
Learning to Screen

Anonymous Author(s)
Affiliation
Address
email

Abstract

Imagine a large firm with multiple departments that plans a large recruitment.1

Candidates arrive one-by-one, and for each candidate the firm decides, based on her2

data (CV, skills, experience, etc), whether to summon her for an interview. The firm3

wants to recruit the best candidates while minimizing the number of interviews.4

We model such scenarios as an assignment problem between items (candidates)5

and categories (departments): the items arrive one-by-one in an online manner,6

and upon processing each item the algorithm decides, based on its value and the7

categories it can be matched with, whether to retain or discard it (this decision is8

irrevocable). The goal is to retain as few items as possible while guaranteeing that9

the set of retained items contains an optimal matching.10

We consider two variants of this problem: (i) in the first variant it is assumed that11

the n items are drawn independently from an unknown distribution D. (ii) In the12

second variant it is assumed that before the process starts, the algorithm has an13

access to a training set of n items drawn independently from the same unknown14

distribution (e.g. data of candidates from previous recruitment seasons). We give15

tight bounds on the minimum possible number of retained items in each of these16

variants. These results demonstrate that one can retain exponentially less items in17

the second variant (with the training set).18

Our algorithms and analysis utilize ideas and techniques from statistical learning19

theory and from discrete algorithms.20

1 Introduction21

Matching is the bread-and-butter of many real-life problems from the fields of computer science,22

operations research, game theory, and economics. Some examples include job scheduling where we23

assign jobs to machines, economic markets where we allocate products to buyers, online advertising24

where we assign advertisers to ad slots, assigning medical interns to hospitals, and many more.25

One particular example that motivates this work is the following example from labor markets. Imagine26

a firm that is planning a large recruitment. Candidates arrive one-by-one and the HR department27

immediately decides whether to summon them for an interview. Moreover, the firm has multiple28

departments, each requiring different skills and having a different target number of hires. Different29

employees have different subsets of the required skills, and thus fit only certain departments and30

with a certain quality. The firm’s HR department, following the interviews, decides which candidates31

to recruit and to which departments to assign them. The HR department has to maximize the total32

quality of the hired employees such that each department gets its required number of hires with33

the required skills. In addition, the HR uses data from the previous recruitment season in order to34

minimize the number of interviews while not compromising the quality of the solution.35

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

We study the following formulation of the problem above. We receive n items (candidates), where36

each item has a subset of d properties (departments) denoted by P1, . . . , Pd. We select k items out of37

the n, subject to d constraints of the form38

exactly ki of the selected items must satisfy a property Pi,39

where
∑d

i=1 ki = k and we assume that d � k� n. Furthermore, if item c possesses property Pi, then40

it has a value vi(c) associated with this property. Our goal is to compute a matching of maximum41

value that associates k items to the d properties subject to the constraints above.42

We consider matching algorithms in the following online setting. The algorithms receive n items43

online, drawn independently from D, and either reject or retain each item. Then, the algorithm44

utilizes the retained items and outputs an (approximately-)optimal feasible solution. We present a45

naive greedy algorithm that returns the optimal solution with probability at least 1 – δ and retains46

O(k log(k/δ)) items in expectation. We prove that no other algorithm with the same guarantee can47

retain less items in expectation.48

Thus, to further reduce the number of retained items, we add an initial preprocessing phase in which49

the algorithm learns an online policy from a training set. The training set is a single problem instance50

that consists of n items drawn independently from the same unknown distribution D. We address51

the statistical aspects of this problem and develop efficient learning algorithms. In particular, we52

define a class of thresholds-policies. Each thresholds-policy is a simple rule for deciding whether53

to retain an item. We present uniform convergence rates for both the number of items retained by a54

thresholds policy and the value of the resulting solution. We show that these quantities deviate from55

their expected value by order of
√

k (rather than an easier
√

n bound; recall that we assume k� n)56

which we prove using concentration inequalities and tools from VC-theory. Using these concentration57

inequalities, we analyze an efficient online algorithm that returns the optimal offline solution with58

probability at least 1 – δ, and retains a near-optimal O(k log log(1/δ)) number of items in expectation59

(compare with the O(k log(k/δ)) number of retained items when no training set is given).60

Related work. Our model is related to the online secretary problem in which one needs to select61

the best secretary in an online manner (see Ferguson, 1989). Our setting differs from this classical62

model due to the two-stage process and the complex feasibility constraints. Nonetheless, we remark63

that there are few works on the secretary model that allow delayed selection (see Vardi, 2015, Ezra64

et al., 2018) as well as matroid constraints [Babaioff et al., 2007]. These works differ from ours in65

the way the decision is made, the feasibility constraints and the learning aspect of receiving a single66

problem instance as a training example.67

Another related line of work in algorithmic economics studies the statistical learnability of pricing68

schemes (see e.g., Morgenstern and Roughgarden, 2015, 2016, Hsu et al., 2016, Balcan et al., 2018).69

The main difference of these works from ours is that our training set consists of a single “example”70

(namely the set of items that are used for training), and in their setting (as well as in most typical71

statistical learning settings) the training set consists of many i.i.d examples. This difference also affects72

the technical tools used for obtaining generalization bounds. For example, some of our bounds exploit73

Talagrand’s concentration inequality rather than the more standard Chernoff/McDiarmid/Bernstein74

inequalities. We note that Talagrand’s inequality and other advanced inequalities were applied in75

machine learning in the context of learning combinatorial functions [Vondrák, 2010, Blum et al.,76

2017]. See also the survey by Bousquet et al. [2004] or the book by Boucheron et al. [2013] for a77

more thorough review of concentration inequalities.78

Furthermore, there is a large body of work on online matching in which the vertices arrive in various79

models (see Mehta et al., 2013, Gupta and Molinaro, 2016). We differ from this line of research, by80

allowing a two-stage algorithm, and requiring to output the optimal matching is the second stage.81

Celis et al. [2017, 2018] studies similar problems of ranking and voting with fairness constraints. In82

fact, the optimization problem that they consider allows more general constraints and the value of a83

candidate is determined from votes/comparisons. The main difference with our framework is that84

they do not consider a statistical setting (i.e. there is no distribution over the items and no training set85

for preprocessing) and focus mostly on approximation algorithms for the optimization problem.86

