
Supplementary Material

A Omitted Proofs from Section 2

We now analyze Algorithm 2 and establish Theorem 2.9. To do this, we need to adapt Lemma 2.3 to
the case without margin. We replace the margin condition by requiring that the minimum eigenvalue
of the covariance matrix is at least Γ.

Lemma A.1. Let Dx be any distribution over points with `2-norm bounded by 1, with covariance
having minimum eigenvalue at least Γ. If λ ≥ η, then minw:‖w‖2≤1 L(w) ≤ −Γ(λ− η).

Proof. We will show the statement for the optimal unit vector w∗. For any fixed x, we have that

`(w∗,x) = (err(w∗,x)− λ)|〈w∗,x〉| = (η(x)− λ)|〈w∗,x〉| ≤ −(λ− η)|〈w∗,x〉|.

Taking expectation over x drawn from Dx, we get the statement as

E[|〈w∗,x〉|] ≥ E[|〈w∗,x〉|2] ≥ Γ,

where we used the fact that for all points x, |〈w∗,x〉| ≤ ‖x‖22 ≤ 1.

With Lemma A.1 in hand, we are ready to prove Theorem 2.9. We will use Lemma 2.4 and
Lemma 2.5 whose statements do not require that the distribution of points has large margin.

Proof of Theorem 2.9. We again consider the steps of Algorithm 2 in every iteration i. At every
iteration, we consider a distribution D(i) consisting only of points not handled in previous iterations.

For every iteration, the distribution D(i) is rescaled so that the norm of all points is bounded by 1
and the covariance matrix has minimum eigenvalue Γ. Lemma A.1 implies that the minimizer of the
loss L(i) has value less than −Γ(λ− η) ≤ −Γε.

By the guarantees of Lemma 2.4, running SGD in line 8 on L(i)(·) with projection to the `2
ball for Õ

(
1

Γ2ε2

)
steps, we can find a w(i) such that L(i)(w(i)) ≤ −Γε/2 and

∥∥w(i)
∥∥

2
= 1. This

step requires Õ
(

1
Γ2ε2

)
samples from D(i) which translate to at most Õ

(
1

Γ2ε3

)
samples from D, as

Prx∼Dx

[
x ∈ S(i)

]
= Ω(ε).

Then, similar to the proof of Theorem 2.2, Lemma 2.5 implies that there exists a threshold T ≥ 0,
such that:

• Pr(x,y)∼D(i) [|〈w,x〉| ≥ T ] ≥ Γε, and

• Pr(x,y)∼D(i) [hw(x) 6= y
∣∣ |〈w,x〉| ≥ T ] ≤ η + ε.

Line 10 of Algorithm 2 estimates the threshold using samples and m = Õ( 1
Γ2ε4 ) samples suffice

to estimate the probability mass of the region within Γε2 and the misclassification error within ε. This
is satisfied for all iterations with constant probability. Note also that the sample complexity for the
estimation of Dx is less than m.

The number of iterations required is onlyO( log(1/ε)
Γε ), as then we will have accounted for 1−Θ(ε)

of the total probability mass. As we get less than η + ε misclassification error in all the regions we
accounted for, the total misclassification error is at most η + 2ε.

Thus overall, with constant success probability, Algorithm 2 runs for O( log(1/ε)
Γε ) iterations

and draws Õ( 1
Γ2ε4 ) samples per round for a total of Õ( 1

Γ3ε5 ) samples. As the algorithm runs in
polynomial time per iteration, the proof of Theorem 2.9 is complete.
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B Lower Bounds Against Natural Approaches

In this section, we show that certain natural approaches for learning halfspaces with Massart noise
inherently fail, even in the large margin case.

We begin in Section B.1 by showing that the common approach of using a convex surrogate
function for the 0-1 loss cannot lead to non-trivial misclassification error. (We remark that this comes
in sharp contrast with the problem of learning large margin halfpaces with RCN, where a convex
surrogate works, see, e.g., Theorem C.1 in Section C).

In Section B.2, we provide evidence that improving the misclassification guarantee of η + ε
achieved by our algorithm requires a genuinely different approach. In particular, we show that the
approach of iteratively using any convex proxy followed by thresholding gets stuck at error Ω(η) + ε,
even in the large margin case.

