
Supplementary Material: Poisson-Minibatching for Gibbs

Sampling with Convergence Rate Guarantees

A Fast Sampling of the Auxiliary Variables

In this section, we describe in detail the method used to sample the auxiliary variables s� and prove
Statement 1. The method for doing so is described here in Algorithm 4.

Algorithm 4 Sample auxiliary variables s�
. pre-computation step; happens once
for i = 1 to n do

⇤i  
P

�2A[i]
�M�

L +M�

compute distribution ⇢i over A[i] where

⇢i(�) /
�M�

L
+M�.

process distribution ⇢i so that in future, it can be sampled from in constant time
end for

. to actually re-sample the auxiliary variables
given: current state x 2 ⌦, variable i to resample
initialize sparse vector s : A[i]! Z
sample B ⇠ Poisson(⇤i)
for b = 1 to B do

sample � ⇠ ⇢i

compute �(x)

with probability

�M�
L +�(x)

�M�
L +M�

update sparse vector s�  s� + 1

end for

To see that this is valid, let B =
Pn

i si where si are Poisson variables with parameters �i. We know
that B is also Poisson distributed with parameter ⇤ =

Pn
i �i. Conditioned on the value of B, it is

known that si follows a multinomial distribution with event probabilities �i/⇤ and trial count B.
Therefore, we can first sample B ⇠ Poisson(⇤) and then sample

(s1, . . . sn) ⇠ Multinomial

✓
B,

✓
�1

⇤
, . . . ,

�n

⇤

◆◆
.

Our Algorithm 4 is only slightly more complicated than this process, in order to minimize the number
of times that �(x) is evaluated, but it can be seen to produce the valid distribution by the same
reasoning.

The computational cost of Algorithm 4 is clearly proportional to B, and since

E[B] = ⇤i =
X

�2A[i]

�M�

L
+M�  �+ L,

it follows that the overall average computational cost will also be �+ L. This proves Statement 1.

B Poisson-Gibbs with Exact Sampling from the Conditional Distribution

B.1 Derivation of the joint distribution

In this subsection, we derive the joint distribution (1) by substituting the distributions of x and s into
the conditional distribution of s given x. By the expression of Poisson distribution for s� and the
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independence of s�, we have

⇡(x, s) = ⇡(x)⇡(s|x)

/ exp

0

@
X

�2�

�(x)

1

A
Y

�2�

⇡(s�|x)

= exp

0

@
X

�2�

(�(x) + log ⇡(s�|x))

1

A

= exp

0

@
X

�2�

✓
�(x) + s� log

✓
�M�

L
+ �(x)

◆
� log(s�!)�

�M�

L
� �(x)

◆1

A

= exp

0
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X

�2�

✓
s� log

✓
�M�

L
+ �(x)

◆
� log(s�!)�

�M�

L

◆1

A

/ exp

0

@
X

�2�

✓
s� log

✓
�M�

L
+ �(x)

◆
� log(s�!)

◆1

A

= exp

0

@
X

�2�

✓
s� log

✓
1 +

L

�M�
�(x)

◆
+ s� log

✓
�M�

L

◆
� log (s�!)

◆1

A .

B.2 Proof of Theorem 1

In this section, we prove that Poisson-Gibbs converges, and derive a bound on its convergence rate.

Proof. First, we will derive an expression for the transition operator of Poisson-Gibbs chain, and
show it is reversible. Then we will bound the spectral gap.

If x and y are states which differ in only one variable i, the probability of transitioning from x to y

will be the probability of choosing to sample variable i times the expected value over the random
choice of s of the probability of sampling y(i) from ⇢. That is,

T (x, y) =
1

n
·E [⇢(y(i))]

=
1

n
·E


exp(Uy(i))R
exp(Uu) du

�

=
1

n
·
X

s

exp(Uy(i))R
exp(Uu) du

·
Y

�2A[i]

1

s�!

✓
�M�

L
+ �(x)

◆s�

exp

✓
�
✓
�M�

L
+ �(x)

◆◆

=
1

n
·
X

s

exp
⇣P

�2A[i] s� log
⇣

�M�

L + �(y)
⌘⌘

R
exp

⇣P
�2A[i] s� log

⇣
�M�

L + �(zu)
⌘⌘

du

·
Y

�2A[i]

✓
1 +

L

�M�
�(x)

◆s�

· exp (��(x))

·
Y

�2A[i]

1

s�!

✓
�M�

L

◆s�

· exp
✓
��M�

L

◆

where zu denotes x where x(i) has been set equal to u. Note that s� here are non-negative integers
that a Poisson variable can take, not variables. So if we let r� ⇠ Poisson

⇣
�M�

L

⌘
and r� to be all
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independent, we can write this as

T (x, y) =
1

n
· Er

"
exp

⇣P
�2A[i] r� log

⇣
�M�

L + �(y)
⌘⌘

R
exp

⇣P
�2A[i] r� log

⇣
�M�

L + �(zu)
⌘⌘

du

·
Y

�2A[i]

✓
1 +

L

�M�
�(x)

◆r�

· exp (��(x))
#

=
1

n
· Er

"
exp

⇣P
�2A[i] r�

⇣
log
⇣
1 + L

�M�
�(y)

⌘
+ log

⇣
1 + L

�M�
�(x)

⌘⌘⌘

R
exp

⇣P
�2A[i] r� log

⇣
1 + L

�M�
�(zu)

⌘⌘
du

· exp

0

@�
X

�2A[i]

�(x)

1

A
#

Therefore, since

⇡(x) =
1

Z
· exp

0

@
X

�2�

�(x)

1

A ,

it follows that

⇡(x)T (x, y)

=
1

nZ
· Er

"
exp

⇣P
�2A[i] r�

⇣
log
⇣
1 + L

�M�
�(y)

⌘
+ log

⇣
1 + L

�M�
�(x)

⌘⌘⌘

R
exp

⇣P
�2A[i] r� log

⇣
1 + L

�M�
�(zu)

⌘⌘
du

· exp

0

@
X

�2�

�(x)�
X

�2A[i]

�(x)

1

A
#

=
exp(U¬i(x))

nZ
· Er

2

4
exp

⇣P
�2A[i] r�

⇣
log
⇣
1 + L

�M�
�(y)

⌘
+ log

⇣
1 + L

�M�
�(x)

⌘⌘⌘

R
exp

⇣P
�2A[i] r� log

⇣
1 + L

�M�
�(zu)

⌘⌘
du

3

5 .

where we define U¬i(x) =
P

�/2A[i] �(x). This expression is symmetric in x and y (note that U¬i(x)
does not depend on variable i), so it follows that the Markov chain is reversible, and its stationary
distribution is indeed ⇡.