2

2 Model and Results87

Let X be a domain of items, where each item c ∈ X can possess any subset of d properties denoted88

by P1, . . . , Pd (we view Pi ⊆ X as the set of items having property Pi). Each item c has a value89

vi(c) ∈ [0, 1] associated with each property Pi such that c ∈ Pi.90

We are given a set C ⊆ X of n items as well as counts k1, . . . kd such that
∑d

i=1 ki = k. Our goal is to91

select exactly k items in total, constrained on selecting exactly ki items with property Pi. We assume92

that these constraints are exclusive, in the sense that each item in C can be used to satisfy at most93

one of the constraints. Formally, a feasible solution is a subset S ⊆ C, such that |S| = k and there is94

partition S into d disjoint subsets S1, . . . , Sd, such that Si ⊆ Pi and |Si| = ki. We aim to compute a95

feasible subset S that maximizes
∑d

i=1
∑

c∈Si
vi(c).96

Furthermore, we assume that d � k� n. Namely, the number of constraints is much smaller than97

the number of items that we have to select, which is much smaller than the total number of items98

in C. In order to avoid feasibility issues we assume that there is a set Cdummy that contains k dummy99

0-value items with all the d properties (we assume that the algorithm has always access to Cdummy100

and do not view them as part of C).101

Formulation as bipartite matching. We first discuss the offline versions of these allocation prob-102

lems. That is, we assume that C and the capacities ki are all given as an input before the algorithm103

starts. We are interested in an algorithm for computing an optimal set S. That is a set of items of104

maximum total value that satisfy the constraints. This problem is equivalent to a maximum matching105

problem in a bipartite graph (L, R, E, w) defined as follows.106

• L is the set of vertices in one side of the bipartite graph. It contains k vertices, where each107

constraint i is represented by ki of these vertices.108

• R is the set of vertices in the other side of the bipartite graph. It contains a vertex for each109

item c ∈ C and for each dummy item c′ ∈ Cdummy.110

• E is the set of edges. Each vertex in R is connected to each vertex of each of the constraints111

that it satisfies.112

• The weight w(l, r) of edge (l, r) ∈ E is vl(r): the value of item r associated with property Pl.113

There is a natural correspondence between saturated-matchings in this graph, that is matchings114

in which every l ∈ L is matched, and between feasible solutions (i.e., solutions that satisfy the115

constraints) to the allocation problem. Thus, a saturated-matching of maximum value corresponds to116

an optimal solution. It is well know that the problem of finding such a maximum weight bipartite117

matching can be solved in polynomial time (see e.g., Lawler, 2001).118

Problem definition. In this work we consider the following online learning model. We assume119

that n items are sequentially drawn i.i.d. from an unknown distribution D over X. Upon receiving120

each item, we decide whether to retain it, or reject it irrevocably (the first stage of the algorithm).121

Thereafter, we select a feasible solution1 consisting only of retained items (the second stage of the122

algorithm). Most importantly, before accessing the online sequence and take irreversible online123

decisions of which items to reject, we have access a training set Ctrain consisting of n independent124

draws from D.125

2.1 Results126

2.1.1 Oblivious online screening127

We begin by studying a greedy algorithm that does not require a training set. In the online phase,128

this algorithm acts greedily by keeping an item if it participates in the best solution thus far. Then,129

the algorithm computes an optimal matching among the retained items. The particular details of the130

algorithm are given in Appendix A.1. We have the following guarantee for this greedy algorithm131

proven in Appendix A.1.132

1In addition to the retained items, the algorithm has access to Cdummy, and therefore a feasible solution always
exists.

3

Theorem 1. Let δ ∈ (0, 1). The greedy algorithm outputs the optimal solution with probability at133

least 1 – δ and retains O(k log(min{k/δ, n/k})) items in expectation.134

As we shall see in the next section, learning from the training set allows one to retain exponentially135

less items than is implied by the theorem above. It is then natural to ask to which extent is the136

training phase essential in order to accommodate such an improvement. We answer this question in137

Appendix B.1 by proving a lower bound on the number of retained items for any algorithm that does138

not use a training phase. This lower bound already applies in the simple setting where d = 1: here,139

each item consists only of a value v ∈ [0, 1], and the goal of the algorithm is to retain as few items as140

possible while guaranteeing with high probability that the top k maximal values are retained.141

Theorem 2. Let δ ∈ (0, 1). For every algorithm A which retains the maximal k elements with142

probability at least 1 – δ, there exists a distribution µ such that the expected number of retained143

elements for input sequences v1 . . . vn ∼ µn is at least Ω(k log(min{k/δ, n/k})).144

Thus, the above theorem implies that Θ(k log(n/k)) can not be improved even if we allow failure145

probability δ = Θ(k2/n) (see Theorem 1).146

2.1.2 Online screening with learning147

We now design online algorithms that, before the online screening process begins, use Ctrain to learn a148

thresholds-policy T ∈ T such that with high probability: (i) the number of items that are retained in149

the online phase is small, and (ii) there is a feasible solution consisting of k retained items whose150

value is optimal (or close to optimal). Thresholds-policies are studied in Section 3 and are defined as151

follows.152

Definition 3 (Thresholds-policies). A threshold-policy is parametrized by a vector T = (t1, . . . , td)153

of thresholds, where ti corresponds to property Pi for 1 ≤ i ≤ d. The semantics of T is as follows:154

given a sample C of n items, each item c ∈ C is retained if and only if there exists a property Pi155

satisfied by c, such that its value vi(c) passes the threshold ti. More formally, c is retained if and only156

if ∃i ∈ {1, . . . , d} such that c ∈ Pi and vi(c) ≥ ti.157

Having proven uniform convergence results for thresholds-policies (see Section 3.1), we show the158

following in Section 4.159

Theorem 4. There exists an algorithm that learns a thresholds-policy T from a single training sample160

Ctrain ∼ Dn, such that after processing the (“real-time”) input sample C ∼ Dn using T:161

• It outputs an optimal solution with probability at least 1 – δ.162

• The expected number of retained items in the first phase is O
(
k(log d + log log(n/k) +163

log log(1/δ))
)
.164

Thus, with the additional information given by the training set, the algorithm presented in Theo-165

rem 4 improves the number of retained items from k log(k/δ) to k log log(1/δ). This demonstrates a166

significant improvement over Theorem 1.167

Finally, in Appendix B.2 we prove that the algorithm from Theorem 4 is nearly-optimal in the sense168

that it is impossible to significantly improve the number of retained items even if we allow the169

algorithm to fully know the distribution over input items (so, in a sense, having an access to n i.i.d170

samples from the distribution is the same as knowing it completely).171

Theorem 5. Consider the case where k = d and k1 = · · · kd = 1. There exists a universe X and a172

fixed distribution D over X such that for C ∼ Dn the following holds: any online learning algorithm173

(which possibly “knows” D) that retains a subset S ⊆ C of items that contains an optimal solution174

with probability at least 1 – δ must satisfy that Ex
[
|S|
]

