A Derivation of the ELBO

Recall that we have

p1=p1(Z¢,Zj)=/\/’<{ gj:|?|:)\Iflld)\I;Id :|>7p0:p0(z’uzj):N<|: gj:|7|:éj ?j j|)7 (13)

for the prior distribution, and similarly, we have the approximate posterior as below:

2 ~ ~2
—)= B gi Yi;0i0; _) By 6i 04
wentnm6([5] [y, 72 mewimr- (5] [5 %]) o0
Now, we derive the ELBO (£~9,¢(mi, x;)) when observing incomplete edges as follow:
Log(i,25) =g, (2,,2; 015 21,2 108 Do (@3, @520, 25, wi5)] (15)
— KL(Gs (2, 25, wij s, @5) || p(zi, 25, wij)) - (16)
Specifically, p(z:, zj,wij) = p(zs, zj|wi;)p(wi;), where p(w;;) = B(mo) is a Bernoulli variable with
parameter mo. When integrating w;; out, we have p(z;, z;) = 7o - p1 + (1 — 7o) - po, which is essentially
a mixture of two Gaussians, Similarly, the approximated posterior is Gy (2i, 25, wij) = q(2i, z;|wi;)q(wis),
where g (w;;) = B(ms;). When integrating w;; out, we have ¢(z;, z;) = mi; - g1 + (1 — ;) - qo.
In order to optimize the corresponding ELBO, we need the KL divergence between the inferred posterior and the
proposed prior. A detailed derivation for the KL divergence is as follows:

KL(Gy (24, 25, wij) || p(2i, 25, wi5)) = / > Go(2i, 25, wi5) log 7%(. J)dz,-dzj
ZisZj p(ziv zjvwij)

6 (2i, 2 wi5)qs (wij)
= E qo(zi, zj|wi;)ge(wij) log dzidz;
/z 020 25wig) a0 (wis) p(zi, z5|wiz)p(wij) !

Zj wij

@ 90 9o (wij)
= 7ri-~q110g—+/1—7ri- -golog — + qs(wij) log ——
[atog 2t [m) - aolog 2+ 3 gy) o 22

=mi; - KL(q1 || p1) + (1 = mi;) - KL (qo || po) + KL(gg(wiz) || p(wiz))- 17

Additionally, different from standard VAE [21]], our prior p; and the approximate posterior g1 includes correlation
terms. With properties provided in [32], the KL term enjoys a closed-form expression:

1
KL(q1 || p1) = 51 [log(1 = N*) ~log(1 — 7};) ~ log o — log o — 2
o} + 07 —2\y,;0.0, N R i 2 TS

122 1- a2

Therefore, when observing incomplete edges, L',~¢,g (i, ;) can be readily optimized.

114 (18)

B Phrase-to-Word Alignment

Inspired by [43]], we propose a phrase-by-word alignment (PWA) method to extract semantic features from the
associated text. The detailed implementation is illustrated in Figure

K,
’_A; w; w;

F;]

M]

2 —
€T, maxpool softmax ~
i dw ¥ > ,E > _.®_>E &

L F,

* maxpool f
—_— softmax

CLITTTTTICITTT

LU

&

,QT@.E asj

Figure 5: The detailed implementation of our phrase-to-word alignment in the encoder.

13

Given the associated text on a pair of vertices, x; € R%*Li and @ j € R%wX Li, where d,, is the dimension of
word embeddings, and L; and L; are the length of each text sequence. We treat a; as the context of «;, and vice
versa. Specifically, we first compute token-wise similarity matrix M = x; « j € REFi*Ej Next, we compute
row-wise and column-wise weight vectors based on M to aggregate features for «; and x;. To this end, we
perform 1D convolution on M both row-wise and column-wise, followed by a tanh(-) activation, to capture
phrase-to-word similarities. Specifically, assuming we have K. row-wise and K. column-wise convolutional
kernels, noted as U € R¥7*Lix! and V € R¥e*Lix! respectively. I is the size of convolutional kernels. Then
we have

F;=tanh(M" @ U) e R""** " F; = tanh(M ® V) € R"3*Ke | (19)

where ® is the 1-D convolutional operator. We then aggregate via max-pooling on the second dimension to
combine the convolutional outputs, thus collapsing them into 1D arrays, defined as

; = max-pool(F;) € R, 4; = max-pool(F;) € R"7 . (20)
After softmax normalization, we have the phrase-to-word alignment vectors
w; = softmax(w;) € R, w; = softmax(w;) € R . (21)
The final text embeddings are given by

& = xiw; e R™, &, = xjw; € R™ . (22)

