
Table 4: f corresponding to divergences referenced in this paper.

f -divergence f0(x)

KL x log x� x+ 1

TV 1
2 |1� x|

�2 x2 � 2x

H2
2(1�

p
x)

JS (1 + x) log( 2
1+x

) + x log x

Df� , � > 0, � 6= 1
2

1
1� 1

�

h
(1 + x�

)
1
� � 2

1
��1

(1 + x)
i

Df↵ , �1 < ↵ < 1
4

1�↵2

⇣
1� x

1+↵
2

⌘
� 2(x�1)

↵�1

A f for divergences considered in this paper

One of the useful properties of f -divergences that we make use of in the proofs of Theorems 2 and 3 is that for
any constant c, replacing f(x) by f(x) + c(x� 1) does not change the divergence Df . It is often convenient to
work with f0(x) := f(x)� f 0

(1)(x� 1) which is decreasing on (0, 1) and increasing on (1,1) and satisfies
f 0
0(1) = 0.

In Table 4 we list the forms of the function f0 for each of the divergences considered in this paper.

B Proofs

B.1 Proof of Proposition 1

Proposition 1. Let M  N be integers. Then

Df (QZkPZ)  EXN⇠Q
N
X
Df (Q̂

N

Z kPZ)  EXM⇠Q
M
X
Df (Q̂

M

Z kPZ).

Proof. Observe that EXN Q̂N

Z = QZ . Thus,

Df (QZkPZ) =

Z
f

✓
EXN q̂N (z)

p(z)

◆
dPZ(z)

 E
XN

Z
f

✓
q̂N (z)
p(z)

◆
dPZ(z)

= EXN⇠P
N
X
Df (Q̂

N

Z kPZ),

where the inequality follows from convexity of f .

To see that EXN⇠P
N
X
Df (Q̂

N

Z kPZ)  EXM⇠P
N
X
Df (Q̂

M

Z kPZ) for N � M , let I ✓ {1, . . . , N}, |I| = M

and write

Q̂I

Z =
1

M

X

i2I

QZ|Xi
.

Letting I be a random subset chosen uniformly without replacement, observe that for any fixed I , XI ⇠ PM

X

(with the randomness coming from XN ⇠ PN

X ). Thus
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Q̂N

Z =
1

N

NX

i=1

QZ|Xi

= EI

1

M

X

i2I

QZ|Xi

= EIQ̂
I

Z

and so again by convexity of f we have that

EXN⇠P
N
X
Df (Q̂

N

Z kPZ)  EXNEIDf (Q̂
I

ZkPZ) (4)

= EXMDf (Q̂
M

Z kPZ) (5)

with the last line following from the observation that XI ⇠ PM

X .

B.2 Proof of Theorem 1

Lemma 1. Suppose that D
1
2
f

satisfies the triangle inequality. Then for any � > 0,

Df

⇣
Q̂N

Z kPZ

⌘
�Df (QZkPZ)  (1 + �)Df

⇣
Q̂N

Z kQZ

⌘
+

1

�
Df (QZkPZ)

If, furthermore, EXN

h
Df

⇣
Q̂N

Z kQZ

⌘i
= O

�
1

Nk

�
for some k > 0, then

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ) = O

✓
1

Nk/2

◆

Proof. The first inequality follows from the triangle inequality for D
1
2
f

on Q̂N

Z and PZ , and the fact that

2
p
ab  �a+

b

�
for a, b,� > 0. The second inequality follows from the first by taking � = N� k

2 .

Theorem 1 (Rates of the bias). If EX⇠QX

⇥
�2
�
QZ|X , QZ

�⇤
and KL (QZkPZ) are finite then the bias

EXN

⇥
Df (Q̂

N

Z kPZ)
⇤
�Df (QZkPZ) decays with rate as given in the first row of Table 1.

Proof. To begin, observe that

E
XN

h
�2�Q̂N

Z , QZ

�i
= E

XN
E
QZ

"✓
q̂N (z)
q(z)

� 1

◆2
#

= E
QZ

VarXN

"
1

N

NX

n=1

q(z|Xn)

q(z)

#

=
1

N
E
QZ

VarX

q(z|X)

q(z)

�

=
1

N
E
X

⇥
�2�QZ|X , QZ

�⇤

where the introduction of the variance operator follows from the fact that EXN

h
q̂N (z)
q(z)

i
= 1.

For the KL-divergence, using the fact that KL  �2 (Lemma 2.7 of [2]) yields

E
XN

h
KL

⇣
Q̂N

Z kPZ

⌘i
�KL (QZkPZ) = E

XN

h
KL

⇣
Q̂N

Z kQZ

⌘i

 E
XN

h
�2�Q̂N

Z , QZ

�i

=
1

N
E
X

⇥
�2�QZ|X , QZ

�⇤

= O

✓
1

N

◆
,
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where the first equality can be verified by using the definition of KL and the fact that QZ = EXN Q̂N

Z .

For Total Variation, we have

E
XN

h
TV

⇣
Q̂N

Z kPZ

⌘i
� TV (QZkPZ)  E

XN

h
TV

⇣
Q̂N

Z kQZ

⌘i

 1p
2

r
E

XN

h
KL

⇣
Q̂N

Z
kQZ

⌘i

= O

✓
1p
N

◆
,

where the first inequality holds since TV is a metric and thus obeys the triangle inequality, and the second
inequality follows by Pinsker’s inequality combined with concavity of

p
x (Lemma 2.5 of [2]).

For Df� (including Jenson-Shannon) using the fact that D1/2
f�

satisfies the triangular inequality, we apply the

second part of Lemma 1 in combination with the fact that Df�

⇣
Q̂N

Z kQZ

⌘
  (�) TV

⇣
Q̂N

Z kQZ

⌘
for some

scalar  (�) (Theorem 2 of [32]) to obtain

E
XN

h
Df�

⇣
Q̂N

Z kPZ

⌘i
�Df� (QZkPZ)  O

✓
1

N1/4

◆
.

Although the squared Hellinger divergence is a member of the f�-divergence family, we can use the tighter
bound H

2
⇣
Q̂N

Z kQZ

⌘
 KL

⇣
Q̂N

Z kQZ

⌘
(Lemma 2.4 of [2]) in combination with Lemma 1 to obtain

E
XN

h
H

2
⇣
Q̂N

Z kPZ

⌘i
�H

2
(QZkPZ)  O

✓
1p
N

◆
.

B.3 Upper bounds of f

We will make use of the following lemmas in the proof of Theorem 2 and 3.
Lemma 2. Let f0(x) = x log x� x+ 1, corresponding to Df0 = KL. Write g(x) = f 02

0 (x) = log
2
(x).

For any 0 < � < 1, the function

h�(x) :=

(
g(�) + xg0(e) x 2 [0, e]

g(�) + eg0(e) + g(x)� g(e) x 2 [e,1)

is an upper bound of g(x) on [�,1), and is concave and non-negative on [0,1).

Proof. First observe that h� is concave. It has continuous first and second derivatives:

h0
�(x) =

(
g0(e) x 2 [0, e]

g0(x) x 2 [e,1)
h00
� (x) =

(
0 x 2 [0, e]

g00(x) x 2 [e,1)

Note that g00(x) =
2
x2 � 2 log(x)

x2  0 for x � e and g00(e) = 0. Therefore h00
� (x) has non-positive second

derivative on [0,1) and is thus concave on this set.