We can proceed to try to bound its spectral gap, using the technique of Dirichlet forms. We start by
simplifying our expression by defining

�̄(x) =
L�(x)

�M�
.

Using this, we get

⇡(x)T (x, y) =
exp(U¬i(x))

nZ
· Er

2

4
exp

⇣P
�2A[i] r�

�
log
�
1 + �̄(y)

�
+ log

�
1 + �̄(x)

��⌘

R
exp

⇣P
�2A[i] r� log

�
1 + �̄(zu)

�⌘
du

3

5 .
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We proceed by bringing the exponential on the top of this sum down to the bottom and inside the
integral, which produces

⇡(x)T (x, y) =
exp (U¬i(x))

nZ
·Er

" Z
exp

 
X

�2A[i]

r�

 
log
�
1 + �̄(zu)

�

� log
�
1 + �̄(x)

�
� log

�
1 + �̄(y)

�
!!

du

!�1#

� exp (U¬i(x))

nZ
·
 
Er

"Z
exp

 
X

�2A[i]

r�

 
log
�
1 + �̄(zu)

�

� log
�
1 + �̄(x)

�
� log

�
1 + �̄(y)

�
!!

du

#!�1

where this inequality follows from Jensen’s inequality and the fact that 1/x is convex. By converting
the exp-of-sum to a product-of-exp, and recalling that the r� are independent, we can further reduce
this to

⇡(x)T (x, y) � exp (U¬i(x))

nZ

 Z
Er

"
Y

�2A[i]

exp

 
r�

 
log
�
1 + �̄(zu)

�

� log
�
1 + �̄(x)

�
� log

�
1 + �̄(y)

�
!!#

du

!�1

=
exp (U¬i(x))

nZ

 Z Y

�2A[i]

Er

"
exp

 
r�

 
log
�
1 + �̄(zu)

�

� log
�
1 + �̄(x)

�
� log

�
1 + �̄(y)

�
!!#

du

!�1

.

This final expectation expression is just the moment generating function of the Poisson random
variable r� evaluated at

t = log
�
1 + �̄(zu)

�
� log

�
1 + �̄(x)

�
� log

�
1 + �̄(y)

�
.

Here, from the standard formula for that MGF, we get

Er[exp(r�t)] = exp

✓
�M�

L
(exp(t)� 1)

◆

So

exp(t)� 1

=
1 + �̄(zu)

(1 + �̄(x))(1 + �̄(y))
� 1

=
�̄(zu)� �̄(x)� �̄(y)� �̄(x)�̄(y)

(1 + �̄(x))(1 + �̄(y))

= �̄(zu)� �̄(x)� �̄(y)�
�
�̄(zu)� �̄(x)� �̄(y)

� �
�̄(x) + �̄(y) + �̄(x)�̄(y)

�
+ �̄(x)�̄(y)

(1 + �̄(x))(1 + �̄(y))
.

Since

0  �̄(x) =
L�(x)

�M�
 L

�
 1

2
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(where here we’re using the condition in the theorem statement that 2L  �) we can bound this with
exp(t)� 1

 �̄(zu)� �̄(x)� �̄(y)�
�
��̄(x)� �̄(y)

� �
�̄(x) + �̄(y)

�
+
�
1� �̄(x)� �̄(y)

�
�̄(x)�̄(y)

(1 + �̄(x))(1 + �̄(y))

 �̄(zu)� �̄(x)� �̄(y) +

�
�̄(x) + �̄(y)

� �
�̄(x) + �̄(y)

�

(1 + �̄(x))(1 + �̄(y))

 �̄(zu)� �̄(x)� �̄(y) +
�
�̄(x) + �̄(y)

�2

 �̄(zu)� �̄(x)� �̄(y) +
4L2

�2
.

So,

Eexp(r�t) = exp

✓
�M�

L
(exp(t)� 1)

◆

 exp

✓
�M�

L

✓
�̄(zu)� �̄(x)� �̄(y) +

4L2

�2

◆◆

= exp

✓
�(zu)� �(x)� �(y) +

4LM�

�

◆
.

Substituting this into the original expression produces
⇡(x)T (x, y)

� exp (U¬i(x))

nZ

0

@
Z Y

�2A[i]

exp

✓
�(zu)� �(x)� �(y) +

4LM�

�

◆
du

1

A
�1

=
exp (U¬i(x))

nZ

0

@
Z

exp

0

@
X

�2A[i]

�(zu)�
X

�2A[i]

�(x)�
X

�2A[i]

�(y) +
X

�2A[i]

4LM�

�

1

A du

1

A
�1

� exp (U¬i(x))

nZ

0

@
Z

exp

0

@
X

�2A[i]

�(zu)�
X

�2A[i]

�(x)�
X

�2A[i]

�(y) +
4L2

�

1

A du

1

A
�1

= exp

✓
�4L2

�

◆
exp (U¬i(x))

nZ

✓Z
exp

�
Ūu � Ūx(i) � Ūy(i)

�
du

◆�1

= exp

✓
�4L2

�

◆
exp (U¬i(x))

nZ

exp(Ūx(i)) · exp(Ūy(i))R
exp(Ūu)du

= exp

✓
�4L2

�

◆
1

nZ

exp(U(x)) · exp(Ūy(i))R
exp(Ūu)du

where Ūv denotes the assignment of Uv in the plain Gibbs sampling algorithm (Algorithm 1),

Ūv =
X

�2A[i]

�(zv),

Finally, if we let G denote the transition probability operator of plain Gibbs sampling, we notice right
away that

⇡(x)T (x, y) � exp

✓
�4L2

�

◆
1

nZ

exp(U(x)) · exp(Ūy(i))R
exp(Ūu)du

= exp

✓
�4L2

�

◆
⇡(x)G(x, y).