B.1 Lower Bounds Against Minimizing a Convex Surrogate Function

One of the most common approaches in machine learning is to replace the 0-1 loss in the ERM by
an appropriate convex surrogate and solve the corresponding convex optimization problem. In this
section, we show that this approach inherently fails to even give a weak learner in the presence of
Massart noise — even under a margin assumption.

In more detail, we construct distributions over a finite sets of points in the two-dimensional unit
ball for which the method of minimizing a convex surrogate will always have misclassification error
min{1/2,Θ(η/γ)}, where γ is the maximum margin with respect to any hyperplane. Our proof is
inspired by an analogous construction in [LS10], which shows that one cannot achieve non-trivial
misclassification error for learning halfspaces in the presence of RCN, using certain convex boosting
techniques. Our argument is more involved in the sense that we need to distinguish two cases and
consider different distributions for each one. Furthermore, by leveraging the additional strength of
the Massart noise model, we are able to show that the misclassification error has to be larger than the
noise level η by a factor of 1/γ.

In particular, our first case corresponds to the situation where the convex surrogate function
is such that misclassified points are penalized by a fair amount and therefore the effect of noise of
correctly classified points on the gradient is significant. This allows a significant amount of probability
mass to be in the region where the true separating hyperplane and the one defined by the minimum of
the convex surrogate function disagree. The second case, which is the complement of the first one,
uses the fact that the contribution of a correctly classified point on the gradient is not much smaller
than that of a misclassified point, again allowing a significant amount of probability mass to be given
to the aforementioned disagreement region. Formally, we prove the following:
Theorem B.1. Consider the family of algorithms that produce a classifier sign(〈w∗,x〉), where
w∗ is the minimum of the function G(w) = E(x,y)∼D[φ(y〈w,x〉)]. For any decreasing convex 1

function φ : R→ R, there exists a distribution D over B2 × {±1}with margin γ ≤
√

3−1
4 such that

the classifier sign(〈w∗,x〉), misclassifies a min{ η8γ ,
1
2} fraction of the points.

Proof. We consider algorithms that perform ERM with a convex surrogate, i.e., minimize a loss of
the form G(w) = E(x,y)∼D[φ(y〈w,x〉)], for some convex function φ : R→ R for ‖w‖2 ≤ 1. We
can assume without loss of generality that φ is differentiable and its derivative is non-decreasing.
Even if there is a countable number of points in which it is not, there is a subderivative that we can
pick for each of those points such that the derivative is increasing overall, since we have assumed that
φ is convex. Therefore, our argument still goes through even without assuming differentiability.

We start by calculating the gradient of G as a function of the derivative of φ at the minimum
of G. Suppose that v ∈ Rd is the minimizer of G subject to ‖w‖2 ≤ 1. This requires that either
∇G(v) is parallel to v, in case the unconstrained minimum lies outside the region ‖w‖2 ≤ 1, or
∇G(v) = 0. Therefore, we have that for every i > 1, the following holds:

∂G

∂wi
(v) = E(x,y)∼D[φ′(y〈v,x〉)(yxi)] = 0 .

1The function is not necessarily differentiable. In case it isn’t, being convex means that the subgradients of
the points are monotonically increasing.
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Our lower bound construction produces a distribution D over (x, y) whose x marginal, Dx, is
supported on the 2-dimensional unit ball. We need to consider two complementary cases for the
convex function φ. For each case, we will define judiciously chosen distributions, D1,D2 for which
the result holds.

Case I: There exists z ∈ [0,
√

3/2] such that: |φ′(z)| < 1
2

η
1−η |φ

′(−z)|.

In this case, we consider the distribution shown in Figure 1 (left), where the point (z,−γ) has
probability mass p and the remaining 1− p mass in on the point (z,

√
1− z2). We need to pick the

parameter p so that v = e1 is the minimum of G(w).

Note that the misclassification error is errD1
0−1(sign(〈v,x〉)) = p+ (1− p) · η. The condition

that v = e1 is a minimizer of G(w) is equivalent to E(x,y)∼D1
[φ′(y〈v,x〉)(yx2)] = 0. Substituting

for our choice of D1 with noise level η on (z,−γ) and 0 on (z,
√

1− z2), we get:

p · φ′(−z) · γ + (1− p) · (1− η)φ′(z) ·
√

1− z2 + (1− p) · η · φ′(−z) · (−
√

1− z2) = 0 .