= Ω(k log log(1/δ)).175

3 Thresholds-policies176

We next discuss a framework to design algorithms that exploit the training set to learn policies that177

are applied in the first phase of the matching process. We would like to frame this in standard ML178

formalism by phrasing this problem as learning a classH of policies such that:179

4

• H is not too small: The policies inH should yield solutions with high values (optimal, or180

near-optimal).181

• H is not too large: H should satisfy some uniform convergence properties; i.e. the perfor-182

mance of each policy inH on the training set is close, with high probability, to its expected183

real-time performance on the sampled items during the online selection process.184

Indeed, as we now show these demands are met by the class T of thresholds policies (Definition 3).185

We first show that the class of thresholds-policies contains an optimal policy, and in the sequel we186

show that it satisfies attractive uniform convergence properties.187

An assumption (values are unique). We assume that for each constraint Pi, the marginal distribu-188

tion over the value of c ∼ D conditioned on c ∈ Pi is atomless; namely Prc∼D[v(c) = v | c ∈ Pi] = 0189

for every v ∈ [0, 1]. This assumption can be removed by adding artificial tie-breaking rules, but190

making it will simplify some of the technical statements.191

Theorem 6 (There is a thresholds policy that retains an optimal solution). For any set of items C,192

there exists a thresholds vector T ∈ T that retains exactly k items that form an optimal solution for C.193

Proof. Let S denote the set of k items in an optimal solution for C, and let Si ⊆ S ∩ Pi be the subset194

of M that is assigned to the constraint Pi. Define ti = minc∈Si vi(c), for i ≥ 1, Clearly, T retains all195

the items in S. Assume towards contradiction that T retains an item cj /∈ S, and assume that Pi is a196

constraint such that cj ∈ Pi and vi(cj) ≥ ti. Since by our assumption on D all the values vi(cj) are197

distinct it follows that vi(cj) > ti. Thus, we can modify S by replacing cj with the item of minimum198

value in Si and increase the total value. This contradicts the optimality of S.199

We next establish generalization bounds for the class of thresholds-policies.200

3.1 Uniform convergence of the number of retained items201

For a sample C ∼ Dn and a thresholds-policy T ∈ T , we denote by RT
i (C) = {c : c ∈ Pi and vi(c) ≥ ti}202

the set of items that are retained by the threshold ti, and we denote its expected size by ρT
i =203

ExC∼Dn

[
|RT

i (C)|
]
. Similarly we denote by RT (C) = ∪iRT

i (C) the items retained by T , and by ρT its204

expectation. We prove that the sizes of RT
i (C) and RT (C) are concentrated around their expectations205

uniformly for all thresholds policies.206

The following theorems establish uniform convergence results for the number of retained items.207

Namely, with high probability we have RT
i ≈ ρT

i , RT ≈ ρT simultaneously for all T ∈ T and i ≤ d.208

Theorem 7 (Uniform convergence of the number of retained items). With probability at least 1 – δ209

over C ∼ Dn, the following holds for all policies T ∈ T simultaneously:210

1. If ρT ≥ k, then (1 – ε)ρT ≤ |RT (C)| ≤ (1 + ε)ρT , and211

2. if ρT < k, then ρT – εk ≤ |RT (C)| ≤ ρT + εk ,212

where213

ε = O

(√
d log(d) log(n/k) + log(1/δ)

k

)
.

Theorem 8 (Uniform convergence of the number of retained items per constraint). With probability214

at least 1 – δ over C ∼ Dn, the following holds for all policies T ∈ T and all i ≤ d + 1 simultaneously:215

1. If ρT
i ≥ k, then (1 – ε)ρT

i ≤ |RT
i (C)| ≤ (1 + ε)ρT

i , and216

2. if ρT
i < k, then ρT

i – εk ≤ |RT
i (C)| ≤ ρT

i + εk ,217

where218

ε = O

(√
log(d) log(n/k) + log(1/δ)

k

)
.

5

The proofs of Theorems 7 and 8 are based on standard VC-based uniform convergence results, and219

technically the proof boils down to bounding the VC-dimension of the families220

R = {RT : T ∈ T } and Q = {RT
i : T ∈ T , i ≤ d}.

Indeed, in Appendix A.2 we prove the following.221

Lemma 9. VC(R) = O(d log d) .222

Lemma 10. VC(Q) = O(log d) .223

Using Lemmas 9 and 10, we can now apply standard uniform convergence results from VC-theory to224

derive Theorems 7 and 8.225

Definition 11 (Relative (p, ε)-approximation; Har-Peled and Sharir, 2011). Let F be a family of226

subsets over a domain X, and let µ be a distribution on X. Z ⊆ X is a (p, ε)-approximation for F if227

for each f ∈ F we have,228

1. If µ(f) ≥ p, then (1 – ε)µ(f) ≤ µ̂(f) ≤ (1 + ε)µ(f),229

2. If µ(f) < p, then µ(f) – εp ≤ µ̂(f) ≤ µ(f) + εp,230

where µ̂(f) = |Z ∩ F|/|Z| is the (“empirical”) measure of f with respect to Z.231

The proof of Theorems 7 and 8 now follows by plugging p = k/n in Har-Peled and Sharir [2011,232

Theorem 2.11], which we state in the next proposition.233

Proposition 12 (Har-Peled and Sharir, 2011). Let F and µ like in Definition 11. Suppose F has VC234

dimension m. Then, with provability at least 1 – δ, a random sample of size235

Ω

(
m log(1/p) + log(1/δ)

ε2p

)
is a relative (p, ε)-approximation for F .236

3.2 Uniform convergence of values237

We now prove a concentration result for the value of an optimal solution among the retained items.238

Unlike the number of retained items, the value of an optimal solution corresponds to a more complex239

random variable, and analyzing the concentration of its empirical estimate requires more advanced240

techniques.241

We denote by VT (C) the value of the optimal solution among the items retained by the thresholds-242

policy T , and we denote its expectation by νT = ExC∼Dn

[
VT (C)

]
. We show that VT (C) is concentrated243

uniformly for all thresholds policies.244

Theorem 13 (Uniform convergence of values). With probability at least 1 – δ over C ∼ Dn, the245

following holds for all policies T ∈ T simultaneously:246

|νT – VT (C)| ≤ εk, where ε = O
(√

d log k + log(1/δ)
k

)
.