We will use the Dirichlet form argument to finish the proof. A real function f is square integrable
with respect to probability measure ⇡, if it satisfiesZ

f(x)2⇡(dx) <1.
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Define L
2(⇡) to be the Hilbert space of all such functions.

Let L2
0(⇡) ⇢ L

2(⇡) to be the Hilbert space that uses the same inner product but only contains
functions such that

E⇡[f ] =

Z
f(x)⇡(dx) = 0.

We also define the notation

hf, gi =
Z

f(x)g(x)⇡(dx).

A special example is Var⇡[f ] = hf, fi.
From here, the Dirichlet form of a Markov chain associated with transition operator T is given by [5]

E(f) =
1

2

Z Z
(f(x)� f(y))2 T (x, y)⇡(x)dxdy.

And the spectral gap can be written as [1]

� = inf
f2L2

0(⇡):Var⇡ [f ]=1
E(f).

The spectral gap is related to other common measurement of the convergence of MCMC. For example,
it has the following relationship with the mean squared error e⇡ on a Markov chain {Xn}n2N [16],

e
2
⇡ 

2

n�
kfk22 .

With the expression of the spectral gap, it follows that

�̄ = inf
f2L2

0(⇡):V ar⇡ [f ]=1


1

2

Z Z
(f(x)� f(y))2 T (x, y)⇡(x) dx dy

�

� exp

✓
�4L2

�

◆
· inf
f2L2

0(⇡):V ar⇡ [f ]=1


1

2

Z Z
(f(x)� f(y))2 G(x, y)⇡(x) dx dy

�

= exp

✓
�4L2

�

◆
· �.

This proves the theorem.

C Poisson-Gibbs on Continuous State Spaces

C.1 Poisson-Gibbs with Fast Inverse Transform Sampling (PGITS)

In the main body of the paper, we mentioned the PGITS method, Poisson-Gibbs with Fast Inverse
Transform Sampling. This method is to approximate the PDF by Chebyshev polynomials and then
use inverse transform sampling. In this section, we will outline the algorithm and derive convergence
rate results for it. These results will illustrate why PGITS can be expected to perform worse than
PGDA.

PGITS operates by approximating the PDF with a Chebyshev polynomial approximation and then
sampling from that polynomial approximation using inverse transform sampling. Specifically, if
the PDF we want to sample from is f(x), we can approximate f by f̃ on [a, b] using Chebyshev
polynomials,

f̃ =
mX

k=0

↵kTk

✓
2(x� a)

b� a
� 1

◆
, ↵k 2 R, x 2 [a, b] (3)

where Tk(x) = cos(k cos�1
x) is the degree k Chebyshev polynomial, and ↵k are the Chebyshev

coefficients of the function f [17]. We do this by interpolating f at its Chebyshev nodes, resulting in
f̃ being the mth order Chebyshev interpolant. Once we have the polynomial approximation f̃ we
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Algorithm 5 PGITS: Poisson-Gibbs Inverse Transform Sampling

given: state x 2 ⌦, degree m, domain [a, b]
loop

set i, s�, S, and U as in Algorithm 2.
construct degree-m Chebyshev polynomial approximation of polynomial PDF on [a, b]

f̃(v) ⇡ exp(Uv)

compute the CDF polynomial

F̃ (v) =

 Z b

a
f̃(y) dy

!�1 Z v

a
f̃(y) dy

sample u ⇠ Unif[0, 1].
solve root-finding problem for v: F̃ (v) = u

. Metropolis-Hastings correction:

p exp(Uv) · f̃(x(i))
exp(Ux(i)) · f̃(v)

with probability min(1, p), set x(i) v

output sample x

end loop

can construct the corresponding CDF approximation F̃ by calculating the integral directly (since
polynomials are straightforward to integrate). With the approximation F̃ , we are able to use inverse
transform sampling to generate samples. We call this whole algorithm PGITS and it is listed as
Algorithm 5.

We show that PGITS is reversible and bound its spectral gap in the following theorem.
Theorem 5. PGITS (Algorithm 5) is reversible and has a stationary distribution ⇡. Let �̄ denote

its spectral gap, and let � denote the spectral gap of plain Gibbs sampling. Assume ⇢ > 1 is some

constant such that every factor function �, treated as a function of any single variable x(i), must be

analytically continuable to the Bernstein ellipse with radius parameter ⇢ shifted-and-scaled so that

its foci are at a and b, such that it satisfies |�(z)| M� anywhere in that ellipse. Then, if � � 2L it

will hold that

�̄ �
✓
1� 8 exp(L)⇢�m/2

p
⇢� 1

◆
· exp

✓
�4L2

�

◆
· �.

We can set m = ⇥(L) and � = ⇥(L2) to make the ratio of the spectral gaps O(1), which is
independent of the size of the problem. If the parameters are set in this way, the total cost of PGITS
is O(m · (�+ L)) = O(L · L2) = O(L3).

C.1.1 Proof of Theorem 5

Proof. Similar to the previous analysis of Poisson-Gibbs, we will show the PGITS is reversible by
using the expression of the transition operator. Then we will bound the spectral gap.

Let Ti,s(x, y) denote the probability of transitioning from state x to y given that we have already
chosen to sample variable i with minibatch coefficients s. Then, the overall transition operator will be

T (x, y) = E [Ti,s(x, y)]

where the expectation is taken over i and s.