To see that h�(x) is an upper bound of g(x) for x 2 [�,1), use the fact that g0(x) = 2 log(x)
x

and observe that

h�(x)� g(x) =

(
log

2
(�) + 2x

e
� log

2
(x) x 2 [�, e]

log
2
(�) + 1 x 2 [e,1)

> 0.

To see that h�(x) is non-negative on [0,1), note that h�(x) > g(x) � 0 on [�,1). Moreover, g0(e) = 2/e > 0,
and so for x 2 [0, �] we have that h�(x) = g(�) + 2x/e � g(�) � 0.

Lemma 3. Let f0(x) = 2(1 �
p
x) corresponding to the square of the Hellinger distance. Write g(x) =

f 02
0 (x) = (1� 1p

x
)
2. For any 0 < � < 1, the function

h�(x) =
1

�
(x� 1)

2

is an upper bound of g(x) on [�,1).
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Proof. For x = 1, we have g(1) = h�(1). For x 6= 1,

0  1

�
(x� 1)

2 � (1� 1p
x
)
2

()
p
�  x� 1

1� 1p
x

If x 2 [�, 1) then

x� 1

1� 1p
x

=
p
x ·

1p
x
�

p
x

1p
x
� 1

�
p
x �

p
�.

If x 2 (1,1) then

x� 1

1� 1p
x

=
p
x ·

p
x� 1p

x

1� 1p
x

�
p
x �

p
�.

Thus g(x)  h�(x) for x 2 [�,1).

Lemma 4. Let f0(x) = 4
1�↵2

⇣
1� x

1+↵
2

⌘
� 2(x�1)

↵�1 corresponding to the ↵-divergence with ↵ 2 (�1, 1).

Write g(x) = f 02
0 (x) = 4

(↵�1)2

⇣
x

↵�1
2 � 1

⌘2
. For any 0 < � < 1, the function

h�(x) =
4

⇣
�

↵�1
2 � 1

⌘2

(↵� 1)2(� � 1)2
· (x� 1)

2

is an upper bound of g(x) on [�,1).

Proof. For x = 1, we have g(1) = h�(1). Consider now the case that x � � and x 6= 1. Since 0 < � < 1, we
have that 1 � � > 0. And because (↵ � 1)/2 2 (�1, 0), we have that �

↵�1
2 � 1 > 0. It follows by taking

square roots that

g(x)  h�(x)

() d(x) :=
x

↵�1
2 � 1

1� x
 �

↵�1
2 � 1

1� �

Now, d(x) is non-increasing for x > 0. Indeed,

d0(x) =
�1

(1� x)2


1� 3� ↵

2
x

↵�1
2 +

1� ↵
2

x
↵�3
2

�

and it can be shown by differentiating that the term inside the square brackets attains its minimum at x = 1 and
is therefore non-negative. Since (1�x)2 � 0 it follows that d0(x)  0 and so d(x) is non-increasing. From this
fact it follows that d(x) attains its maximum on x 2 [�,1) at x = �, and thus the desired inequality holds.

Lemma 5. Let f0(x) = (1 + x) log 2 + x log x� (1 + x) log (1 + x) corresponding to the Jensen-Shannon
divergence. Write g(x) = f 02

0 (x) = log
2
2 + log

2
⇣

x

1+x

⌘
+ 2 log 2 log

⇣
x

1+x

⌘
. For 0 < � < 1, the function

h�(x) = g(�) + 4 log
2
2

is an upper bound of g(x) on [�,1).

Proof. For x � 1, x

x+1 2 [0.5, 1) and so log

⇣
x

1+x

⌘
2 [� log 2, 0). Therefore g(x) 2

�
0, 4 log2 2

⇤
for x > 1.

It follows that for any value of �, h�(x) � g(x) for x � 1. f 0
0(1) = 0 and by differentiating again it can be

shown that f 00
0 (x) > 0 for x 2 (0, 1). Thus f 0

0(x) < 0 and is increasing on (0, 1) and so g(x) > 0 and is
decreasing on (0, 1). Thus h�(x) > g(�) � g(x) for x 2 [�, 1).

Lemma 6. Let f0(x) = 1
1� 1

�

h�
1 + x�

� 1
� � 2

1
� �1

(1 + x)
i

corresponding to the f�-divergence introduced

in [32]. We assume � 2
�
1
2 ,1

�
\ {1}. Write g(x) = f 02

0 (x) =
⇣

�

1��

⌘2 �
1 + x��

� 1��
� � 2

1
� �1

�2
.

If � 2
�
1
2 , 1
�
, then limx!1 g(x) exists and is finite and for any 0 < � < 1, we have that h�(x) :=

g(�) + limx!1 g(x) � g(x) for all x 2 [�,1).

If � 2 (1,1), then limx!0 g(x) and limx!1 g(x) both exist and are finite, and g(x) 
max{limx!0 g(x), limx!1 g(x)} for all x 2 [0,1).
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Proof. For any � 2
�
1
2 ,1

�
\ {1}, we have that f 00

0 (x) =
�

(1��)2


1

x�+1

�
1 + x��

� 1�2�
�

�
> 0 for x > 0.

Since f 0
0(1) = 0, it follows that f 0

0(x) is increasing everywhere, negative on (0, 1) and positive on (1,1). It
follows that g(x) is decreasing on (0, 1) and increasing on (1,1). � > 0 means that 1 + x�� ! 1 as x ! 1.
Hence g(x) is bounded above and increasing in x, thus limx!1 g(x) exists and is finite.

For � 2 (
1
2 , 1),

1��

�
> 0. It follows that

�
1 + x��

� 1��
� grows unboundedly as x ! 0, and hence so does

g(x). Since g(x) is decreasing on (0, 1), for any 0 < � < 1 we have that h�(x) � g(x) on (0, 1). Since g(x)
is increasing on (1,1) we have that h�(x) � limx!1 g(x) � g(x) on (1,1).

For � 2 (1,1), 1��

�
< 0. It follows that

�
1 + x��

� 1��
� ! 0 as x ! 0, and hence limx!0 g(x)

exists and is finite. Since g(x) is decreasing on (0, 1) and increasing on (1,1), it follows that g(x) 
max{limx!0 g(x), limx!1 g(x)} for all x 2 [0,1)

B.4 Proof of Theorem 2

Theorem 2 (Rates of the bias). If EX⇠QX ,Z⇠PZ

⇥
q4(Z|X)/p4(Z)

⇤
is finite then the bias

EXN

⇥
Df (Q̂

N

Z kPZ)
⇤
�Df (QZkPZ) decays with rate as given in the second row of Table 1.

Proof. For each f -divergence we will work with the function f0 which is decreasing on (0, 1) and increasing
on (1,1) with Df = Df0 (see Appendix A).

For shorthand we will sometimes use the notation kq(z|X)/p(z)k2
L2(PZ) =

R
q(z|X)2

p(z)2
p(z)dz and

kq2(z|X)/p2(z)k2
L2(PZ) =

R
q(z|X)4

p(z)4
p(z)dz.