Note that unlike most uniform convergence results that guarantee simultaneous convergence of247

empirical averages to expectations, here VT (C) is not an average of the n samples, but rather a more248

complicated function of them. We also note that a bound of Õ(
√

n) (rather than Õ(
√

k)) on the additive249

deviation of VT (C) from its expectation can be derived using the McDiarmid’s inequality [McDiarmid,250

1989]. However, this bound is meaningless when
√

n > k (because k upper bounds the value of the251

optimal solution). We use Talagrand’s concentration inequality [Talagrand, 1995] to derive the O(
√

k)252

upper bound on the additive deviation. Talagrand’s concentration inequality allows us to utilize the253

fact that an optimal solution uses only k � n items, and therefore replacing an item that does not254

participate in the solution does not affect its value.255

To prove the theorem we need the following concentration inequality for the value of the optimal256

selection in hindsight. Note that by Theorem 6 this value equals to VT (C) for some T .257

Lemma 14. Let OPT(C) denote the value of the optimal solution for a sample C. We have that258

Pr
C∼Dn

[
|OPT(C) – Ex[OPT(C)]| ≥ α

]
≤ 2 exp(–α

2/2k).

6

So, for example, it happens that |OPT(C) – Ex[OPT(C)]| ≤
√

2k log(2/δ) with probability at least259

1 – δ.260

To prove this lemma we use the following version of Talagrand’s inequality (that appears for example261

in lecture notes by van Handel [2014]).262

Proposition 15 (Talagrand’s Concentration Inequality). Let f : Rn 7→ R be a function, and suppose263

that there exist g1, . . . , gn : Rn 7→ R such that for any x, y ∈ Rn264

f (x) – f (y) ≤
n∑

i=1

gi(x)1[xi 6=yi]. (1)

Then, for independent random variables X = (X1, . . . , Xn) we have265

Pr
[
|f (X) – Ex[f (X)]| > α

]
≤ 2 exp

(
–

α2

2 supx
∑n

i=1 g2
i (x)

)
.

Proof of Lemma 14. We apply Talagrand’s concentration inequality to the random variable OPT(C).266

Our Xi’s are the items c1, . . . , cn in the order that they are given. We show that Eq. (1) holds for267

gi(C) = 1[ci∈S] where S = S(C) is a fixed optimal solution for C (we use some arbitrary tie breaking268

among optimal solutions). We then have,
∑n

i=1 g2
i (C) = |S| = k, thus completing the proof.269

Now, let C, C′ be two samples of n items. Recall that we need to show that270

OPT(C) – OPT(C′) ≤
n∑

i=1

gi(C)1[ci 6=c′i] .

We use S to construct a solution S′ for C′ as follows. Let Sj ⊆ S the subset of S matched to Pj. For271

each i, if ci ∈ Sj for some j, and ci = c′i , then we add i to S′j . Otherwise, we add a dummy item from272

C′dummy to S′j (with value zero). Let V(S′) denote the value of S′. Note that the difference between273

the values of S and S′ is the total value of all items i ∈ S such that ci 6= c′i . Since the item values are274

bounded in [0, 1] we get that275

OPT(C) – V(S′) =
d∑

j=1

∑
ci∈Sj

vj(ci)1[ci 6=c′i] ≤
d∑

j=1

∑
ci∈Sj

1[ci 6=c′i] =
n∑

i=1

gi(C)1[ci 6=c′i] .

The proof is complete by noticing that OPT(C′) ≥ V(S′).276

We also require the following construction of a bracketing of T which is formally presented in277

Appendix A.2.278

Lemma 16. There exists a collection of N thresholds-policies such that |N | ≤ kO(d), and for every279

thresholds-policy T ∈ T there are T+, T– ∈ N such that280

1. VT–
(C) ≤ VT (C) ≤ VT+

(C) for every sample of items C; note that by taking expectations281

this implies that νT– ≤ νT ≤ νT+
, and282

2. νT+
– νT– ≤ 10.283

Proof of Theorem 13. The items in C that are retained by T are independent samples from a distri-284

bution D′ that is sampled as follows: (i) sample c ∼ D, and (ii) if c is retained by T then keep it,285

and otherwise discard it. This means that vT (C) is in fact the optimal solution of C with respect to286

D′. Since Lemma 14 applies to every distribution D we can apply it to D′ and get that for any fixed287

T ∈ T288

Pr
C∼Dn

[
|νT – VT (C)| ≥ α

]
≤ 2 exp(–α

2/2k) .

Now, by the union bound for N be as in Lemma 16 we get that the probability that there is T ∈ N289

such that |νT – VT (C)| ≥ α is at most |N | · 2 exp(–α2/2k). Thus, since |N | ≤ kO(d), it follows that290

with probability at least 1 – δ,291

(∀T ∈ N) : |νT – VT (C)| ≤ O
(√

k
(
d log k + log(1/δ)

))
. (2)

7

We now show why uniform convergence for N implies uniform convergence for T . Combining292

Lemma 16 with Equation (2) we get that with probability at least 1 – δ, every T ∈ T satisfies:293

|νT – VT (C)| ≤ max{|νT+
– VT–

(C)|, |νT–
– VT+

(C)|} (by Item 1 of Lemma 16)

≤ max{|νT–
– VT–

(C)|, |νT+
– VT+

(C)|} + 10 (by Item 2 of Lemma 16)

≤ 10 + O
(√

k
(
d log k + log(1/δ)

))
. (by Eq. (2))

Here the first inequality follows from Item 1 by noticing that if [a, b], [c, d] are intervals on the real294

line and x ∈ [a, b], y ∈ [c, d] then |x – y| ≤ max{|b – c|, |d – a|}, and plugging in x = νT , y = VT (C), a =295

νT–
, b = νT+

, c = VT–
(C), d = VT+

(C).296

This finishes the proof, by setting ε such that ε · k = O
(√

k(d log k + log(1/δ))
)
.297

4 Algorithms based on learning thresholds-policies298

We next exemplify how one can use the above properties of thresholds-policies to design algorithms.299

A natural algorithm would be to use the training set to learn a threshold-policy T that retains an300

optimal solution with k items from the training set as specified in Theorem 6, and then use this online301

policy to retain a subset of the n items in the first phase. Theorem 7 and Theorem 13 imply that with302

probability 1 – δ, the number of retained items is at most m = k + O
(√

kd log(d) log(n/k) + k log(1/δ)
)

303

and that the value of the resulting solution is at least OPT – O
(√

kd log k + k log(1/δ)
)
.304

We can improve this algorithm by combining it with the greedy algorithm of Theorem 1 described305

in Appendix A.1. During the first phase, we retain an item c only if (i) c is retained by T , and (ii)306

c participates in the optimal solution among the items that were retained thus far. Theorem 1 then307

implies that out of these m items greedy keeps a subset of308

O
(

k log
m
k

)
= O

(
k
(

log log
(n

k

)
+ log log

(
1
δ

)))
.