Let the polynomial interpolant for exp(Uv) be f̃(v) which is given in (3). Note that this interpolant
is a function of the index i and the minibatch coefficients s. Then,

Ti,s(x, y) = ⇢(y(i)) ·min(1, a)
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Multiplying ⇡(x) on both sides,
⇡(x)T (x, y)

=
exp(U¬i(x))
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This expression is symmetric in x and y, so it follows that
⇡(x)T (x, y) = ⇡(y)T (y, x)
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Thus the Markov chain is reversible, and its stationary distribution is ⇡.

We now bound its spectral gap, using the technique of Dirichlet forms. First, as before, we start by re-
writing the chain in terms of an expectation of a new random variable r� where r� ⇠ Poisson

⇣
�M�

L

⌘

and the r� are all independent. We also define �̄(x) = L�(x)
�M�

as before. This gives us

⇡(x)T (x, y) =
exp(U¬i(x))
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f̃(y(i)) exp

0

@
X

�2A[i]

r� log
�
1 + �̄(x)

�
1

A ,

f̃(x(i)) exp

0

@
X

�2A[i]

r� log
�
1 + �̄(y)

�
1

A
!#

=
exp(U¬i(x))

nZ
Er

"
1

R
f̃(u)du

·min
⇣
f̃(y(i)) exp

�
Ux(i)

�
, f̃(x(i)) exp

�
Uy(i)

�⌘
#

where now the f̃ are considered to be a function of r� rather than s� as before.

To proceed further we will need to use the fact that f̃ is a Chebyshev interpolant to bound its error
compared with U . Recall that, here,

Uv =
X

�2A[i]

r� log

✓
1 +

L

�M�
�(zv)

◆
=
X

�2A[i]

r� log
�
1 + �̄(zv)

�
,

and f̃(v) ⇡ exp(Uv) in the sense of being a degree-m Chebyshev polynomial interpolant. Recall that
we assumed that the each function �, treated as a function in any single variable, must be analytic on
a (shifted) Bernstein ellipse on the interval [a, b] with parameter ⇢ (i.e. a standard Bernstein ellipse
on [�1, 1] with parameter ⇢ shifted and scaled to have its foci at a and b), and that its magnitude must
be bounded by

|�(z)| M�

for any z in this ellipse (keeping all the other parameters as usual within [a, b]. It follows that the
magnitude of the function Uv is bounded by

|exp(Uv)| =

������
exp

0

@
X

�2A[i]

r� log

✓
1 +

L

�M�
�(zv)

◆1

A

������

=
Y

�2A[i]

����1 +
L

�M�
�(zv)

����
r�


Y

�2A[i]

✓
1 +

L

�

◆r�

.

Therefore, from Theorem 3, we know that
���f̃(v)� exp(Uv)

��� 
4⇢�m

⇢� 1
·
Y

�2A[i]

✓
1 +

L

�

◆r�

=
4⇢�m

⇢� 1
·
✓
1 +

L

�

◆P
�2A[i] r�

.

Since we also assumed that �(z) is always non-negative, Uv must also be non-negative, and so in
particular exp(�Uv)  1, so

�����
f̃(v)

exp(Uv)
� 1

����� 
4⇢�m

⇢� 1
·
✓
1 +

L

�

◆P
�2A[i] r�

 4⇢�m

⇢� 1
· exp

0

@L

�

X

�2A[i]

r�

1

A .

If we now define

C =
4⇢�m

⇢� 1
· exp

0

@L

�

X

�2A[i]

r�

1

A ,
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then
(1� C) · exp(Uv)  f̃(v)  (1 + C) · exp(Uv).

In particular, this means that

min
⇣
f̃(y(i)) exp

�
Ux(i)

�
, f̃(x(i)) exp

�
Uy(i)

�⌘
� (1� C) · exp

�
Ux(i) + Uy(i)

�
,

and
1

R
f̃(u) du

� 1

1 + C
· 1R

exp(Uu) du
.

Substituting this into our bound above gives

⇡(x)T (x, y) � exp(U¬i(x))

nZ
Er

"
1� C

1 + C
·
exp

�
Ux(i) + Uy(i)

�
R
exp(Uu) du

#
.

Now, recall that we set this up by sampling r� independently from a Poisson random variable
r� ⇠ Poisson

⇣
�M�

L

⌘
. This distribution is equivalent to assigning

⇤ =
X

�2A[i]

�M�

L
,

sampling the random variable B ⇠ Poisson (⇤), and then sampling r� ⇠ Multinomial
⇣
B,

�M�

⇤L

⌘
.

If we re-think our distribution as coming from this process, then by the Law of Total Expectation,

⇡(x)T (x, y) � exp(U¬i(x))

nZ
EB

"
1� C

1 + C
·Er

"
exp

�
Ux(i) + Uy(i)

�
R
exp(Uu) du

�����B
##

,

where we can pull out the terms in C because we can write C to depend only on B as

C =
4⇢�m

⇢� 1
· exp

0

@L

�

X

�2A[i]

r�

1

A =
4⇢�m

⇢� 1
· exp

✓
LB

�

◆
.

Next, we can bound this inner expectation with

Er

"
exp

�
Ux(i) + Uy(i)

�
R
exp(Uu) du

�����B
#

= Er


1R

exp(Uu � Ux(i) � Uy(i)) du

����B
�

� Er

Z
exp(Uu � Ux(i) � Uy(i)) du

����B
��1

= Er

2

4
Z

exp

0

@
X

�2A[i]

r�

�
log
�
1 + �̄(zu)

�
� log

�
1 + �̄(x)

�
� log

�
1 + �̄(y)

��
1

A du

������
B

3

5
�1

= Er

2

4
Z

exp

0

@
X

�2A[i]

r�t�

1

A du

������
B

3

5
�1

=

0

@
Z

Er

2

4exp

0

@
X

�2A[i]

r�t�

1

A

������
B

3

5 du

1

A
�1

,

where we define

t� = log
�
1 + �̄(zu)

�
� log

�
1 + �̄(x)

�
� log

�
1 + �̄(y)

�
.
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This inner expectation is now just the moment-generating function of the multinomial distribution.
Applying the standard formula for that MGF gives us

Er

2

4exp

0

@
X

�2A[i]

r�t�

1

A

������
B

3

5 =

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B

.