C Experiments

C.1 Experimental Setup

To be consistent with previous research, the embedding dimension is set to 200 for all the approaches (100 for
semantic embedding and 100 for structure embedding in our model). The kernel size for our phrase-to-word
alignment module is fix to 5, and 200 kernels (for both K; and K;) are used. On top of the concatenation
of the semantic and structure embedding, our encoder employs a one-hidden-layer MLP to infer the latent
variables (z;, z;), and is the same for the decoder. tanh is applied as the activation function. Adam [20] with a
constant learning rate of 1 x 10™* is used for optimization. The hyper-parameter), « is fixed to 0.99 and 0.2,
respectively, in all our experiments, and the sensitivity analysis of these two hyper-parameters are provided in
Sec[5.2l The hyper-parameter 7o is set to be the sparsity level for each dataset, as shown in Table[1]

C.2 Link Prediction
The complete link-prediction results with various training edges ratios are shown in Table[3}[6} [7}

Table 5: AUC scores for link prediction on the CORA dataset.

% Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB [3] 54.7 57.1 59.5 61.9 64.9 67.8 71.1 72.6 75.9
LINE [37] 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3
Node2Vec [16] 559 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2
DeepWalk [31] 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
TADW [49] 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
CENE [36] 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE [40] 86.8 91.5 922 93.9 94.6 94.9 95.6 96.6 97.7
WANE [34] 91.7 93.3 94.1 95.7 96.2 96.9 97.5 98.2 99.1
Naive-VAE 60.2 65.6 67.8 71.8 80.2 83.8 87.7 88.1 90.1
VGAE [22] 63.9 72.1 74.3 80.9 84.3 86.0 88.1 88.7 90.5

PWA 92240.6 93.8+0.3 95.6+£0.4 96.4+£0.3 96.8+0.2 97.44+0.3 97.7+0.3 98.4+0.2 98.9+0.2
VHE 94.4+0.3 96.5+0.3 97.6+0.2 97.7+0.4 98.3+0.2 98.440.2 99.04+0.3 99.1+0.2 99.410.2

14

Table 6: AUC scores for link prediction on the HEPTH dataset.

% Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB [3] 54.6 579 573 61.6 66.2 68.4 73.6 76.0 80.3
LINE [37] 53.7 60.4 66.5 73.9 78.5 83.8 87.5 87.7 87.6
Node2Vec [16] 57.1 63.6 69.9 76.2 84.3 87.3 88.4 89.2 89.2
DeepWalk [31] 55.2 66.0 70.0 75.7 81.3 83.3 87.6 88.9 88.0
TADW [49] 87.0 89.5 91.8 90.8 91.1 92.6 93.5 91.9 91.7
CENE [36] 86.2 84.6 89.8 91.2 92.3 91.8 93.2 92.9 93.2
CANE [40] 90.0 91.2 92.0 93.0 94.2 94.6 95.4 95.7 96.3
WANE [34] 92.3 94.1 95.7 96.7 97.5 97.5 97.7 98.2 98.7
Naive-VAE 60.8 65.9 68.1 78.0 80.7 84.1 88.8 88.9 90.5
VGAE [22] 65.5 72.0 74.5 81.1 85.9 86.4 88.4 88.8 90.4

PWA 92.8+0.5 94.2+0.3 96.1£0.4 96.7£0.3 97.6+£0.2 97.84+0.2 97.94+0.2 98.6+0.3 99.0£0.2
VHE 94.1+0.4 96.8+0.3 97.5+£0.3 98.3+£0.2 98.3+0.3 98.5+0.3 98.8+0.2 99.0+0.2 99.4+0.3

Table 7: AUC scores for link prediction on the ZHIHU dataset.

% Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB [3] 51.0 51.5 53.7 58.6 61.6 66.1 68.8 68.9 72.4
LINE [37] 523 559 59.9 60.9 64.3 66.0 67.7 69.3 71.1
Node2Vec [16] 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5
DeepWalk [31] 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8
TADW [49] 523 542 55.6 57.3 60.8 62.4 65.2 63.8 69.0
CENE [36] 56.2 574 60.3 63.0 66.3 66.0 70.2 69.8 73.8
CANE [40] 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4
WANE [34] 58.7 63.5 68.3 71.9 74.9 71.0 79.7 80.0 82.6
Naive-VAE 56.5 59.0 60.2 60.9 62.5 66.4 68.1 68.3 69.0
VGAE [22] 55.9 59.1 61.9 62.3 64.6 67.2 70.1 70.6 71.2
PWA 62.6+£0.3 67.5£0.2 70.8£0.1 72.2+0.2 77.1£0.2 80.3+0.2 80.8+0.2 81.94+0.2 83.3%0.1
VHE 66.8+0.4 71.3+0.3 74.1+0.2 75.2+0.1 81.6+0.2 84.1+0.2 84.7+0.2 85.8+0.2 86.4+0.2

15

