θi+1

0)− F (Θ?))
]

+

(
2

α2k
+ 4νη2L2km

)[
F (Θi

0)− F (Θ?)
]

+ 4νησ′(4L2k

√
kω + σ′)m+

2

α2k

√
kωσ′ +mσ2

∆|SV RG

By assumption, we have [ν(1− ηα2k)− 1] ≤ 0. For simplicity, define

σSV RG =
4νησ′(4L2k

√
kω + σ′)m+ 2

α2k

√
kωσ′ +mσ2

∆|SV RG

2νη(1− 2ηL2k)m

Choosing η < 1
2L2k

, we have

EBt

[
F (Θi+1

0)− F (Θ?))
]
≤
(

1

α2kνη(1− 2ηL2k)m
+

2ηL2k

1− 2ηL2k

)[
F (Θi

0)− F (Θ?)
]

+ σSV RG

Typically m is quite large, thus for the condition of convergence, we require that

2ηL2k

1− 2ηL2k
< 1⇒ η <

1

4L2k

Define,

κSV RG =
1

α2kνη(1− 2ηL2k)m
+

2ηL2k

1− 2ηL2k

We have the linear convergence given by

EBt

[
F (Θi+1

0)− F (Θ?))
]
≤ κSV RG

[
F (Θi

0)− F (Θ?)
]

+ σSV RG

�

23

G Proofs for Appendix D

G.1 Proof of Lemma 9

Proof. We give the proof here for completeness. Also, the proof here is much concise than the
original proof in [26] and a related result shown in [14].

‖Hk(B)−Θ‖2F =
∥∥Psupp(Hk(B))\supp(Θ) (B)

∥∥2

F︸ ︷︷ ︸
‖B1‖2F

+
∥∥Psupp(Hk(B))∩supp(Θ) (B−Θ)

∥∥2

F︸ ︷︷ ︸
‖B2−Θ2‖2F

+
∥∥Psuppc(Hk(B))∩supp(Θ) (Θ)

∥∥2

F︸ ︷︷ ︸
‖Θ3‖2F

On the other hand,

‖B−Θ‖2F =
∥∥Psupp(Hk(B))\supp(Θ) (B)

∥∥2

F︸ ︷︷ ︸
‖B1‖2F

+
∥∥Psupp(Hk(B))∩supp(Θ) (B−Θ)

∥∥2

F︸ ︷︷ ︸
‖B2−Θ2‖2F

+
∥∥Psuppc(Hk(B))∩supp(Θ) (B−Θ)

∥∥2

F︸ ︷︷ ︸
‖B3−Θ3‖2F

+
∥∥Psuppc(Hk(B))\supp(Θ) (B)

∥∥2

F︸ ︷︷ ︸
‖B4‖2F

max
B,Θ

‖Hk(B)−Θ‖2F
‖B−Θ‖2F

= max
B,Θ

‖B1‖2F + ‖B2 −Θ2‖2F + ‖Θ3‖2F
‖B1‖2F + ‖B2 −Θ2‖2F + ‖B3 −Θ3‖2F + ‖B4‖2F

≤max
B,Θ

‖B1‖2F + ‖B2 −Θ2‖2F + ‖Θ3‖2F
‖B1‖2F + ‖B2 −Θ2‖2F + ‖Θ3‖2F + ‖B3‖2F − 2 〈B3,Θ3〉

≤max

{
1,max

B,Θ

|supp(B1)|B1,min
2 + ‖Θ3‖2F

|supp(B1)|B1,min
2 + ‖Θ3‖2F + ‖B3‖2F − 2 〈B3,Θ3〉

}

≤max

{
1,max

B,Θ

|supp(B1)|B1,min
2 + ‖Θ3‖2F

|supp(B1)|B1,min
2 + ‖Θ3‖2F + |supp(Θ3)|B2

1,min − 2B1,min ‖Θ3‖1

}
, γ

We determine γ by observing

|supp(B1)|B1,min
2 + ‖Θ3‖2F

|supp(B1)|B1,min
2 + ‖Θ3‖2F + |supp(Θ3)|B2

1,min − 2B1,min ‖Θ3‖1
≤ γ, ∀B,Θ

⇔(γ − 1) ‖Θ3‖2F − 2γB2
1,min + (γ |supp(Θ3)|+ (γ − 1) |supp(B1)|) B2

1,min ≥ 0, ∀B,Θ

⇔4γ2B2
1,min ≤ 4(γ − 1)