Substituting this back into our original expression gives

⇡(x)T (x, y) � exp(U¬i(x))

nZ
EB

2

64
1� C

1 + C
·

0

B@
Z 0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B

du

1

CA

�13

75 .

Next, let � > 0 be a small constant, to be assigned later. Recall that for any non-negative random
variable X and any event A, by the Law of Total Probability,

E [X] = E [X|A] ·P(A) +E [X|¬A] ·P(¬A) � E [X|A] ·P(A).

So, since the interior of this expectation is a non-negative number, it follows that

⇡(x)T (x, y) � exp(U¬i(x))

nZ
EB

2

64
1� C

1 + C
·

0

B@
Z 0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B

du

1

CA

�1�������
C  �

3

75

·PB(C  �)

� exp(U¬i(x))

nZ
· 1� �

1 + �
·EB

2

64

0

B@
Z 0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B

du

1

CA

�1�������
C  �

3

75

·PB(C  �).

By Jensen’s inequality again, we get

⇡(x)T (x, y) � exp(U¬i(x))

nZ
EB

2

64
1� C

1 + C
·

0

B@
Z 0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B

du

1

CA

�1�������
C  �

3

75

·PB(C  �)

� exp(U¬i(x))

nZ
· 1� �

1 + �
·

0

B@
Z

EB

2

64

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B
�������
C  �

3

75 du

1

CA

�1

·PB(C  �).

Since this inner expectation is again non-negative, we can again apply our above inequality, but in the
opposite direction, giving

E [X|A]  E [X]

P(A)
.

This produces

⇡(x)T (x, y) � exp(U¬i(x))

nZ
· 1� �

1 + �
·

0

B@
Z

EB

2

64

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B
3

75 du

1

CA

�1

·PB(C  �)2.
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Now, we are just left with the MGF of a Poisson-distributed random variable. This we already know
to be

EB

2

64

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B
3

75 = EB

2

4exp

0

@B log

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A

1

A

3

5

= exp

0

@⇤

0

@

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A� 1

1

A

1

A

= exp

0

@
X

�2A[i]

�M�

L
· (exp(t�)� 1)

1

A ,

where in the last line we can leverage the fact that
X

�2A[i]

�M�

⇤L
= 1

to justify pulling the �1 inside the sum. From the analysis of Poisson-Gibbs, we had that

exp(t�)� 1  �̄(zu)� �̄(x)� �̄(y) +
4L2

�2
.

So,

EB

2

64

0

@
X

�2A[i]

�M�

⇤L
· exp(t�)

1

A
B
3

75  exp

0

@
X

�2A[i]

�M�

L
·
✓
�̄(zu)� �̄(x)� �̄(y) +

4L2

�2

◆1

A

= exp

0

@
X

�2A[i]

✓
�(zu)� �(x)� �(y) +

4LM�

�

◆1

A

 exp

✓
Ūu � Ūx(i) � Ūy(i) +

4L2

�

◆
,

where as in the analysis of Poisson-Gibbs, Ūv denotes the assignment of Uv in the plain Gibbs
sampling algorithm (Algorithm 1),

Ūv =
X

�2A[i]

�(zv).

Substituting this expression in to our overall bound, we get

⇡(x)T (x, y) � exp(U¬i(x))

nZ
· 1� �

1 + �
·
✓Z

exp

✓
Ūu � Ūx(i) � Ūy(i) +

4L2

�

◆
du

◆�1

·PB(C  �)2

=
exp(U(x))

nZ
· 1� �

1 + �
·

exp(Ūy(i))R
exp

�
Ūu

�
du

· exp
✓
�4L2

�

◆
·PB(C  �)2.

Finally, if we let G denote the transition probability operator of plain Gibbs sampling, we notice right
away that

⇡(x)T (x, y) � 1� �

1 + �
· exp

✓
�4L2

�

◆
·PB(C  �)2 · ⇡(x)G(x, y)

� (1� 2�) · exp
✓
�4L2

�

◆
·PB(C  �)2 · ⇡(x)G(x, y).
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To get a final bound, all we need to do is bound PB(C  �). This is straightforward, since

PB(C  �) = PB

✓
4⇢�m

⇢� 1
· exp

✓
LB

�

◆
 �

◆

= PB

✓
exp

✓
LB

�

◆
 ⇢� 1

4⇢�m
· �
◆
.

Notice that by the MGF formula for B,

EB


exp

✓
LB

�

◆�
 exp

✓
⇤

✓
exp

✓
L

�

◆
� 1

◆◆
.

Since we chose a minibatch size parameter � � 2L, it follows that L/�  1/2, and so

exp

✓
L

�

◆
� 1  2L

�
,

and so since also
⇤ =

X

�2A[i]

�M�

L
 �.

it follows that

EB


exp

✓
LB

�

◆�
 exp

✓
� · 2L

�

◆
= exp(2L).

Therefore, by Markov’s inequality,

PB(C � �) = PB

✓
exp

✓
LB

�

◆
� ⇢� 1

4⇢�m
· �
◆

 exp(2L)
⇢�1
4⇢�m · �

 4⇢�m

⇢� 1
· exp(2L)

�
.

Thus,

PB(C  �) = 1�PB(C � �)

� 1� 4⇢�m

⇢� 1
· exp(2L)

�
,

and in particular

PB(C  �)2 = (1�PB(C � �))2

� 1� 2PB(C � �)

� 1� 8⇢�m

⇢� 1
· exp(2L)

�
.