We will denote C := EX⇠QX ,Z⇠PZ

⇥
q4(Z|X)/p4(Z)

⇤
which is finite by assumption. This implies that the

second moment B := EX⇠QX ,Z⇠PZ

⇥
q2(Z|X)/p2(Z)

⇤
is also finite, thanks to Jensen’s inequality:

E[Y 2
] = E[

p
Y 4] 

p
E[Y 4].

The case that Df is the �2-divergence: In this case, using f(x) = x2 � 1, it can be seen that the bias is
equal to

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ) = E

XN

"Z

Z

✓
q̂N (z)� q(z)

p(z)

◆2

dP (z)

#
. (6)

Indeed, expanding the right hand side and using the fact that EXN q̂N (z) = q(z) yields

E
XN

Z

Z

q̂2N (z)� 2q̂N (z)q(z) + q2(z)
p2(z)

dP (z)

�

= E
XN

Z

Z

q̂2N (z)� q2(z)
p2(z)

dP (z)

�

= E
XN

Z

Z

✓
q̂2N (z)
p2(z)

� 1

◆
dP (z)

�
�
Z

Z

✓
q2(z)
p2(z)

� 1

◆
dP (z)

= E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ) .

Again using the fact that EXN q̂N (z) = q(z), observe that taking expectations over XN in the right hand size of
Equation 6 above (after changing the order of integration) can be viewed as taking the variance of q̂N (z)/p(z),
the average of N i.i.d. random variables, and so

E
XN

"Z

Z

✓
q̂N (z)� q(z)

p(z)

◆2

dP (z)

#
=

Z

Z

E
XN

"✓
q̂N (z)� q(z)

p(z)

◆2
#
dP (z)

=
1

N

Z

Z

E
X

"✓
q(z|X)� q(z)

p(z)

◆2
#
dP (z)

=
1

N
E
X

�2 �QZ|XkPZ

�
� 1

N
�2

(QZkPZ)

 B � 1

N
.
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The case that Df is the Total Variation distance or Df� with � > 1: For these divergences, we
only need the condition that the second moment EX kq(z|X)/p(z)k2

L2(PZ) < 1 is bounded.

E
XN

h
Df0

⇣
Q̂N

Z kPZ

⌘i
�Df0 (QZkPZ)

= E
XN

E
PZ


f0

✓
q̂N (z)
p(z)

◆
� f0

✓
q(z)
p(z)

◆�

 E
XN

E
PZ

✓
q̂N (z)� q(z)

p(z)

◆
f 0
0

✓
q̂N (z)
p(z)

◆�



vuut E
XN

E
PZ

"✓
q̂N (z)� q(z)

p(z)

◆2
#

| {z }
(i)

⇥

s

E
XN

E
PZ


f 02
0

✓
q̂N (z)
p(z)

�◆

| {z }
(ii)

where the first inequality holds due to convexity of f0 and the second inequality follows by Cauchy-Schwartz.
Then,

(i)2 = E
PZ

VarXN


q̂N (z)
p(z)

�

=
1

N
E
PZ

VarX

q(z|X)

p(z)

�

 1

N
E
X

E
PZ


q2(z|X)

p2(z)

�
=

1

N
E
X

����
q(z|X)

p(z)

����
2

L2(PZ)

=) (i) = O

✓
1p
N

◆
.

For Total Variation, f 0
0
2
(x)  1, so

(ii)2  1.

For Df� with � > 1, Lemma 6 shows that f 02
0 (x)  max{limx!0 f

02
0 (x), limx!1 f 02

0 (x)} < 1 and so

(ii)2 = O(1).

Thus, for both cases considered,

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)  O

✓
1p
N

◆
.

All other divergences. We start by writing the difference as the sum of integrals over mutually exclusive
events that partition Z . Denoting by �N and �N scalars depending on N , write

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)

= E
XN

Z
f0

✓
q̂N (z)
p(z)

◆
� f0

✓
q(z)
p(z)

◆
dPZ(z)

�

= E
XN

Z
f0

✓
q̂N (z)
p(z)

◆
� f0

✓
q(z)
p(z)

◆
1n

q̂N (z)
p(z)

�N and q(z)
p(z)

�N

odPZ(z)

�
A

+ E
XN

Z
f0

✓
q̂N (z)
p(z)

◆
� f0

✓
q(z)
p(z)

◆
1n

q̂N (z)
p(z)

�N and q(z)
p(z)

>�N

odPZ(z)

�
B

+ E
XN

Z
f0

✓
q̂N (z)
p(z)

◆
� f0

✓
q(z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

odPZ(z)

�
. C

Consider each of the terms A , B and C separately.

Later on, we will pick �N < �N to be decreasing in N . In the worst case, N > 8 will be sufficient to ensure
that �N < 1, so in the remainder of this proof we will assume that �N , �N < 1.
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A : Recall that f0(x) is decreasing on the interval [0, 1]. Since �N , �N  1, the integrand is at most
f0(0)� f0(�N ), and so

A  f0(0)� f0(�N ).

B : The integrand is bounded above by f0(0) since �N < 1, and so

B  f0(0)⇥ PZ,XN

⇢
q̂N (z)
p(z)

 �N and
q(z)
p(z)

> �N

�

| {z }
⇤

.

We will upper bound PZ,XN ⇤ : observe that if �N > �N , then ⇤ =)
��� q̂N (z)�q(z)

p(z)

��� � �N � �N . It thus
follows that

PZ,XN ⇤  PZ,XN

⇢����
q̂N (z)� q(z)

p(z)

���� � �N � �N

�

= EZ


PXN

⇢����
q̂N (z)� q(z)

p(z)

���� � �N � �N | Z
��

 EZ

2

4
VarXN

h
q̂N (z)
p(z)

i

(�N � �N )2

3

5

=
1

N(�N � �N )2
E
Z


E
X


q2(z|X)

p2(z)

�
� q2(z)

p2(z)

�

 1

N(�N � �N )2
E
Z

E
X


q2(z|X)

p2(z)

�


p
C

N(�N � �N )2
.

The second inequality follows by Chebyshev’s inequality, noting that EXN
q̂N (z)
p(z) =

q(z)
p(z) . The penultimate

inequality is due to dropping a negative term. The final inequality is due to the boundedness assumption

C = EX

��� q
2(z|X)
p2(z)

���
2

L2(PZ)
. We thus have that

B  f0(0)

p
C

N(�N � �N )2
.

C : Bounding this term will involve two computations, one of which (††) will be treated separately for each
divergence we consider.

C = E
XN

Z
f0

✓
q̂N (z)
p(z)

◆
� f0

✓
q(z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

odPZ(z)

�

 E
XN

Z ✓
q̂N (z)
p(z)

� q(z)
p(z)

◆
f 0
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

odPZ(z)

�
(Convexity of f )



vuut E
XN

E
Z

"✓
q̂N (z)
p(z)

� q(z)
p(z)

◆2
#

| {z }
(†)

⇥

s

E
XN

E
Z


f 02
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

o

�

| {z }
(††)

(Cauchy-Schwartz)
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Noting that EX

q(z|X)
p(z) =

q(z)
p(z) , we have that

(†)2 = E
Z

VarXN


q̂N (z)
p(z)

�

=
1

N
E
Z

VarX

q(z|X)

p(z)

�

 1

N
E
X

����
q(z|X)

p(z)

����
2

L2(PZ)

=) (†) 
p
Bp
N

where
p
B =

r
EX

��� q(z|X)
p(z)

���
2

L2(PZ)
is finite by assumption.