[
γ + (γ − 1)

supp(B1)

supp(Θ3)

]
B2

1,min

⇐γ2 ≤ (γ − 1)

[
γ + (γ − 1)

1

ρ

]
⇐γ = 1 +

ρ+
√

(4 + ρ)ρ

2
, where ρ =

min{K, p2 − k}
k −K + min{K, p2 − k}

�

G.2 Proof of Corollary 10

Proof. Define the auxiliary function

g(Ξ) := f(Ξ)− 〈∇f(Θ),Ξ〉 (6)

24

Notice that the gradient of g(·) satisfies:

‖∇g(Ξ)−∇g(Ξ′)‖F = ‖∇f(Ξ)−∇f(Ξ′)‖F ≤ L‖Ξ−Ξ′‖0 ‖Ξ−Ξ′‖F

which implies

g(Ξ)− g(Ξ′)− 〈∇g(Ξ′),Ξ−Ξ′〉 ≤ Lr
2
‖Ξ−Ξ′‖2F

where r = |supp(Ξ−Ξ′)|. On the other hand,

g(Ξ)− g(Θ) = f(Ξ)− f(Θ)− 〈∇f(Θ),Ξ−Θ〉 ≥ 0

as long as f(·) satisfies |supp(Ξ)∪ supp(Θ)|-RC. Take Ξ = Θ′ − 1
L|Ω|
PΩ∇g(Θ′), Ξ′ = Θ′, then,

g(Θ) ≤g(Θ′ − 1

L|Ω|
PΩ∇g(Θ′))

≤g(Θ′) +

〈
∇g(Θ′),− 1

L|Ω|
PΩ∇g(Θ′)

〉
+

1

2L|Ω|
‖PΩ∇g(Θ′)‖2F

=g(Θ′)− 1

2L|Ω|
‖PΩ∇g(Θ′)‖2F

Plug in the definition in Equation (6) gives the result we want. �

G.3 Proof of Corollary 11

Proof.

1. SGD:

EBt

∥∥PΩ

(
Gt
)∥∥2

F
= EBt

∥∥PΩ

(
∇fBt

(
Θt−1

))∥∥2

F

≤2EBt

∥∥PΩ

(
∇fBt

(
Θt−1

)
−∇fBt

(Θ?)
)∥∥2

F
+ 2 ‖PΩ (∇fBt

(Θ?))‖2F
≤2L2

2k

∥∥Θt−1 −Θ?
∥∥2

F
+ 2 ‖PΩ (∇fBt

(Θ?))‖2F

The first inequality is by algebra, the second inequality holds by RSM.

2. SVRG: ∥∥PΩ(Gi
j)
∥∥2

F
=
∥∥PΩ

(
∇fbj

(
Θi
j

)
−∇fbj

(
Θi

0

)
+∇F

(
Θi

0

))∥∥2

F

≤2
∥∥PΩ

(
∇fbj

(
Θi
j

)
−∇fbj (Θ?)

)∥∥2

F

+ 2
∥∥PΩ

(
∇fbj

(
Θi

0

)
−∇fbj (Θ?)−∇F

(
Θi

0

))∥∥2

F

Expand the later square, we have∥∥PΩ(Gi
j)
∥∥2

F
≤2
∥∥PΩ

(
∇fbj

(
Θi
j

)
−∇fbj (Θ?)

)∥∥2

F
+ 2

∥∥PΩ

(
∇fbj

(
Θi

0

)
−∇fbj (Θ?)

)∥∥2

F

+ 2
∥∥PΩ∇F

(
Θi

0

)∥∥2

F
− 4

〈
PΩ

(
∇fbj

(
Θi

0

)
−∇fbj (Θ?)

)
,PΩ∇F

(
Θi

0

)〉
By applying Corollary 10 to bound the first two terms, we have∥∥PΩ(Gi

j)
∥∥2

F
≤4L2k

[
fbj (Θi

j)− fbj (Θ?)−
〈
∇fbj (Θ?),Θi

j −Θ?
〉]

+ 4L2k

[
fbj (Θi

0)− fbj (Θ?)−
〈
∇fbj (Θ?),Θi

0 −Θ?
〉]

+ 2
∥∥PΩ∇F

(
Θi

0

)∥∥2

F
− 4

〈
PΩ

(
∇fbj

(
Θi

0

)
−∇fbj (Θ?)