Substituting this back into our overall bound gives us

⇡(x)T (x, y) � 1� �

1 + �
· exp

✓
�4L2

�

◆
·PB(C  �)2 · ⇡(x)G(x, y)

� (1� 2�) ·
✓
1� 8⇢�m

⇢� 1
· exp(2L)

�

◆
· exp

✓
�4L2

�

◆
· ⇡(x)G(x, y)

�
✓
1� 2� � 8⇢�m

⇢� 1
· exp(2L)

�

◆
· exp

✓
�4L2

�

◆
· ⇡(x)G(x, y).

Finally, choosing the value of � as

� =
2 exp(L)

⇢m/2 ·
p
⇢� 1

,
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we get

⇡(x)T (x, y) �
✓
1� 8 exp(L)⇢�m/2

p
⇢� 1

◆
· exp

✓
�4L2

�

◆
· ⇡(x)G(x, y).

Now applying the standard Dirichlet form argument, we get

�̄ �
✓
1� 8 exp(L)⇢�m/2

p
⇢� 1

◆
· exp

✓
�4L2

�

◆
· �,

which was the desired expression.

C.2 Proof of Theorem 4

Proof. The reversibility can be proved by the same procedure as in Section C.1.1. By applying that
same analysis, which did not depend on the manner in which the approximation f̃ was constructed,
we can arrive at the expression

⇡(x)T (x, y) =
exp(U¬i(x))

nZ
Er

"
1

R
f̃(u)du

·min
⇣
f̃(y(i)) exp

�
Ux(i)

�
, f̃(x(i)) exp

�
Uy(i)

�⌘
#
.

By the assumption of �(z), we have

|Uv| =

������

X

�2A[i]

r� log
�
1 + �̄(zv)

�
������


X

�2A[i]

r�

����log
✓
1 +

L

�M�
�(x)

◆����


X

�2A[i]

r�

����
2L

�M�
�(x)

����

 2L

�

X

�2A[i]

r�.

where the second inequality holds because

|z|  1

2
) |log(1 + z)|  2 |z| ,

using the assumptions � � 2L and |�(x)| M�. Now applying Lemma 1 in Section E, assigning
� =
p
⇢ gives us,

���Ũv � Uv

��� 
8⇢�

m
2

p
⇢� 1

· L
�

X

�2A[i]

r�,

for any v in the shifted-and-scaled Bernstein ellipse with parameterp⇢.

Next, since Ũv is a polynomial in v, exp(Ũv) must be analytic everywhere in C. In particular it must
be analytic on the Bernstein ellipse on the interval [a, b] with parameter p⇢. On that interval, it is
bounded by

���exp(Ũv)
���  exp

⇣���Ũv

���
⌘

 exp
⇣
|Uv|+

���Ũv � Uv

���
⌘

 exp

0

@2L

�

X

�2A[i]

r�

1

A · exp

0

@ 8⇢�
m
2

p
⇢� 1

· L
�

X

�2A[i]

r�

1

A

 exp

0

@4⇢�
m
2 +
p
⇢� 1

p
⇢� 1

· 2L
�

X

�2A[i]

r�

1

A .
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Now applying Theorem 3 using the Bernstein ellipse with parameterp⇢, we have, for any v on the
interval [a, b],

���f̃(v)� exp(Ũv)
��� 

4⇢�
k
2

p
⇢� 1

· exp

0

@4⇢�
m
2 +
p
⇢� 1

p
⇢� 1

· 2L
�

X

�2A[i]

r�

1

A

Therefore, it follows that
�����

f̃(v)

exp(Uv)
� 1

����� 

�����
f̃(v)� exp(Ũv) + exp(Ũv)

exp(Uv)
� 1

�����



���f̃(v)� exp(Ũv)
���

exp(Uv)
+
���exp(Ũv � Uv)� 1

���


���f̃(v)� exp(Ũv)

���+ exp
⇣���Ũv � Uv

���
⌘
� 1,

where the last inequality is justified by the fact that Uv is non-negative and for any x, |exp(x)� 1| 
exp(|x|)� 1. Now substituting in our bounds from above gives us
�����

f̃(v)

exp(Uv)
� 1

�����

 exp

0

@ 8⇢�
m
2

p
⇢� 1

· L
�

X

�2A[i]

r�

1

A+
4⇢�

k
2

p
⇢� 1

· exp

0

@4⇢�
m
2 +
p
⇢� 1

p
⇢� 1

· 2L
�

X

�2A[i]

r�

1

A� 1

As before, we let B =
P

�2A[i] r� where B ⇠ Poisson(⇤). Then
�����

f̃(v)

exp(Uv)
� 1

�����  exp

✓
8⇢�

m
2

p
⇢� 1

· LB
�

◆
+

4⇢�
k
2

p
⇢� 1

· exp
✓
4⇢�

m
2 +
p
⇢� 1

p
⇢� 1

· 2LB
�

◆
� 1

We define

E = exp

✓
8⇢�

m
2

p
⇢� 1

· LB
�

◆
+

4⇢�
k
2

p
⇢� 1

· exp
✓
4⇢�

m
2 +
p
⇢� 1

p
⇢� 1

· 2LB
�

◆
� 1,

and by following the same steps as used in Section C.1.1, with E in place of the C of that proof, we
can get, for any constant � > 0,

⇡(x)T (x, y) � (1� 2�) · exp
✓
�4L2

�

◆
·PB(E  �)2 · ⇡(x)G(x, y).

All that remains is to bound PB(E  �). Using the MGF formula for B twice, we get that

EB(E) =
4⇢�

k
2

p
⇢� 1

· exp
✓
⇤

✓
exp

✓
4⇢�

m
2 +
p
⇢� 1

p
⇢� 1

· 2L
�

◆
� 1

◆◆

+ exp

✓
⇤

✓
exp

✓
8⇢�

m
2

p
⇢� 1

· L
�

◆
� 1

◆◆
� 1.

If we require that m is large enough that

4⇢�
m
2  p⇢� 1,

then

EB(E)  4⇢�
k
2

p
⇢� 1

· exp
✓
⇤

✓
exp

✓
4L

�

◆
� 1

◆◆

+ exp

✓
⇤

✓
exp

✓
8⇢�

m
2

p
⇢� 1

· L
�

◆
� 1

◆◆
� 1.
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By Taylor’s theorem, for x > 0,

exp(x)� 1 = exp(x)� exp(0)  x · exp(x).