Term (††) will be bounded differently for each divergence, though using a similar pattern. The idea is to use the
results of Lemmas 2-6 in order to upper bound f 02

0 (x) with something that can be easily integrated.

KL. By Lemma 2, there exists a function h�N (x) that is positive and concave on [0,1) and is an upper
bound of f 02

0 (x) on [�N ,1) with h�N (1) = log
2
(�N ) +

2
e

.

(††)2 = E
XN

Z
f 02
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�
(h�N upper bounds f 02 on (�N ,1))

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
p(z)dz

�
(h�N non-negative on [0,1))

 E
XN


h�N

✓Z
q̂N (z)
p(z)

p(z)dz

◆�
(h�N concave)

= h�N (1)

= log
2
(�N ) +

2

e

=) (††) =
r

log
2
(�N ) +

2

e
.

Therefore,

C 
p
B

s
log

2
(�N ) +

2
e

N
.

Putting everything together,

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)

 A + B + C

 f0(0)� f0(�N ) + f0(0)

p
C

N (�N � �N )
2 +

p
B

s
log

2
(�N ) +

2
e

N

= �N � �N log �N +

p
C

N (�N � �N )
2 +

p
B

s
log

2
(�N ) +

2
e

N
.
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Taking �N =
1

N1/3 and �N =
2

N1/3 :

=
2

N1/3
� 2

N1/3
log

✓
2

N1/3

◆
+

p
C

N · 1
N2/3

+

p
B

vuut log
2
⇣

1
N1/3

⌘
+

2
e

N

=
2� 2 log 2

N1/3
+

2

3

logN

N1/3
+

p
C

N1/3
+

p
B

s
1
4 log

2
(N) +

2
e

N

= O

✓
logN

N1/3

◆

Squared-Hellinger. Lemma 3 provides a function h� that upper bounds f 02
(x) for x 22 [�,1).

(††)2 = E
XN

Z
f 02
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�
(h�N upper bounds f 02

0 on (�N ,1))

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
p(z)dz

�
(h�N non-negative on [0,1))

=
1

�N
E

XN
E
PZ

"✓
q̂N (z)
p(z)

� 1

◆2
#

 1

�N
E

XN
E
PZ

"✓
q̂N (z)
p(z)

◆2

+ 1

#

=
1

�N
+

1

�N
E

XN

"����
q̂N (z)
p(z)

����
2

L2(PZ)

#

 B + 1

�N

=) (††) =
p
B + 1p
�N

.

and thus

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)

 A + B + C

 f0(0)� f0(�N ) + f0(0)

p
C

N (�N � �N )
2 +

p
B
p
B + 1p

N�N

= 2
p
�N +

2
p
C

N (�N � �N )
2 +

p
B
p
B + 1p

N�N
.

Setting �N =
2

N2/5 and �N =
1

N2/5 yields

=
2

N1/5
+

2
p
C

N1/5
+

p
B
p
B + 1

N3/10

= O

✓
1

N1/5

◆

↵-divergence with ↵ 2 (�1, 1). Lemma 4 provides a function h� that upper bounds f 02
(x) for x 22

[�,1).

20



(††)2 = E
XN

Z
f 02
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�
(h�N upper bounds f 02

0 on (�N ,1))

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
p(z)dz

�
(h�N non-negative on [0,1))

=

4

✓
�

↵�1
2

N
� 1

◆2

(↵� 1)2(�N � 1)2
E

XN
E
PZ

"✓
q̂N (z)
p(z)

� 1

◆2
#


4

✓
�

↵�1
2

N
� 1

◆2

(↵� 1)2(�N � 1)2
E

XN
E
PZ

"✓
q̂N (z)
p(z)

◆2

+ 1

#

=

4

✓
�

↵�1
2

N
� 1

◆2

(↵� 1)2(�N � 1)2

 
1 + E

XN

"����
q̂N (z)
p(z)

����
2

L2(PZ)

#!


4(1 +B)

✓
�

↵�1
2

N
� 1

◆2

(↵� 1)2(�N � 1)2

=) (††) =
2
p
1 +B

✓
�

↵�1
2

N
� 1

◆

(↵� 1)(�N � 1)
.

and thus

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)

 A + B + C

 f0(0)� f0(�N ) + f0(0)

p
C

N (�N � �N )
2 +

2
p
B
p
1 +B

✓
�

↵�1
2

N
� 1

◆

(↵� 1)(�N � 1)
p
N

 k1�
↵+1
2

N
+ k2�N +

k3
N(�N � �N )2

+
k4�

↵�1
2

Np
N

.

where each ki is a positive constant independent of N .

Setting �N =
2

N

2
↵+5

and �N =
1

N

2
↵+5

yields

= k1

N
↵+1
↵+5

+
k2

N
2

↵+5

+
k3

N
↵+1
↵+5

+
k4

N
7�↵

2(↵+5)

= O

✓
1

N
↵+1
↵+5

◆

Jensen-Shannon. Lemma 5 provides a function h� that upper bounds f 02
(x) for x 2 [�,1).
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(††)2 = E
XN

Z
f 02
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�
(h�N upper bounds f 02

0 on (�N ,1))

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
p(z)dz

�
(h�N non-negative on [0,1))

= 5 log
2
2 + log

2

✓
�N

1 + �N

◆
+ 2 log 2 log

✓
�N

1 + �N

◆

= 5 log
2
2 + log

2

✓
1 +

1

�N

◆
� 2 log 2 log

✓
1 +

1

�N

◆

 5 log
2
2 + 5 log

2

✓
1 +

1

�N

◆
+ 10 log 2 log

✓
1 +

1

�N

◆

= 5

✓
log

✓
1 +

1

�N

◆
� log 2

◆2

=) (††) 
p
5 log

✓
1 +

1

�N

◆
�

p
5 log 2


p
5 log

✓
2

�N

◆
�

p
5 log 2 (since �N < 1)

= �
p
5 log(�N ).

and thus

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)

 A + B + C

 f0(0)� f0(�N ) + f0(0)

p
C

N (�N � �N )
2 �

p
5
p
B log �Np
N

 �N log

✓
1 + �N
2�N

◆
+ log(1 + �N ) +

log 2
p
C

N (�N � �N )
2 �

p
5
p
B log �Np
N

Using the fact that �N log(1 + �N )  �N log 2 for �N < 1 and log(1 + �N )  �N , we can upper bound the
last line with

 �N (log 2 + 1)� �N log �N +
log 2

p
C

N (�N � �N )
2 �

p
5
p
B log �Np
N

Setting �N =
2

N

1
3

and �N =
1

N

1
3

yields

=
k1

N
1
3

+
k2 logN

N
1
3

+
k3

N
1
3

+
k4 logN

N
1
2

= O

✓
logN

N
1
3

◆

where the ki are positive constants independent of N .