items in expectation that still contains a solution of value at least OPT – O(
√

kd log k + k log(1/δ)).309

We can further improve the value of the solution and guarantee that it will be optimal (with respect310

to all n items) with probability 1 – δ. This is based on the observation that if the set of retained311

items contains the top k items of each property Pi then it also contains an optimal solution. Thus, we312

can compute a thresholds-policy T that retains the top k + O(
√

k log(d) log(n/k) + k log(1/δ)) items313

of each property from the training set (if the training set does not have this many items with some314

property then set the corresponding threshold to 0). Then, it follows from Theorem 8, that with315

probability 1 – δ, T will retain the top k items of each property in the first online phase and therefore316

will retain an optimal solution. Now, Theorem 8 implies that with probability 1 – δ the total number317

of items that are retained by T in real-time is at most m = dk + O(d
√

k log(d) log(n/k) + k log(1/δ)).318

By filtering the retained elements with the greedy algorithm of Theorem 1 as before it follows that319

the total number of retained items is at most320

k + k log
(m

k

)
= O

(
k
(

log d + log log
(n

k

)
+ log log

(
1
δ

)))
with probably 1 – δ. This proves Theorem 4.321

8

References322

M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online mechanisms.323

In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages324

434–443. Society for Industrial and Applied Mathematics, 2007.325

M. Balcan, T. Sandholm, and E. Vitercik. A general theory of sample complexity for multi-item326

profit maximization. In EC, pages 173–174. ACM, 2018.327

A. Blum, I. Caragiannis, N. Haghtalab, A. D. Procaccia, E. B. Procaccia, and R. Vaish. Opting into328

optimal matchings. In SODA, pages 2351–2363. SIAM, 2017.329

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of330

Independence. Oxford University Press, 2013. ISBN 9780191747106.331

O. Bousquet, U. von Luxburg, and G. Rätsch, editors. Advanced Lectures on Machine Learning, ML332

Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August333

4-16, 2003, Revised Lectures, volume 3176 of Lecture Notes in Computer Science, 2004. Springer.334

L. E. Celis, D. Straszak, and N. K. Vishnoi. Ranking with fairness constraints. arXiv preprint335

arXiv:1704.06840, 2017.336

L. E. Celis, L. Huang, and N. K. Vishnoi. Multiwinner voting with fairness constraints. In IJCAI,337

pages 144–151, 2018.338

T. Ezra, M. Feldman, and I. Nehama. Prophets and secretaries with overbooking. In Proceedings of339

the 2018 ACM Conference on Economics and Computation, pages 319–320. ACM, 2018.340

T. S. Ferguson. Who solved the secretary problem? Statistical Science, 4(3):282–289, 1989.341

S. Greenberg and M. Mohri. Tight lower bound on the probability of a binomial exceeding its342

expectation. CoRR, abs/1306.1433, 2013.343

A. Gupta and M. Molinaro. How the experts algorithm can help solve lps online. Math. Oper. Res.,344

41(4):1404–1431, 2016.345

S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry. Discrete & Computational346

Geometry, 45(3):462–496, 2011.347

J. Hsu, J. Morgenstern, R. M. Rogers, A. Roth, and R. Vohra. Do prices coordinate markets? In348

STOC, pages 440–453. ACM, 2016.349

E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corporation, 2001.350

C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics 1989. Cambridge351

University Press, Cambridge, 1989.352

A. Mehta et al. Online matching and ad allocation. Foundations and Trends R© in Theoretical353

Computer Science, 8(4):265–368, 2013.354

S. Moran, M. Snir, and U. Manber. Applications of ramsey’s theorem to decision tree complexity.355

Journal of the ACM (JACM), 32(4):938–949, 1985.356

J. Morgenstern and T. Roughgarden. On the pseudo-dimension of nearly optimal auctions. In NIPS,357

pages 136–144, 2015.358

J. Morgenstern and T. Roughgarden. Learning simple auctions. In COLT, volume 49 of JMLR359

Workshop and Conference Proceedings, pages 1298–1318. JMLR.org, 2016.360

N. Sauer. On the density of families of sets. J. Combinatorial Theory Ser. A, 13:145–147, 1972.361

M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publications362

Mathématiques de l’Institut des Hautes Etudes Scientifiques, 81(1):73–205, 1995.363

R. van Handel. Probability in high dimension. Technical report, PRINCETON UNIV NJ, 2014.364

S. Vardi. The returning secretary. In 32nd International Symposium on Theoretical Aspects of365

Computer Science, page 716, 2015.366

J. Vondrák. A note on concentration of submodular functions. CoRR, abs/1005.2791, 2010.367

9

A Deferred Proofs368

A.1 The Greedy Online Algorithm369

A simple way to collect a small set of items that contains the optimal solution is to select the k370

largest items of each property. This set clearly contains the optimal solution. A simple argument,371

as in the proof of Lemma 18, shows that this implementation of the first stage keeps O(kd log(n/k))372

items on average. In the following we present a greedy algorithm that retains an average number of373

O(k log(k/δ)) items in the first phase (for a parameter δ ∈ (0, 1)).374

The greedy algorithm works as follows: it ignores the first δn/k items2 and then starts processing the375

items one by one. When we process the i’th item, ci, the algorithm computes the optimal solution Mi376

of the first i items (recall that we assume the algorithm has access to Cdummy, a large enough pool377

of zero valued items so there is always a feasible solution). The greedy algorithm retains ci if and378

only if ci participates in Mi. We assume that Mi is unique for every i (we can achieve this with an379

arbitrary consistent tie breaking rule, say among matchings of the same value we prefer the one that380

maximizes the sum of the indices of the matched items.). Since the optimal solutions correspond to381

maximum-weighted bipartite-matchings between the items and the constraints, we have the following382

lemma.383

Lemma 17. Suppose that the optimal solution, denoted by M, does not appear before round δn/k.384

Then it is a subset of the retained items.385

Proof. Let i ≥ δn/k. Consider an item c matched by M and assume by contradiction that c is not386

matched in Mi. Consider Z = M4Mi (we take the symmetric difference of M and Mi as sets of edges).387

Since M and Mi do not necessarily match the same items then the edges in Z induce a collection of388

alternating paths and cycles where each path L has an item matched by M and not by Mi at one end,389

and an item matched by Mi and not by M at the other hand. Except for its two ends, an alternating390

path contains items that are matched by both M and Mi. From the optimality and the uniqueness of M391

follows that for each path the value of M is larger than the value of Mi.392

Since c is matched by M and not by Mi there is a path L in Z that starts at c and ends at some item393

that is matched by Mi and not by M.394

It follows that all the items in L are in Mi and if we match them according to M then the value that we395

gain from them increases. This contradicts the optimality of Mi.396

(Note that, in fact, there are no cycles in Z, since they will imply that there are multiple optimal397

solutions, contradicting the uniqueness of Mi and M.)398

Lemma 17 implies that, with high probability, if we collect all items that are in the optimal solution399

of the subset of items that precedes them then the set of items that we have at the end contains the400

optimal solution. Indeed, our algorithm fails if at least one of the items in the optimal solution M is401

among the first δn/k items. The probability that this occurs is at most δ via a union bound and the fact402

that the probability that any fixed item in M is among the first δn/k items is exactly δ/k.403