Equivalently, we have:

(1− p) · η · |φ′(−z)| ·
√

1− z2 = p · γ · |φ′(−z)|+ (1− p) · (1− η)|φ′(z)|
√

1− z2 .

Now, suppose that |φ′(z)| = (1− α) η
1−η |φ

′(−z)|, for some α > 1
2 . By substituting and simplifying,

we get:
p · γ = α(1− p)η

√
1− z2 = (1− p)η∆ ,

where ∆ = α
√

1− z2, which in turns gives that

p =
η∆

γ + η∆
.

Thus, the misclassification error is

errD1
0−1(sign(〈v,x〉)) = p+ (1− p)η = η+ (1− η)p = η+

(1− η)η∆

γ + η∆
=
η(γ + ∆)

γ + η∆
≥ 1

1 + γ
η∆

.

Note that for margin γ ≤ η ·∆, we have that errD1
0−1(sign(〈v,x〉)) ≥ 1

2 , and we can achieve error
exactly 1

2 by setting the point Q1 at distance exactly η ·∆. On the other hand, when the margin is
γ ≤ η ·∆, we have: errD1

0−1(sign(〈v,x〉)) ≥ η∆
2γ ≥

η
8γ . The last inequality comes from the fact that

∆ = α
√

1− z2 ≥ 1/4, since α ≥ 1/2 and z ≤
√

3/2.

Case II: For all z ∈ [0,
√

3/2] we have that |φ′(z)| ≥ 1
2

η
1−η |φ

′(−z)|.

In this case, we consider the distribution shown in Figure 1 (right), where the only points that have
non-zero mass are: (0,−2γ), which has probability mass p, and (1/2,−r), with mass 1 − p. We
need to appropriately select the parameters p and r, so that v is actually the minimizer of the function
G(w), and the misclassification error (which is equal to p in this case) is maximized.

Note that v satisfies E(x,y)∼D2
[φ′(y〈v,x〉)(y · x2)] = 0. Substituting for this particular distri-

bution D2 with noise level 0 on both points, we get:

p · φ′(0) · (2γ) + (1− p)φ′(1/2) · (−r) = 0 .

Since φ′ is monotone, we get:

p|φ′(0)| · (2γ) = (1− p)|φ′(1/2)| · r .

By rearranging, we get:

p =
|φ′(1/2)| · r

|φ′(1/2)| · r + 2γ|φ′(0)|
.

By the definition of Case II and the fact that φ is decreasing and convex, we have that:

|φ′(1/2)| ≥ (η/2)|φ′(−1/2)| ≥ (η/2)|φ′(0)| .
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Local minLocal min

TrueTrue

Local minLocal minTrueTrue

Figure 1: Probability distribution for Case I is on the left and for the complementary Case II is on the
right.

Therefore, we can get misclassification error:

errD2
0−1(sign(〈v,x〉)) = p ≥ |φ′(1/2)| · r

|φ′(1/2)| · r + 4γ
η |φ′(1/2)|

=
1

1 + 4γ
ηr

.

We note that r must be chosen within the interval
[
0,
√

3/2− 2γ
]
, so that the γ-margin requirement

is satisfied.

For margin
√

3−1
4 γ ≤ ηr

4 , we get errD2
0−1(sign(〈v,x〉)) > 1/2, and we can achieve error

exactly 1/2 by moving the probability mass p from Q1(0,−2γ) to Q3(0,−ηr2 ). If γ ≥ ηr
4 , then

errD2
0−1(sign(〈v,x〉)) ≥ ηr

4γ ≥
ηr
8γ . The last inequality comes from the fact that we can pick r =

1/2 ≤
√

3/2− 2γ. This completes the proof of Theorem B.1.
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Figure 2: Probability Distribution for Modified Case II.

B.2 Lower Bound Against Convex Surrogate Minimization Plus Thresholding

The lower bound established in the previous subsection does not preclude the possibility that our
algorithmic approach in Section 2 giving misclassification error≈ η can be improved by replacing the
LeakyRelu function by a different convex surrogate. In this section, we prove that using a different
convex surrogate in our thresholding approach indeed does not help.