f�-divergence with � 2 (
1
2 , 1). Lemma 6 provides a function h� that upper bounds f 02

(x) for x 2 [�,1).
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(††)2 = E
XN

Z
f 02
0

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
1n

q̂N (z)
p(z)

>�N

op(z)dz

�
(h�N upper bounds f 02

0 on (�N ,1))

 E
XN

Z
h�N

✓
q̂N (z)
p(z)

◆
p(z)dz

�
(h�N non-negative on [0,1))

=

✓
�

1� �

◆2
"⇣

1 + ���

N

⌘ 1��
� � 2

1��
�

#2
+

�2

(1� �)2

⇣
2

1��
�

⌘2

 2

✓
�

1� �

◆2
"⇣

1 + ���

N

⌘ 1��
�

+ 2
1��
�

#2

 2

✓
�

1� �

◆2
"
2

⇣
2���

N

⌘ 1��
�

#2
(since �N < 1 and � > 0 implies ���

N
> 1)

= 2
2+�
�

✓
�

1� �

◆2

�2(��1)
N

=) (††)  2
2+�
2�

✓
�

1� �

◆
���1
N

(noting that �
2

(1��)2

⇣
2

1
� �1

⌘2
= limx!1 f 02

0 (x) as defined in Lemma 6). Thus

E
XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
�Df (QZkPZ)

 A + B + C

 f0(0)� f0(�N ) + f0(0)

p
C

N (�N � �N )
2 +

p
Bp
N

2
2+�
2�

✓
�

1� �

◆
���1
N

 �
1� �


1�

⇣
1 + ��

N

⌘1/�
+ 2

1��
� �N

�
+ f0(0)

p
C

N (�N � �N )
2 +

p
Bp
N

2
2+�
2�

✓
�

1� �

◆
���1
N

 �
1� �

2
1��
� �N + f0(0)

p
C

N (�N � �N )
2 +

p
Bp
N

2
2+�
2�

✓
�

1� �

◆
���1
N

= k1�N +
k2

N(�N � �N )2
+

k3�
��1
Np
N

where the ki are positive constants independent of N .

Setting �N =
2

N

1
3

and �N =
1

N

1
3

yields

=
k1

N
1
3

+
k2

N
1
3

+
k3

N
1
2+ ��1

3

= O

✓
1

N
1
3

◆

B.5 Proof of Theorem 3

We will make use of McDiarmid’s theorem in our proof of Theorem 3:
Theorem (McDiarmid’s inequality). Suppose that X1, . . . , XN 2 X are independent random variables and
that � : XN ! R is a function. If it holds that for all i 2 {1, . . . , N} and x1, . . . , xN , xi0 ,

|�(x1, . . . , xi�1, xi, xi+1, . . . , xN )� �(x1, . . . , xi�1, xi0 , xi+1, . . . , xN )|  ci,
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then

P (�(X1, . . . , XN )� E� � t)  exp

 
�2t2
P

N

i=1 c
2
i

!

and

P (�(X1, . . . , XN )� E� � �t)  exp

 
�2t2
P

N

i=1 c
2
i

!

In our setting we will consider �(XN
) = Df

⇣
Q̂N

Z kPZ

⌘
.

Theorem 3 (Tail bounds for RAM). Suppose that �2
�
QZ|xkPZ

�
 C < 1 for all x and for some constant

C. Then, the RAM estimator Df (Q̂
N

Z kPZ) concentrates to its mean in the following sense. For N > 8 and for
any � > 0, with probability at least 1� � it holds that���Df (Q̂

N

Z kPZ)� EXN

⇥
Df (Q̂

N

Z kPZ)
⇤���  K ·  (N)

p
log(2/�),

where K is a constant and  (N) is given in Table 2.

Proof (Theorem 3). We will show that Df

⇣
Q̂N

Z kPZ

⌘
exhibits the bounded difference property as in the

statement of McDiarmid’s theorem. Since q̂N (z) is symmetric in the indices of XN , we can without loss
of generality consider only the case i = 1. Henceforth, suppose XN ,XN 0 are two batches of data with
XN

1 6= XN 0
1 and XN

i = XN 0
i for all i > 1. For the remainder of this proof we will write explicitly the

dependence of Q̂N

Z on XN . We will write Q̂N

Z (XN
) for the probability measure and q̂N (z;XN

) for its density.

We will show that
���Df

⇣
Q̂N

Z (XN
)kPZ

⌘
�Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘���  cN where cN is a constant depending
only on N . From this fact, McDiarmid’s theorem and the union bound, it follows that:

P
✓����Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� E

XN
Df

⇣
Q̂N

Z (XN
)kPZ

⌘���� � t

◆

= P
✓
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� E

XN
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� t or

Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� E

XN
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
 �t

◆

 P
✓
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� E

XN
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� t

◆
+

P
✓
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� E

XN
Df

⇣
Q̂N

Z (XN
)kPZ

⌘
 �t

◆

 2 exp

✓
�2t2

Nc2
N

◆
.

Observe that by setting t =
q

Nc
2
N

2 log
�
2
�

�
,

the above inequality is equivalent to the statement that for any � > 0, with probability at least 1� �
����Df

⇣
Q̂N

Z (XN
)kPZ

⌘
� E

XN
Df

⇣
Q̂N

Z (XN
)kPZ

⌘���� <
r

Nc2
N

2

s

log

✓
2

�

◆
.

We will show that cN  kN�1/2 (N) for k and  (N) depending on f . The statement of Theorem 3 is of this
form. Note that in order to show that���Df

⇣
Q̂N

Z (XN
)kPZ

⌘
�Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘���  cN , (7)

it is sufficient to prove that

Df

⇣
Q̂N

Z (XN
)kPZ

⌘
�Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘
 cN (8)

since the symmetry in XN $ XN 0 implies that

�Df

⇣
Q̂N

Z (XN
)kPZ

⌘
+Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘
 cN (9)

and thus implies Inequality 7. The remainder of this proof is therefore devoted to showing that Inequality 8 holds
for each divergence.

We will make use of the fact that �2
�
QZ|xkPZ

�
 C =)

�� q(z|x)
p(z)

��
L2(PZ)

 C + 1
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The case that Df is the �2-divergence, Total Variation or Df� with � > 1:

Df

⇣
Q̂N

Z (XN
)kPZ

⌘
�Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘

=

Z
f0

 
dQ̂N

Z (XN
)

dPZ

(z)

!
� f0

 
dQ̂N

Z (XN 0
)

dPZ

(z)

!
dPZ(z)


Z  

q̂N (z;XN
)� q̂N (z;XN 0

)

p(z)

!
f 0
0

✓
q̂N (z;XN

)

p(z)

◆
dPZ(z)



�����
q̂N (z;XN

)� q̂N (z;XN 0
)

p(z)

�����
L2(PZ)

⇥
����f

0
0

✓
q̂N (z;XN

)

p(z)

◆����
L2(PZ)

(Cauchy-Schwartz)

=

����
1

N
q(z|X1)� q(z|X 0

1)

p(z)

����
L2(PZ)

⇥
����f

0
0

✓
q̂N (z;XN

)

p(z)

◆����
L2(PZ)

 1

N

 ����
q(z|X1)

p(z)
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L2(PZ)

+

����
q(z|X 0

1)

p(z)

����
L2(PZ)

!
⇥
����f

0
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q̂N (z;XN

)

p(z)

◆����
L2(PZ)

 2(C + 1)

N

����f
0
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✓
q̂N (z;XN

)

p(z)

◆����
L2(PZ)

.