The next question is: how large is the subset of the items which we retain? The next lemma answers404

this question in an average sense.405

Lemma 18. Assume that at the first stage the algorithm receives the items in a random order. Then406

the expected number of items that the first stage keeps is O
(
k log min

{ n
k , k

δ

})
.407

Proof. Let i ≥ δn/k and denote Xi as an indicator that is one if and only if the i’th item belongs408

to Mi. Condition the probability space on the set Li of the first i items (but not on their order).409

Each element of Li is equally likely to arrive last. So since |Mi| ≤ k, then the probability that the410

element arriving last in Li is in OPTi is at most k/i if k < i or at most 1 otherwise. It follows that411

E[Xi | Li] ≤ min
{ k

i , 1
}

. Since this holds for any Li, it also holds unconditionally as well. Therefore,412

if δn/k < k then by the fact that
∑n

i=k+1
1
i ≤ log n

k , the expected number of retained items is413

k –
δn
k

+
n∑

i=k+1

k
i

= O
(

k log
n
k

)
.

2We assume δn/k is an integer without loss of generality.

10

Similarly, if δn/k ≥ k then the expected number of retained items is414

n∑
i=δn/k+1

k
i

= O
(

k log
k
δ

)
.

A.2 Generalization and concentration415

Technical notation. For m ∈ N, the set {1, . . . , m} is denoted by [m]. Given a family of sets F over416

a domain X, and Y ⊆ X, the family {f ∩ Y : f ∈ F} is denoted by F|Y . Recall that the VC dimension417

of F is the maximum size of Y ⊆ X such that F|Y contains all subsets of Y .418

Lemma (restatement of Lemma 9). VC(R) = O(d log d) .419

Proof. Let S be a set of items shattered byR and denote its size by m; since S is arbitrary, an upper420

bound on m implies an upper bound on VC(R). To this end we upper bound the number of subsets421

inR|S = {S ∩ RT : RT ∈ R}. Now, there are m items in S with at most m different values. Therefore,422

we can restrict our attention to thresholds-policies where each threshold is picked from a fixed set of423

m + 1 meaningful locations (one location in between values of two consecutive items when we sort the424

items by value). Thus |R|S| ≤ (m+1)d, but, as S is shattered, |R|S| = 2m and we get m ≤ d log2(m+1).425

This implies m = O(d log d) from which we conclude that VC(R) = O(d log d).426

Lemma (restatement of Lemma 10). VC(Q) = O(log d) .427

Proof. For i ≤ d, let Qi = {RT
i : T ∈ T }. Note that Q = ∪iQi. We claim that VC(Qi) = 1 for all i.428

Indeed, let c′, c′′ be two items. Note that if c′ /∈ Pi or c′′ /∈ Pi then {c′, c′′} is not contained byQi and429

therefore not shattered by it. Therefore, assume that c′, c′′ ∈ Pi and vi(c′) ≥ vi(c′′). Now, it follows430

that any threshold T that retains c′′ must also retain c′, and so it follows that also in this case {c′, c′′}431

is not shattered.432

The bound on the VC dimension of Q = ∪i≤dQi follows from the next lemma.433

Lemma 19. Let m ≥ 2 and let F1, . . . , Fm be classes with VC dimension at most 1. Then, the VC434

dimension of ∪iFi is at most 10 log m.435

Proof. We show that ∪iFi does not shatter a set of size 10 log m. Let Y ⊆ X of size 10 log m. Indeed,436

by the Sauer’s Lemma [Sauer, 1972]:437

|(∪iFi)|Y | ≤ m
((

10 log m
0

)
+
(

10 log m
1

))
= m(1 + 10 log m) < m10 = 210 log m,

and therefore, Y is not shattered by ∪iFi.438

This finishes the proof of Lemma 10.439

Lemma (restatement of Lemma 16). There exists a collection of N thresholds-policies such that440

|N | ≤ kO(d), and for every thresholds-policy T ∈ T there are T+, T– ∈ N such that441

1. VT–
(C) ≤ VT (C) ≤ VT+

(C) for every sample of items C. (By taking expectations this also442

implies that νT– ≤ νT ≤ νT+
.)443

2. νT+
– νT– ≤ 10.444

Proof. For every i ≤ d and j ≤ dn define thresholds tj
i ∈ [0, 1] where t0

i = 1 and for j > 0 set tj
i to445

satisfy3446

Pr
c∼D

[v(c) ≥ tj
i and c ∈ Pi] =

j
dn

.

Note that t0
i > t1

i > . . . (see Figure 1). Set447

Ji =
{

j : 0 ≤ j
dn
≤ Pr

c∼D
[c ∈ Pi], j ∈ N

}
,

3Such tj
i’s exist due to our assumption that D is atomless (see Section 3).

11

ti0=1	ti1	ti10dk	0	 ti2	

Figure 1: An illustration of the thresholds in Ni as defined in the proof of Lemma 16. Each tj
i for

j ∈ Ji satisfies Prc∼D[v(c) ≥ tj
i and c ∈ Pi] = j

dn .

and define448

Ni =
{

tj
i | j ∈ Ji ∩ {0, 1, . . . , 10dk}

}
∪ {0}

N = N1 ×N2 . . .×Nd.

Note that indeed |N | ≤ (10dk + 2)d+1 = kO(d).449

We next show thatN satisfies items 1 and 2 in the statement of the lemma. Let T ∈ T be an arbitrary450

thresholds-policy. The policies T– = (t–
i)i≤d, and T+ = (t+

i)i≤d are derived by rounding t in each451

coordinate up and down respectively, to the closest policies in N (so, the thresholds in T+ are smaller452

than in T–; the “+” sign reflects that it retains more items and achieves a higher value). Formally,453

t+
i = max{t ∈ Ni : t ≤ ti} and t–

i = min{t ∈ Ni : t ≥ ti} where ti is the threshold for property i in454

T . Therefore, for every sample C ∼ Dn, the set of items in C that are retained by T contains the set455

retained by T– and is contained in the set retained by T+. This implies item 1.456

To derive item 2, observe that for every sample C: VT+
(C) – VT–

(C) ≤ |Z|, where Z ⊆ C denotes457

the set of items which participate in some canonical optimal solution for T+ that are not retained by458

T–. Thus, it suffices to show that Ex[|Z|] ≤ 10. To this end put pi = Prc∼D[v(c) ≥ ti and c ∈ Pi] and459

partition Z into two disjoint sets Z = E ∪ F, where E is the set of all items cj ∈ Z that are assigned by460

the optimal solution of T+ to a property Pi where pi < 10k
n , and F = Z \ E. We claim that461

• Ex[|E|] ≤ 1: for each Pi such that pi < 10k
n let Gi ⊆ Pi denote the set of items whose462

value v ∈ [t+
i , t–

i) (i.e. retained by T+ and not by T–). Note that E ⊆ ∪iGi, and that463

Prc∼D[c ∈ Gi] ≤ 1
dn . Thus, it follows that464

Ex
C∼Dn

[|E|] ≤ Ex
C∼Dn

[|∪iGi|] ≤
∑

i

Ex
C∼Dn

[|Gi|] ≤ d · n
dn
≤ 1.