)
,PΩ∇F

(
Θi

0

)〉
25

Taking expectation over bj , we have

Ebj
∥∥PΩ(Gi

j)
∥∥2

F
≤4L2k

[
F (Θi

j)− F (Θ?)
]

+ 4L2k

[
F (Θi

0)− F (Θ?)
]

− 4L2k

〈
∇F (Θ?),Θi

j + Θj
0 − 2Θ?

〉
+ 2

〈
2PΩ (∇F (Θ?))− PΩ

(
∇F

(
Θi

0

))
,PΩ∇F

(
Θi

0

)〉
=4L2k

[
F (Θi

j)− F (Θ?)
]

+ 4L2k

[
F (Θi

0)− F (Θ?)
]

− 4L2k

〈
∇F (Θ?),Θi

j + Θj
0 − 2Θ?

〉
+ ‖2PΩ (∇F (Θ?))‖2F −

∥∥2PΩ(∇F (Θ?)−∇F (Θi
0))
∥∥2

F

−
∥∥PΩ

(
∇F (Θi

0)
)∥∥2

F

≤4L2k

[
F (Θi

j)− F (Θ?)
]

+ 4L2k

[
F (Θi

0)− F (Θ?)
]

− 4L2k

〈
∇F (Θ?),Θi

j + Θj
0 − 2Θ?

〉
+ 4 ‖PΩ (∇F (Θ?))‖2F

�

G.4 Proof of Corollary 12

Proof. Denote Θ+ = Hk (Θ− ηG). Define Λnew to be the indices set of k-largest elements in G
that doesn’t belong to supp(Θ). It can be easily verified that

Hk (Θ− ηG) = Hk
(
Θ− ηPsupp(Θ)∪Λnew

(G)
)

Given that |supp(Θ)| ≤ k, by pigeonhole principle, we have Λnew ⊆ Λ2k, thus

Hk
(
Θ− ηPsupp(Θ)∪Λnew

(G)
)

= Hk
(
Θ− ηPsupp(Θ)∪Λ2k

(G)
)

�

G.5 Proof of Corollary 13

Proof. Define

Γ0 = supp(Θ+) ∩ supp(Θ̃+),Γ1 = supp(Θ+)\supp(Θ̃+),Γ2 = supp(Θ̃+)\supp(Θ+)

We have that

Θ+ − Θ̃+ = PΓ1
(Θ+)− PΓ2

(Θ̃+)

By definition of Θ+, Θ̃+, it is easy to verify that

‖PΓ1
(Θ+)‖∞ ≤ ‖PΓ2

(Θ̃+)‖∞
Also, since the elements that is greater than η∆ can only come from supp(Θ) ∪ Λ∆, and given that
Λ∆ ⊆ Λ̃, we know that

i ∈ supp(Θ+),∀i s.t.Θ̃+
i ≥ η∆⇒ i ∈ Γ0,∀i s.t.Θ̃+

i ≥ η∆

Thus we have

‖PΓ2(Θ̃+)‖∞ ≤ η∆

By Corollary 12, we know that

Θ̃+ = Hk
(
Θ− ηPΛ2k∪supp(Θ)(Gt)

)
Thus we have |Γ2| ≤ k∆ and given that |supp(Θ+)| = |s̃upp(Θ+)|, we have |Γ1| = |Γ2|. Thus,∥∥∥Θ+ − Θ̃+

∥∥∥
F

=
∥∥∥PΓ1(Θ+)− PΓ2(Θ̃+)

∥∥∥
F
≤ η∆

√
2k∆

�

26

	Introduction
	Main Contributions

	Related Work
	Interaction Hard Thresholding
	Theoretical Guarantees
	Preliminaries
	Main Results

	Synthetic Experiments
	Details of ATEE
	IntHT-VR Algorithm
	IntHT-VR Analysis
	Technical Lemmas and Corollaries
	Proofs for sec:guarantees
	Proof of thm:top-recovery
	Proof of lemma:Frobenius
	Proof of thm:iht
	Proof of thm:main2
	Proof of thm:batchsize
	Proof of coro:sub-quadratic

	Proofs for sec:extension
	Proof of thm:SVRGPerRound

	Proofs for sec:analysis
	Proof of lemma:tightbound
	Proof of coro:co-cercivity
	Proof of coro:proj-grad
	Proof of coro:HTproperty
	Proof of coro:deltaError