By similar arguments as made in the proof of Theorem 2 considering the term (ii),
���f 0

0

⇣
q̂N (z;XN )

p(z)

⌘���
L2(PZ)

=

r
EZ f 0

0
2
⇣

q̂N (z;XN )
p(z)

⌘
= O(1) thus we have the difference is upper-bounded by cN =

k

N
for some constant k.

The only modification needed to the proof in Theorem 2 is the omission of all occurrences of EXN .

This holds for any N > 0.

All other divergences. Similar to the proof of Theorem 2, we write the difference as the sum of integrals
over different mutually exclusive events that partition Z . Denoting by �N and �N scalars depending on N , we
have that
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⇣
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Z (XN
)kPZ

⌘
�Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘

=

Z
f0

 
dQ̂N

Z (XN
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dPZ

(z)

!
� f0

 
dQ̂N

Z (XN 0
)

dPZ

(z)

!
dPZ(z)

=

Z
f0

 
dQ̂N

Z (XN
)

dPZ

(z)

!
� f0

 
dQ̂N

Z (XN 0
)

dPZ

(z)

!
1(

dQ̂N
Z

(XN )

dPZ
(z)�N and

dQ̂N
Z

(XN 0)
dPZ

(z)�N

)dPZ(z)

A

+

Z
f0

 
dQ̂N

Z (XN
)

dPZ

(z)

!
� f0

 
dQ̂N

Z (XN 0
)

dPZ

(z)

!
1(

dQ̂N
Z

(XN )

dPZ
(z)�N and

dQ̂N
Z

(XN 0)
dPZ

(z)>�N

)dPZ(z)

B

+

Z
f0

 
dQ̂N

Z (XN
)

dPZ

(z)

!
� f0

 
dQ̂N

Z (XN 0
)

dPZ

(z)

!
1(

dQ̂N
Z

(XN )

dPZ
(z)>�N

)dPZ(z). C

We will consider each of the terms A , B and C separately.

Later on, we will pick �N and �N to be decreasing in N such that �N < �N . We will require N sufficiently
large so that �N < 1, so in the rest of this proof we will assume this to be the case and later on provide lower
bounds on how large N must be to ensure this.

A : Recall that f0(x) is decreasing on the interval [0, 1]. Since �N , �N  1, the integrand is at most
f0(0)� f0(�N ), and so

A  f0(0)� f0(�N )
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B : Since �N  1, the integrand is at most f0(0) and so

B  f0(0)⇥ PZ

(
dQ̂N

Z (XN
)

dPZ

(z)  �N and
dQ̂N

Z (XN 0
)

dPZ

(z) > �N

)

| {z }
⇤

We will bound PZ ⇤ = 0 using Chebyshev’s inequality. Noting that

q̂N (z;XN
)

p(z)
=

q̂N (z;XN 0
)

p(z)
� 1

N
q(z|X 0

1)

p(z)
+

1

N
q(z|X1)

p(z)
,

and using the fact that q(z|X1)
p(z) > 0 it follows that

⇤ =) �N � 1

N
q(z|X 0

1)

p(z)
+

1

N
q(z|X1)

p(z)
< �N

() (�N � �N )N +
q(z|X1)

p(z)
<

q(z|X 0
1)

p(z)

=) (�N � �N )N <
q(z|X 0

1)

p(z)

=) (�N � �N )N � 1 <
q(z|X 0

1)

p(z)
� 1.

where the penultimate line follows from the fact that q(z|X1)/p(z) � 0. It follows that

PZ ⇤  PZ

⇢
q(z|X 0

1)

p(z)
� 1 > (�N � �N )N � 1

�

 PZ

⇢����
q(z|X 0

1)

p(z)
� 1

���� > (�N � �N )N � 1

�
.

Denote by �2
(X) = VarZ

h
q(z|X)
p(z)

i
= EZ

q
2(z|X)
p2(z)

� 1  C. We have by Chebyshev that for any t > 0,

PZ

⇢����
q(z|X)

p(z)
� 1

���� > t

�
 �2

(X)

t2

and so setting t = (�N � �N )N � 1 yields

PZ ⇤  �2
(X)

((�N � �N )N � 1)
2  C

((�N � �N )N � 1)
2

It follow that

B  f0(0)
C

((�N � �N )N � 1)
2

C : Similar to the proof of Theorem 2, we can upper bound this term by the product of two terms, one of
which is independent of the choice of divergence. The other term will be treated separately for each divergence
considered.
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C =

Z
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◆
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)
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
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✓
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=
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����
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����
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)

The term ⇤ will be treated separately for each divergence.

KL: By Lemma 2, there exists a function h�N (x) that is positive and concave on [0,1) and is an upper
bound of f 02

0 (x) on [�N ,1) with h�N (1) = log
2
(�N ) +

2
e

.

⇤ 2 
Z

h�N

✓
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
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◆
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= h�N (1)

= log
2
(�N ) +

2

e

=) C  2(C + 1)

N

r
log

2
(�N ) +

2

e
.

Putting together the separate integrals and setting �N =
1

N2/3 and �N =
2

N2/3 , we have that
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where k1, k2 and k3 are constants depending on C. The second inequality holds if N1/3 � 1 > N
1/3

3 ()
N >

�
3
2

�3
< 4 and the third inequality holds if N � 4

The assumption that �N , �N  1 holds if N > 2
3/2 and so holds if N � 3.

This leads to Nc2N =
log2 N

N1/3 for N > 3.

Squared Hellinger. In this case similar reasoning to the other divergences leads to a bound that is worse
than O

⇣
1p
N

⌘
and thus Nc2N is bigger than O(1) leading to a trivial concentration result.

↵-divergence with ↵ 2 (
1
3 , 1). Following similar reasoning to the proof of Theorem 2 for the ↵-divergence

case, we use the function h�N (x) provided by Lemma 4 to derive the following upper bound:
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N
4

↵+5

+
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+
k4

N
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 k1 + k2 + k3 + k4

N
2↵+2
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where t is any positive number and where the second inequality holds if N
2↵+2
↵+5 � 1 > N

2↵+2
↵+5

t
() N >

(
t

t�1 )
↵+5

2↵+21 . For ↵ 2 (
1
3 , 1) we have ↵+5

2↵+2 2 (
3
2 , 2). If we take t = 100 then N > 1 suffices for any ↵.

The third inequality holds if 1� �N > 1
2 () N > 2

↵+5
4 and so holds if N > 3.

The assumption that �N , �N  1 holds if N > 4
↵+5
4  8 and so holds if N > 8.

Thus, this leads to Nc2N =
k

N

3↵�1
↵+5

for N > 8.

Jensen-Shannon. Following similar reasoning to the proof of Theorem 2 for the ↵-divergence case, we use
the function h�N (x) provided by Lemma 5 to derive the following upper bound:

C  2(C + 1)

N
·
p
5 log

✓
1

�N

◆
.