So, since ⇤  �, we can bound our expectation with

EB(E)  4⇢�
k
2

p
⇢� 1

· exp
✓
⇤ · 4L

�
· exp

✓
4L

�

◆◆

+ exp

✓
⇤ · 8⇢�

m
2

p
⇢� 1

· L
�
· exp

✓
8⇢�

m
2

p
⇢� 1

· L
�

◆◆
� 1

 4⇢�
k
2

p
⇢� 1

· exp
✓
4L · exp

✓
4L

�

◆◆

+ exp

✓
8⇢�

m
2

p
⇢� 1

· L · exp
✓

8⇢�
m
2

p
⇢� 1

· L
�

◆◆
� 1

 4⇢�
k
2

p
⇢� 1

· exp
✓
4L · exp

✓
4L

�

◆◆

+ exp

✓
8⇢�

m
2

p
⇢� 1

· L · exp
✓
4L

�

◆◆
� 1.

Since � log(2) � 4L, we can bound exp(4L/�)  2, and so

EB(E)  4⇢�
k
2

p
⇢� 1

· exp (8L) + exp

✓
16L⇢�

m
2

p
⇢� 1

◆
� 1.

We now define

F =
4 · exp (8L) · ⇢� k

2

p
⇢� 1

+ exp

✓
16L⇢�

m
2

p
⇢� 1

◆
� 1.

By Markov’s inequality,

PB(E � �) � EB(E)

�
� F/�.

It follows

PB(E  �)2 = (1�PB(E � �))2 � 1� 2PB(E � �) � 1� 2F/�.

Substituting it back into the overall bound,

⇡(x)T (x, y) � (1� 2�) · exp
✓
�4L2

�

◆
·PB(E  �)2 · ⇡(x)G(x, y)

�
✓
1� 2� � 2F

�

◆
· exp

✓
�4L2

�

◆
· ⇡(x)G(x, y)

Let
� =
p
F ,

it becomes

⇡(x)T (x, y) �
⇣
1� 4

p
F

⌘
· exp

✓
�4L2

�

◆
· ⇡(x)G(x, y)

Again, using the Dirichlet form we bound the spectral gap,

�̄ �
⇣
1� 4

p
F

⌘
exp

✓
�4L2

�

◆
· �
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D Poisson-MH

We apply our Poisson-minibatching method to Metropolis-Hastings sampling. In Poisson-
minibatching M-H (Poisson-MH), we first generate a candidate x

⇤ from the proposal distribution
q(x⇤|x). Then the M-H ratio will be calculated as following

p =
exp

⇣P
�2S s� log

⇣
1 + L

�M�
�(x⇤)

⌘⌘
q(x⇤|x)

exp
⇣P

�2S s� log
⇣
1 + L

�M�
�(x)

⌘⌘
q(x|x⇤)

We accept x⇤ with the probability min(1, p). After applying Poisson-minibatching, the M-H ratio no
longer needs to use the whole dataset which will reduce the computational cost significantly.

Theorem 2 is similar to the bounds of Poisson-Gibbs. As long as we set � = ⇥(L2), the convergence
is slowed down by at most a constant factor which is unrelated to the size of the problem.

D.1 Proof of Theorem 2

Proof. We begin with the transition probability from x to x
⇤

T (x⇤
, x)

= E

⇢
q(x⇤|x)min

✓
1,

q(x|x⇤)⇡(x⇤
, s)

q(x⇤|x)⇡(x, s)

◆�

= E

8
<

:q(x⇤|x)min

0

@1,
q(x|x⇤) exp

⇣P
�2�

h
s� log

⇣
�M�

L + �(x⇤)
⌘
� log s�!

i⌘

q(x⇤|x) exp
⇣P

�2�

h
s� log

⇣
�M�

L + �(x)
⌘
� log s�!

i⌘

1

A

9
=

;

= E

8
<

:q(x⇤|x)min

0

@1,
q(x|x⇤) exp

⇣P
�2�

h
s� log

⇣
�M�

L + �(x⇤)
⌘i⌘

q(x⇤|x) exp
⇣P

�2�

h
s� log

⇣
�M�

L + �(x)
⌘i⌘

1

A

9
=

;

=
X

s

8
<
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0

@1,
q(x|x⇤) exp

⇣P
�2�

h
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⇣
�M�

L + �(x⇤)
⌘i⌘

q(x⇤|x) exp
⇣P

�2�

h
s� log

⇣
�M�

L + �(x)
⌘i⌘

1

A

9
=

;
Y

�2�

p(s�|x)

=
X

s

8
<

:q(x⇤|x)min

0

@exp

0

@
X

�2�


s� log

✓
�M�

L
+ �(x)

◆
� �(x)� �M�

L
� log s�!

�1
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⇣P

�2�

h
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⇣
�M�
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=
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8
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@
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✓
�M�

L
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◆
� �(x)� �M�
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@
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�2�


s� log

✓
�M�

L
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◆
� �(x)� �M�

L
� log s�!

�1
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1

A

9
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Multiplying ⇡(x) to both sides,
⇡(x)T (x⇤

, x)

=
1

Z
exp

0

@
X

�2�

�(x)

1

AT (x⇤
, x)

=
1

Z

X

s
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q(x⇤|x)

0

@exp

0

@
X

�2�


s� log

✓
�M�

L
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◆
� �M�

L
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�1
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0

@
X
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✓
�M�

L
+ �(x⇤)

◆
� �M�

L
� log s�!

�1

A

1

A
!

This implies the Markov chain is reversible.