That is, we show that any approach which attempts to obtain an accurate classifier by considering
a thresholded region cannot get misclassification error better than Ω(η) within that region, i.e., the
bound of our algorithm cannot be improved with this approach. Formally, we prove:

Theorem B.2. Consider the family of algorithms that produce a classifier sign(〈w∗,x〉), where w∗

is the minimizer of the function G(w) = E(x,y)∼D[φ(y〈w,x〉)]. For any decreasing convex function
φ : R → R, there exists a distribution D over B2 × {±1}with margin γ ≤

√
3/8 such that the

classifier sign(〈w∗,x〉) misclassifies a (1−O(γ)) ·Ω(η) fraction of the points x that lie in the region
{x : 〈w,x〉 > T} for any threshold T .

Proof. Our proof proceeds along the same lines as the proof of Theorem B.1, but with some crucial
modifications. In particular, we argue that Case I above remains unchanged but Case II requires a
different construction.

Firstly, we note that the points Q1, Q2 in Case I are the only points that are assigned non-zero
mass by the distribution and they are at equal distance z from the output classifier’s hyperplane.
Therefore, any set of the form 1〈v,x〉>T , where v is the unit vector perpendicular to the hyperplane,
will either contain the entire probability mass or 0 mass. Thus, for all the meaningful choices of the
threshold T , we get the same misclassification error as with T = 0. This means that the example
distribution and the analysis for Case I remain unchanged.

However, Case II in the proof of Theorem B.1 requires modification as the points Q1, Q2 are at
different distances from the classifier’s hyperplane.

Here we will restrict our attention to the case where the distances of the two points from the
classifier’s hyperplane are actually equal and get a lower bound nearly matching the upper bound in
Section 2. This lower bound applies, due to reasons explained above, to all approaches that use a
combination of minimizing a convex surrogate function and thresholding.

Modified Case II: We recall that in this case the following assumption on the function φ holds:
For all z ∈ [0,

√
3/2] it holds |φ′(z)| ≥ 1

2
η

1−η |φ
′(−z)|.
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The new distribution D′2 is going to be as shown in Figure 2. That is, we assign mass p on the point
Q1(1/4,

√
3/4 + 2γ) and mass 1− p on the point Q2(1/4,

√
3/4− 2γ).

Similarly to the previous section, we use the equation: E(x,y)∼D[φ′(y〈v,x〉)(y · x2)] = 0, that
holds for v being the minimum of G(w) = E(x,y)∼D[φ(y〈w,x〉)], to get:

p · φ′(−1/4) ·
(√

3/4 + 2γ
)

+ (1− p) · φ′(1/4) ·
[
−
(√

3/4− 2γ
)]

= 0 ,

or equivalently:

p =
|φ(1/4)|

(√
3/4− 2γ

)
|φ(1/4)|

(√
3/4− 2γ

)
+ |φ(−1/4)|

(√
3/4 + 2γ

) ≥ (√
3/4− 2γ

)(√
3/4− 2γ

)
+ 2(1−η)

η

(√
3/4 + 2γ

)
≥
(√

3/4− 2γ
)(√

3/4 + 2γ
) · 1

1 + 2(1−η)
η

≥
(

1− 8γ
√

3/3
) η

4(1− η)
.

This completes the proof of Theorem B.2.

C Learning Large-Margin Halfspaces with RCN

In this section, we show that the problem of learning γ-margin halfspaces in the presence of RCN
can be formulated as a convex optimization problem that can be efficiently solved with any first-order
method. Prior work by Bylander [Byl94] used a variant of the Perceptron algorithm to learn γ-margin
halfspaces with RCN. To the best of our knowledge, the result of this section is not explicit in prior
work.

In order to avoid problems that would arise if the distribution D is degenerate (i.e., it assigns
non-zero mass on a lower dimensional subspace), we introduce Gaussian noise to the points of the
distribution. That is, we sample points x + r, where r ∼ N(0, c2I) and c , γ√

2 log(2/γε)
.

In particular, we will show that solving the following convex optimization problem:
minimize
‖w‖2≤1

Gλ(w) = E(x,y)∼D
[
Er∼N(0,c2I)[LeakyReluλ(−y〈w,x + r〉)]

]
, (1)

for λ , η + cε√
2π
≈ η suffices to solve this learning problem.

Intuitively, the idea here is that by adding the right amount of noise r, we make sure that: (a) the
probability that the true halfspace misclassifies the noisy version of a point x is negligible, and (b) if
a point is misclassified by the current halfspace, then it has, on average, a significant contribution
to the objective function. Therefore, any solution with sufficiently small value yields a halfspace
misclassifying a small fraction of points.