Setting �N =
1

N2/3 and �N =
2

N2/3 ,

28



Df

⇣
Q̂N

Z (XN
)kPZ

⌘
�Df

⇣
Q̂N

Z (XN 0
)kPZ

⌘

= A + B + C

 f0(0)� f0 (�N ) +
f0(0)C

((�N � �N )N � 1)
2 +

2(C + 1)

N
· log

✓
1

�N

◆

 �N log

✓
1 + �N
2�N

◆
+ log(1 + �N ) +

f0(0)C

((�N � �N )N � 1)
2 +

2(C + 1)

N
· log

✓
1

�N

◆
.

Using the fact that log(1 + �N )  �N , we obtain the following upper bound:

 �2
N + �N (1� log 2)� �N log �N +
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logN
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where the penultimate inequality holds if N1/3 � 1 > N
1/3

10 () N >
�
10
9

�3 which is satisfied if N > 1 and
the last inequality is true if N > 1.

The assumption that �N , �N  1 holds if N > 2
3/2 and so holds if N � 3.

This leads to Nc2N =
log2 N

N1/3 for N > 2.

f�-divergence, � 2 (
1
2 , 1). Following similar reasoning to the proof of Theorem 2 for the ↵-divergence

case, we use the function h�N (x) provided by Lemma 6 to derive the following upper bound:
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Setting �N =
1

N2/3 and �N =
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1/3

10 () N >
�
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9

�3 which is satisfied if N > 1.

The assumption that �N , �N  1 holds if N > 2
3/2 and so holds if N � 3.

This leads to Nc2N =
1

N1/3 for N > 2.
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B.6 Full statement and proof of Theorem 4

The statement of Theorem 4 in the main text was simplified for brevity. Below is the full statement, followed by
its proof.

Theorem 4. For any ⇡,

E
ZM ,XN

⇥
D̂M

f (Q̂N

Z kPZ)
⇤
= E

XN

h
Df

⇣
Q̂N

Z kPZ

⌘i
.

If either of the following conditions are satisfied:

(i) ⇡(z|XN
) = p(z), EX

���f
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⌘���
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⌘
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2
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���
2
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then, denoting by  (N) the rate given in Table 2, we have

VarZM ,XN

h
D̂M

f (Q̂N

Z kPZ)

i
= O

�
M�1�

+O
�
 (N)

2�

In proving Theorem 4 we will make use of the following lemma.

Lemma 7. For any f0(x), the functions f0(x)2 and f0(x)
2

x
are convex on (0,1).

Proof. To see that f0(x)2 is convex, observe that

d2

dx2
f0(x)

2
= 2

�
f0(x)f

00
0 (x) + f 0

0(x)
2�

All of these terms are postive for x > 0. Indeed, since f0(x) is convex for x > 0, f 00
0 (x) � 0. By construction

of f0, f0(x) � 0 for x > 0. Thus f0(x)2 has non-negative derivative and is thus convex on (0,1).

To see that f0(x)
2

x
is convex, observe that

d2

dx2

f0(x)
2

x
=

2

x

 
f0(x)f
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✓
f 0
0(x)�

f0(x)
x
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!
.

By the same arguments above, this is positive for x > 0 and thus f0(x)
2

x
is convex for x > 0.

Proof. (Theorem 4) For the expectation, observe that
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.

For the variance, by the law of total variance we have that
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Consider term (ii). The concentration results of Theorem 3 imply bounds on (ii), since for a random variable
X ,

VarX = E(X � EX)
2

=

Z 1

0

P
�
(X � EX)

2 > t
�
dt

=

Z 1

0
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It follows therefore that
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where  (N) is given by Table 2.

Next we consider (i) and show that it is bounded independent of N , and so the component of the variance due to
this term is O

�
1
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The penultimate inequality follows by application of Cauchy-Schwartz. The last inequality follows by Proposition
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The inequality follows by Cauchy-Schwartz. All terms are finite by assumption. Thus (i)  K < 1 for some
K independent of N .

Now consider the case that ⇡(z|XN
) = q̂N (z). Then, following similar (but algebraically more tedious)

reasoning to the previous case, it can be shown that
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where the inequality holds by assumption, it follows that
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where the first inequality holds by the definition of f0 and Cauchy-Schwartz.

Thus (i)  K < 1 for some K independent of N in both cases of ⇡.

B.7 Elaboration of Section 2.3: satisfaction of assumptions of theorems

Suppose that PZ is N (0, Id) and QZ|X is N (µ(X),⌃(X)) with ⌃ diagonal. Suppose further that there exist
constants K, ✏ > 0 such that kµ(X)k  K and ⌃ii(X) 2 [✏, 1] for all i.

By Lemma 8, it holds that �2
�
QZ|x, PZ

�
< 1 for all x 2 X . By compactness of the sets in which µ(X)

and ⌃(X) take value, it follows that there exists C < 1 such that �2
�
QZ|x, PZ

�
 C and thus the setting of

Theorem 3 holds.

A similar argument based on compactness shows that the density ratio is uniformly bounded in z and
x: q(z|x)/p(z)  C0 for some C0 < 1. It therefore follows that the condition of Theorem 2 holds:R
q4(z|x)/p4(z)dP (z) < C04 < 1.

We conjecture that the strong boundedness assumptions on µ(X) and ⌃(X) also imply the setting of Theorem 1
EX

⇥
�2
�
QZ|X , QZ

�⇤
< 1. Since the divergence QZ explicitly depends on the data distribution, this is more

difficult to verify than the conditions of Theorems 2 and 3.

The crude upper bound provided by convexity

E
X

⇥
�2�QZ|X , QZ

�⇤
 E

X

E
X0

⇥
�2�QZ|X , QZ|X0

�⇤

provides a sufficient (but very strong) set of assumptions under which it holds. Finiteness of the right hand side
above would be implied, for instance, by demanding that kµ(X)k  K and ⌃ii(X) 2 [

1
2 + ✏, 1] for all i.

C Empirical evaluation: further details

In this section with give further details about the synthetic and real-data experiments presented in Section 3.
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C.1 Synthetic experiments

C.1.1 Analytical expressions for divergences between two Gaussians

The closed form expression for the �2-divergence between two d-variate normal distributions can be found in
Lemma 1 of [29]:
Lemma 8.
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As a corollary, the following also holds:
Corollary 1. Chi square divergence between two d-variate Gaussian distributions both having covariance
matrices proportional to identity can be computed as:

�2�N (µ,�2Id),N (0,�2Id)
�
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!
d

e
kµk2
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assuming 2�2 > �2. Otherwise the divergence is infinite.

The squared Hellinger divergence between two Gaussians is given in [33]:
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The KL-divergence between two d-variate Gaussians is:
Lemma 10.
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C.1.2 Further experimental details

We take Q�

Z|X=x
= N

�
A�x+ b�, ✏

2Id
�

and PX = N (0, I20). This results in Q�

Z = N
�
b�, A�A

|
�
+ ✏2Id

�
.

We chose ✏ = 0.5 and used � 2 [�2, 2]. PZ = N (0, Id).