We can continue to reduce this to
⇡(x)T (x⇤

, x)

=
1

Z

X

s
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0
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0

@
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�2�
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✓
�M�
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◆
� log

�M�
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�1
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@
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�2�
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✓
�M�
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◆
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�M�

L

�1

A

1

A

·
Y

�2�

1
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✓
��M�
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��M�
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Similar to the previous proof, s� here are non-negative integers that a Poisson variable can take, not
variables. So if we let r� ⇠ Poisson

⇣
�M�

L

⌘
and r� to be all independent, we can write this as
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Z
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@
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Assume G(x⇤
, x) is the transition operator of a plain MCMC. Consider the ratio,

⇡(x)T (x⇤
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�(x)

1

A , q(x|x⇤) exp

0

@
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We know that min(A,B)
min(C,D) = min

⇣
A

min(C,D) ,
B

min(C,D)

⌘
� min

�
A
C ,

B
D

�
. The last inequality is due to

the fact that 1
min(C,D) �

1
C and 1

min(C,D) �
1
D .

With this inequality, we can continue simplifying the ratio,
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⇣P
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⇣
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⇣
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Because f(x) = 1
x is a convex function, by Jensen’s inequality it follows

⇡(x)T (x⇤
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⇡(x)G(x⇤, x)
� E

"
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@
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@
X

�2�

 
�(x⇤)� r� log

✓
1 +

L

�M�
�(x⇤)

◆!1

A
!#�1

We have that the maximum of the product is less than the product of maximum, therefore
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Since max(A,B)  A+B when A and B are positive, it follows
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is the moment generating function of the Poisson random

variable r� evaluated at
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We know that

E exp(r�t) = exp

✓
�M�

L
(exp(t)� 1)

◆

Therefore,
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Substituting this into the original expression produces

⇡(x)T (x⇤
, x)

⇡(x)G(x⇤, x)
�

2

42
Y

�2�

exp

 
� �(x)

1 + L
�M�

�(x)
+ �(x)

!3

5
�1

�

2

42
Y

�2�

exp(M�) exp

 
� 1

1 + L
�

+ 1

!3

5
�1

=

2

42
Y

�2�

exp(M�) exp

 
L

�+ L

!3

5
�1

=

"
2 exp

 
L
2

�+ L

!#�1

=
1

2
exp

 
� L

2

�+ L

!

From Dirichlet form argument, we get

�̄ � 1

2
exp

✓
� L

2
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◆
· �.

D.2 Additional Experiment: Poisson-MH on Truncated Gaussian Mixture

We test Poisson-MH on the truncated Gaussian mixture as in Section 4.3. The proposal is q(x⇤|x) =
N (x, 0.452I). We set � = 500. The estimated density is in Figure 4 which is very close to the
true density. This demonstrates the effectiveness of Poisson-MH and the general applicability of
Poisson-minibatching method.

Figure 4: The estimated density of Poisson-MH on a truncated Gaussian mixture model.
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E Extended Results about Chebyshev Interpolants

In Trefethen [17], Theorem 8.2 proves bounds on the error of a Chebyshev interpolant on the interval
[�1, 1]. However, in order to apply this theorem to a second Chebyshev interpolant that is a function
of the first, we would need to bound the magnitude of that function on a Bernstein ellipse. To do
this, we need the following extended version of Theorem 8.2, which bounds the error not only on the
interval [�1, 1] but more generally on a Bernstein ellipse.
Lemma 1. Assume U : C ! C is analytic in the open Bernstein ellipse B([�1, 1], ⇢), where

the Bernstein ellipse is a region in the complex plane bounded by an ellipse with foci at ±1 and

semimajor-plus-semiminor axis length ⇢ > 1. If for all x 2 B([�1, 1], ⇢), |U(x)|  V for some

constant V > 0, then for any constant 1 < � < ⇢, the error of the Chebyshev interpolant on the

smaller Bernstein ellipse B([�1, 1],�) is bounded by

|Ũ(x)� U(x)|  4V

⇢/� � 1
·
⇣
⇢

�

⌘�m
.

Proof. This proof is essentially identical to that of Theorem 8.2 in Trefethen [17], except that the
error is bounded in a Bernstein ellipse rather than over only the real interval [�1, 1].
First, note that one parameterization of the boundary of the Bernstein ellipse with parameter ⇢ is

⇢
z + z

�1

2

����z 2 C, |z| = ⇢

�
,

and the open ellipse itself can be written as

B([�1, 1], ⇢) =
⇢
z + z

�1

2

����z 2 C, ⇢�1  |z|  ⇢

�
.

Now, Theorem 8.1 from Trefethen [17] states that the Chebyshev coefficients of a function that
satisfies the conditions of this theorem (boundedness and analyticity in a Bernstein ellipse) are
bounded by |a0|  V and

|ak|  2V ⇢
�k

, k � 1.

That is, for ak bounded in this way,

U(x) =
1X

k=0

akTk(x)

at least for all x in the ⇢-Bernstein ellipse on which f is analytic. (While Trefethen [17] only states
explicitly that this holds for x 2 [�1, 1], the fact that it also holds on the rest of the Bernstein ellipse
follows directly from the fact that both sides of the equation are analytic over that region, using the
identity theory for holomorphic functions.) Formula (4.9) from Trefethen [17] states that

U(x)� Ũm(x) =
1X

k=m+1

ak

�
Tk(x)� Tl(k,m)(x)

�

where Ũm denotes the degree-m Chebyshev interpolant, and

l(k,m) = |((k +m� 1) mod 2m)� (m� 1)| .

Notice in particular that it always holds that l(k,m)  m+1. Now, for x inside the Bernstein ellipse
B([�1, 1],�), there will always exist a z 2 C such that ��1  |z|  � and

x =
z + z

�1

2
.

For such an x, and for any k,
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����Tk
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2

◆���� =
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z
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���� =
|z|k + |z|�k

2
 �

k
,
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where the second equality is a well-known property of the Chebyshev polynomials. It follows that,
for any x in this Bernstein ellipse,

���U(x)� Ũm(x)
��� =

�����

1X
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�
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✓
�

⇢
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✓
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⇢

◆m 1
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.

This is the desired result.
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