• Ex[|F|] ≤ 9: note that Ex[|F|] ≤ k · Pr[|F| > 0] (because F ⊆ Z and |Z| ≤ k). Thus,465

it suffices to show that Pr[F > 0] ≤ 9
k . Indeed, F 6= ∅ only if there is a property Pi with466

pi ≥ 10k
n such that less than k items from Pi are retained by T–. Fix a property Pi such that467

pi ≥ 10k
n and let p–

i = Prc∼D[v(c) ≥ t–
i and c ∈ Pi]. Since p–

i ≥ 10k
n , a multiplicative Chernoff468

bound yields that469

Pr
C∼Dn

[less than k items from Pi are retained by T–] ≤ exp
(

–
(9/10)2

2
10k
)
≤ 9

k2 ≤
9
dk

,

and a union bound over all such properties Pi implies that Pr[|F| > 0] ≤ 9d
dk ≤

9
k .470

Thus, it follows that vT+
– vT– ≤ 1 + k · 9

k = 10, which finishes the proof.471

472

12

B Lower Bounds473

B.1 Necessity of the training phase474

Let n ∈ N (sample size) and δ ∈ [0, 1] (confidence parameter). In this section we focus on the case475

where there is no training phase and d = 1. Thus, we consider algorithms which get as an input a476

sequence v1, . . . vn ∈ [0, 1] in an online manner (one after the other). In step m the algorithm needs to477

decide whether to retain vm or to discard it (this decision may depend on the prefix v1 . . . , vm). The478

algorithm is not allowed to discard a sample after it has been retained.479

The following property captures the utility of the algorithm: for every distribution µ over [0, 1], if480

v1, . . . , vn are sampled i.i.d from µ, then with probability at least 1–δ, the algorithm retains vj1 , . . . , vjk481

that are the largest k elements in v1, . . . , vn. The goal is to achieve this while minimizing the number482

of retained items in expectation.483

Theorem (Theorem 2 restatement). Let δ ∈ (0, 1). For every algorithm A which retains the maximal484

k elements with probability at least 1 – δ, there exists a distribution µ such that the expected number485

of retained elements for input sequences v1 . . . vn ∼ µn is at least Ω(k log(min{n/k, k/δ})).486

We remind that the bound is tight for the greedy algorithm (Theorem 1).487

Proof. Following [Moran et al., 1985, Corollary 3.4], we may assume that A accesses its input only488

using comparisons. More precisely: call two sequences v1, . . . , vm and u1, . . . , um order-equivalent489

if vi ≤ vj ⇐⇒ ui ≤ uj for all i, j ≤ m, and call the equivalence class of v1 . . . vm its order-type.490

Note that if v1, . . . , vm are distinct, then their order-type is naturally identified with a permutation491

σ ∈ Sm. Call an algorithm A order-invariant if for every m ≤ n, the decision4 of A whether to492

retain vm depends only on the order-type of v1, . . . , vm (equivalently, A accesses the input only using493

comparisons).494

By Moran et al. [1985] it follows that for every algorithm A there is an infinite W ⊆ [0, 1] such that A495

is order-invariant when restricted to input sequences v1, . . . , vn ∈ W. For the remainder of the proof496

we fix such an infinite set W and focus only on inputs from W.497

Set µ to be a uniform distribution over a sufficiently large subset of W so that v1 . . . vn are distinct498

with probability 1 – 1/n. Let OPT(S) denote the top k elements in S. Let Tm be the set of all sequences499

v1, . . . , vm, . . . , vn ∈ Wn such that vm ∈ OPT({v1, . . . , vm}), and let pk denote the probability that500

A retains vm conditioned on the input being from Tm. Let T ′m ⊆ Tm denote the set of all sequences501

v1, . . . , vm, . . . , vn such that vm ∈ OPT({v1, . . . , vn}) (i.e., vm is part of the optimal solution). The502

proof hinges on the following lemma:503

Lemma 20. Since A is order based, for every m ≤ n, pm is also the probability that A retains vm504

conditioned on the input being from T ′m.505

Proof. The decision of A whether to retain vm depends only on the order-type of v1, . . . , vm. For each506

σ ∈ Sm, let E(σ) denote the event that the order type of v1 . . . vm is σ. Thus,507

pm = Pr[A retains vm | Tm] =
∑
σ∈Sm

Pr[E(σ) | Tm] · Pr[A retains vm | E(σ)],

and similarly508

Pr[A retains vm | T ′m] =
∑
σ∈Sm

Pr[E(σ) | T ′m] · Pr[A retains vm | E(σ)].

Next, observe that for each order-type σ ∈ Sm:509

Pr[E(σ) | Tm] = Pr[E(σ) | T ′m] =


1

m! , m ≤ k
1

k(m–1)! , vm ∈ OPT({v1, . . . , vm}), m > k
0, otherwise.

4When A is randomized then the value of Pr[A retains vk] depends only on the order-type of v1 . . . vm.