A� and b� were determined as follows: Define A1 to be the (d, 20)-dimensional matrix with 1’s on the main
diagonal, and let A0 be similarly sized matrix with entries randomly sampled i.i.d. unit Gaussians which is
then normalised to have unit Frobenius norm. Let v be a vector randomly sampled from the d-dimensional unit
sphere. We then set A� =

1
2A1 + �A0 and b� = �v.

A0 and v are sampled once for each dimension d2{1, 4, 16}, such that the within each column of Figure 1, the
distributions used are the same.

C.2 Real-data experiments

C.2.1 Variational Autoencoders (VAEs) and Wasserstein Autoencoders (WAEs)

Autoencoders are a general class of models typically used to learn compressed representations of high-
dimensional data. Given a data-space X and low-dimensional latent space Z , the goal is to learn an encoder
mapping X ! Z and generator (or decoder3) mapping Z ! X . The objectives used to train these two
components always involve some kind of reconstruction loss measuring how corrupted a datum becomes after
mapping through both the encoder and generator, and often some kind of regularization.

Representing by ✓ and ⌘ the parameters of the encoder and generator respectively, the objective functions of
VAEs and WAEs are:

3In the VAE literature, the encoder and generator are sometimes referred to as the inference network and
likelihood model respectively.
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LVAE
(✓, ⌘) = E

X


E

q✓(Z|X)
log p⌘(X|Z) + KL

⇣
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Z|XkPZ)

⌘�

LWAE
(✓, ⌘) = E

X

E
q✓(Z|X)

c(X,G⌘(Z)) + � ·D(Q✓

ZkPZ)

For VAEs, both encoder Q✓

Z|X and generator p⌘ are stochastic mappings taking an input and mapping it to a
distribution over the output space. In WAEs, only the encoder Q✓

Z|X is stochastic, while the generator G⌘ is
deterministic. c is a cost function, � is a hyperparameter and D is any divergence.

A common assumption made for VAEs is that the generator outputs a Gaussian distribution with fixed diagonal
covariance and mean µ(z) that is a function of the input z. In this case, the log p⌘(X|z) term can be written as
the l22 (i.e. square of the l2 distance) between X and its reconstruction after encoding and re-generating µ(z). If
the cost function of the WAE is chosen to be l22, then the left hand terms of the VAE and WAE losses are the
same. That is, in this particular case, LVAE and LWAE differ only in their regularizers.

The penalty of the VAE was shown by [19] to be equivalent to KL(Q✓

ZkPZ) + I(X,Z) where I(X,Z) is the
mutual information of a sample and its encoding. For the WAE penalty, there is a choice of which D(Q✓

ZkPZ)

to use; it must only be possible to practically estimate it. In the experiments used in this paper, we considered
models trained with the Maximum Mean Discrepency (MMD) [13], a kernel-based distance on distributions, and
a divergence estimated using a GAN-style classifier [12] leading to WAE-MMD and WAE-GAN respectively,
following [38].

C.2.2 Further experimental details

We took a corpus of VAE, WAE-GAN and WAE-MMD models that had been trained with a large variety of
hyperparameters including learning rate, latent dimension (32, 64, 128), architecture (ResNet/DCGAN), scalar
factor for regulariser, and additional algorithm-specific hyperparameters: kernel bandwidth for WAE-MMD
and learning rate of discriminator for WAE-GAN. In total, 60 models were trained of each type (WAE-MMD,
WAE-GAN and VAE) leading to 180 models in total.

The small subset of six models exposed in Figures 2 and 3 were selected by a heuristic that we next describe.
However, we note that qualitatively similar behaviour was found in all other models tested, and so the choice of
models to display was somewhat arbitrary; we describe it nonetheless for completeness.

Recall that the objective functions of WAEs and VAEs both include a divergence between Q✓

Z and PZ . We were
interested in considering models from the two extremes of the distribution matching: some models in which Q✓

Z

and PZ were close, some in which they were distant.

To determine whether Q✓

Z and PZ in a model are close, we made use of FID [18] scores as a proxy that is
independent of the particular divergences for training. The FID score between two distributions over images
is obtained by pushing both distributions through to an intermediate feature layer of the Inception network.
The resulting push-through distributions are approximated with Gaussians and the Fréchet distance between
them is calculated. Denote by G#(Q✓

Z) the distribution over reconstructed images, G#(PZ) the distribution
over model samples and QX the data distribution, where G is the generator and # denotes the push-through
operator. The quantity FID

�
QX , G#(Q✓

Z)
�

is a measure of quality (lower is better) of the reconstructed data,
while FID (QX , G#(PZ)) is a measure of quality of model samples.

The two FID scores being very different is an indication that PZ and Q✓

Z are different. In contrast, if the two
FID scores are similar, we cannot conclude that PZ and Q✓

Z are the same, though it provides some evidence
towards that fact. Therefore, in order to select a model in which matching between PZ and Q✓

Z is poor, we
pick one for which FID

�
QX , G#(Q✓

Z)
�

is small but FID (QX , G#(PZ)) is large (good reconstructions; poor
samples). In order to select a model in which matching between PZ and Q✓

Z is good, we pick one for both
FIDs are small (good reconstructions; good samples). We will refer to these settings as poor matching and good
matching respectively.

Our goal was to pick models according to the following criteria. The six chosen should include: two from each
model class (VAE, WAE-GAN, WAE-MMD), of which one from each should exhibit poor matching and one
good matching; two from each dimension d 2 {32, 64, 128}; three with the ResNet architecture and three with
the DCGAN architecture. A set of models satisfying these criteria were selected by hand, but as noted previously
we saw qualitatively similar results with the other models.

C.2.3 Additional results for squared Hellinger distance

Figure 3 we display similar results to those displayed in Figure 2 of the main paper but with the H2-divergence
instead of the KL. An important point is that H2

(A,B) 2 [0, 2] for any probability distributions A and B, and
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Figure 3: Estimating H2
(Q✓

Z
kPZ) in pretrained autoencoder models with RAM-MC as a function

of N for M = 10 (green) and M=1000 (red) compared to ground truth (blue). Lines and error
bars represent means and standard deviations over 50 trials. Plots depict log

�
2� D̂M

H2(Q̂N

Z
kPZ)

�

since H2 is close to 2 in all models. Omitted lower error bars correspond to error bars going to �1
introduced by log. Note that the approximately increasing behaviour evident here corresponds to the
expectation of RAM-MC decreasing as a function of N . Due to concavity of log, the decrease in
variance when increasing M manifests itself as the red line (M=1000) being consistently above the
green line (M=10).

due to considerations of scale we plot the estimated values log
�
2� D̂M

H2(Q̂N

Z kPZ)
�
. Decreasing bias in N of

RAM-MC therefore manifests itself as the lines increasing in Figure 3. Concavity of log means that the reduction
in variance when increasing M results in RAM-MC with M=1000 being above RAM-MC with M=10. Similar
to those presented in the main part of the paper, these results therefore also support the theoretical findings of
our work.

We additionally attempted the same experiment using the �2-divergence but encountered numerical issues. This
can be understood as a consequence of the inequality eKL(A,B) � 1  �2

(A,B) for any distributions A and B.
From Figure 2 we see that the KL-divergence reaches values higher than 1000 which makes the corresponding
value of the �2-divergence larger than can be represented using double-precision floats.
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