As in Section 2.1, we choose the parameter λ for the LeakyRelu function such that Gλ(w) has a
slightly negative minimum. This is done in order to avoid w = 0 being the minimizer of the function
Gλ(w). The minimizer for the convex region ‖w‖2 ≤ 1 will instead lie in the (non-convex) set
‖w‖2 = 1.

We can solve Problem (1) with a standard first-order method through samples using SGD.
Formally, we show the following:
Theorem C.1. Let D be a distribution over (d+ 1)-dimensional labeled examples obtained by an
unknown γ-margin halfspace corrupted with RCN at rate η < 1/2. An application of SGD on Gλ(w)

using Õ(1/(ε2γ4)) samples returns, with probability 2/3, a halfspace with misclassification error at
most η + ε.

The rest of this section is devoted to the proof of Theorem C.1.

We consider the contribution to the objective Gλ of a single point x, denoted by Gλ(w,x).
That is, we define Gλ(w,x) = Ey∼Dy(x)[Er∼N(0,c2I)[LeakyReluλ(−y〈w,x + r〉)]] and write
Gλ(w) = Ex∼Dx [Gλ(w,x)].

We start with the following claim:
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Claim C.2. Gλ(w,x) can be rewritten as:

(1− 2η) ·Er∼N(0,c2I)

[
|〈w,x + r〉|1hw(x+r)6=hw∗ (x)

]
− (λ− η) ·Er∼N(0,c2I)

[
|〈w,x + r〉|

]
.

The proof of the claim follows similarly to the proof of Claim 2.1 and is omitted.

Given this decomposition, we move on to show that Gλ(w∗,x) is sufficiently negative for any x
and provide a lower bound on Gλ(w,x) for any unit vector w.
Lemma C.3. For any x such that |〈w∗,x〉| ≥ γ, it holds

Gλ(w∗,x) ≤ −(λ− η)γ/2 = −Ω̃(γ2ε) .

Proof. For any x such that |〈w∗,x〉| ≥ γ, we have that

Er∼N(0,c2I)

[
|〈w∗,x + r〉|

]
≥ |〈w∗,x + Er∼N(0,c2I)[r]〉| ≥ γ.

Thus, it suffices to show that:

Er∼N(0,c2I)

[
|〈w∗,x + r〉|1hw∗ (x+r)6=hw∗ (x)

]
≤ (λ− η)γ/2 .

We have that

Er∼N(0,c2I)

[
|〈w∗,x + r〉|1hw∗ (x+r) 6=hw∗ (x)

]
≤ Er∼N(0,c2)

[
r1r≥γ

]
=

c√
2π

exp(−(γ/c)2/2) .

The choice of c, implies that c√
2π

exp(−(γ/c)2/2) = c√
2π
εγ/2 = (λ− η)γ/2.

Lemma C.4. For any unit vectors w,x, it holds

Gλ(w,x) ≥ 2c√
2π

(
(1− 2η)1hw(x)6=hw∗ (x) − ε

)
.

Proof. To bound the second term in Claim C.2, we note that for any x,w, we have that

Er∼N(0,c2I)

[
|〈w,x + r〉|

]
≤ 1 + c ≤ 2 .

To bound the first term, note that for any x such that hw(x) 6= hw∗(x), it holds

Er∼N(0,c2I)

[
|〈w,x + r〉|1hw(x+r)6=hw∗ (x)

]
≥ Er∼N(0,c2)

[
r1r≥0

]
≥ 2c√

2π
.

Combining the above gives Lemma C.4.

Proof of Theorem C.1. Taking expectation in Lemma C.3, we get that Gλ(w∗) ≤ −Ω̃(γ2ε). From
the guarantees of SGD (Lemma 2.4), running SGD with Õ(1/(ε2γ4)) iterations and samples gives a
point w where Gλ(w) ≤ Gλ(w∗) +O(εγ2) ≤ 0.

Furthermore, taking expectation in Lemma C.4, we obtain that

(1− 2η)Prx∼Dx [hw(x) 6= hw∗(x)] ≤ ε. (2)

Overall, the misclassification error of hw is equal to

(1− η)Prx∼Dx [hw(x) 6= hw∗(x)] + η(1−Prx∼Dx [hw(x) 6= hw∗(x)]) = η + (1− 2η)Prx∼Dx [hw(x) 6= hw∗(x)] .

From (2) we obtain that the above is at most η + ε. This completes the proof of Theorem C.1.
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