13

With the above lemma in hand, we can finish the proof. For the remainder of the argument, we510

condition the probability space on the event that all elements in the sequence v1, . . . , vn are distinct511

and show that conditioned on this event, A retains at least t = Ω(log(1/δ)) elements in expectation.512

Note that this will conclude the proof since by the choice of µ this event occurs with probability513

≥ 1 – 1/n, which implies that – unconditionally – A retains at least t – n · (1/n) = t – 1 = Ω(log(1/δ))514

elements in expectation.515

For each m ≤ n, vm is among the top k elements with probability min{1, k/m}, in which case it is516

retained with probability pm. So A retains at least517

n∑
m=1

min
{

1,
k
m

}
· pm

elements in expectation. By the above lemma, the probability that A discards the maximum is518

n∑
m=1

k
n
· (1 – pm),

which by assumption is smaller than δ. So we obtain that
∑

pm ≥ n(1 – δ/k). Thus, to minimize519 ∑n
m=1 min{1, k/m} · pm subject to the constraint that

∑
pm ≥ n(1 – δ/k) we make the last n(1 – δ/k)520

pm’s equal to 1 and the rest 0. This gives the desired lower bound.521

B.2 The algorithm from Theorem 4 is optimal522

In the previous section we have presented an algorithm that with probability at least 1 – δ outputs an523

optimal solution while retaining at most O(k(log log n + log d + log log(1/δ))) items in expectation524

during the first phase.525

We now present a proof of Theorem 5. We start with the following lemma that shows the dependence526

on δ cannot be improved in general, even for k = 1, when there are no constraints, and the distribution527

over the items is known to the algorithm (so there is no need to train it on a sample from the528

distribution):529

Lemma 21. Let v1, . . . , vn ∈ [0, 1] be drawn uniformly and independently, let e–n/2 < δ < 1/10 and530

let A be an algorithm that retains the maximal value among the vi’s with probability at least 1 – δ.531

Then,532

Ex
[
|S|
]

= Ω

(
log log

(
1
δ

))
,

where S is the set of values retained by the algorithm.533

Thus, it follows that for δ = poly(1/n) and k, d = O(1) the bound in Theorem 4 is tight.534

Proof. Define α = ln(1/δ)
2n ∈ (1/n, 1/4). Let Et denote the event that vt ≥ 1 – α and is the largest among535

v1, . . . , vt. We have that536

Ex[|S|] ≥
∑

t

Pr[vt is picked and Et] =
∑

t

(Pr[Et] – Pr[vt is rejected and Et]) . (3)

We show that since A errs with probability at most δ then
∑

t Pr[Et and vt is rejected] is small.537

δ ≥ Pr[A rejects vmax] ≥
∑

t

Pr[A rejects vt and Et and vt = vmax]

=
∑

t

Pr[vt = vmax | A rejects vt and Et] · Pr[A rejects vt and Et]

≥
∑

t

Pr[vi ≤ 1 – α for all i > t | A rejects vt and Et] · Pr[A rejects vt and Et]

=
∑

t

Pr[vi ≤ 1 – α for all i > t] · Pr[A rejects vt and Et]

14

≥
∑

t

(1 – α)n–t · Pr[A rejects vt and Et]

≥ (1 – α)n
∑

t

Pr[A rejects vt and Et].

The crucial part of the above derivation is in third line. It replaces the event “vt = vmax” by the event538

“vi ≤ 1 – α for all i > t” (which is contained in the event “vt = vmax” under the above conditioning).539

The gain is that the events “vi ≤ 1 – α for all i > t” and “A rejects vt and Et” are independent (the540

first depends only on vi for i > t and the latter on vi for i ≤ t). This justifies the “=” in the fourth line.541

Rearranging, we have
∑

t Pr[A rejects vt and Et] ≤ δ

(1–α)n . Substituting this bound in Eq. (3),542

Ex[|S|] ≥
∑

t

Pr[vt is picked and Et]

=
∑

t

(Pr[Et] – Pr[vt is rejected and Et])

=
∑

t

Pr[Et] –
δ

(1 – α)n

≥ 1
4

ln(αn) – δ · exp(2αn) (explained below)

=
1
4

ln
(

ln(1/δ)
2

)
– δ exp(ln(1/δ)) (by the definition of α)

=
1
4

ln ln(1/δ) –
1
4

ln 2 – 1 = Ω(log log(1/δ)),

which is what we needed to prove. The last inequality follows because543

(i)
∑

t Pr[Et] ≥ 1
4 ln(αn) (as is explained next), and544

(ii) 1 – α ≥ exp(–2α) for every α ∈ [0, 1
4] (which can be verified using basic analysis).545

To see (i), note that546 ∑
t

Pr[Et] = Ex
[∑

t

1Et

]
.

Let z = |{t : vt ≥ 1 – α}|. Since the vi’s are uniform in [0, 1] then by the same argument as in the547

proof of Lemma 18 we get that548

Ex

[∑
t

1Et | z

]
=

z∑
i=1

1
i
≥
∫ z+1

1

1
x

= ln(z + 1),

and therefore549

Ex

[∑
t

1Et

]
= Ex

z
Ex

[∑
t

1Et | z

]
≥ Ex

z
[ln(z + 1)] .

Let Z ∼ Bin(n, α), and therefore we need to lower bound Ex[ln(Z + 1)] for Z ∼ Bin(n, α). To this end,550

we use the assumption that α > 1/n, and therefore Pr[Z ≥ α·n] ≥ 1/4 (see Greenberg and Mohri, 2013551

for a proof of this basic fact). In particular, this implies that Ex[ln(Z + 1)] ≥ 1
4 ln(αn + 1) > 1

4 ln(αn),552

which finishes the proof.553

Lemma 21 implies Theorem 5 as follows: set k = d, k1 = · · · = kd = 1 and n ≥ 100k log(1/δ). Pick554

a distribution D which is uniform over items, each satisfying exactly one of d properties, and with555

value drawn uniformly from [0, 1].556

It suffices to show that with probability of at least 1/3, the algorithm retains an expected number557

of Ω(log log(1/δ)) items from a constant fraction, say 1/4, of the properties i. This follows from558

Lemma 21 as we argue next. Let ni denote the number of observed items of property i. Then, since559

Ex[ni] = n/d = n/k ≥ 100, the multiplicative Chernoff bound implies that ni ≥ n/2k ≥ 2 log(1/δ)560

15

with high probability (probability = 1/2 suffices). Therefore, the expected number of properties i’s for561

which ni ≥ 2 log(1/δ) is at least k/2. Now, consider the random variable Y which counts for how many562

properties i we have ni ≥ 2 log(1/δ). Since Y is at most k and Ex[Y] ≥ k/2, then a simple averaging563

argument implies that with probability of at least 1/3 we have that Y ≥ k/4. Conditioning on this564

event (which happens with probability ≥ 1/3), Lemma 21 implies5 that Ex[|Si|] = Ω(log log(1/δ)) for565

each of these i’s.566

5Note that to apply Lemma 21 on Si we need δ > e–ni/2, which is equivalent to ni > 2 ln(1/δ).

16

	Introduction
	Model and Results
	Results
	Oblivious online screening
	Online screening with learning

	Thresholds-policies
	Uniform convergence of the number of retained items
	Uniform convergence of values

	Algorithms based on learning thresholds-policies
	Deferred Proofs
	The Greedy Online Algorithm
	Generalization and concentration

	Lower Bounds
	Necessity of the training phase
	The algorithm from thm:informalthreshalg is optimal

