
A Further background on stability

The study of stability dates back to early work on the analysis of k-neareast neighbor and other local
discrimination rules [Rogers and Wagner, 1978, Devroye and Wagner, 1979]. Stability has been
critically used in the analysis of stochastic optimization [Shalev-Shwartz et al., 2010] and online-to-
batch conversion [Cesa-Bianchi et al., 2001]. Stability bounds have been generalized to the non-i.i.d.
settings, including stationary [Mohri and Rostamizadeh, 2010] and non-stationary [Kuznetsov and
Mohri, 2017] φ-mixing and β-mixing processes. They have also been used to derive learning bounds
for transductive inference [Cortes et al., 2008]. Stability bounds were further extended to cover almost
stable algorithms by Kutin and Niyogi [2002]. These authors also discussed a number of alternative
definitions of stability, see also [Kearns and Ron, 1997]. An alternative notion of stability was also
used by Kale et al. [2011] to analyze k-fold cross-validation for a number of stable algorithms.
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B Properties of data-dependent Rademacher complexity

In this section, we highlight several key properties of our notion of data-dependent Rademacher
complexity.

B.1 Upper-bound on Rademacher complexity of data-dependent hypothesis sets

Lemma 2. For any sample S = (xS1 , . . . , xSm) ∈ RN , define the hypothesis set HS as follows:

HS = {x↦ wS ⋅ x∶ wS =
m

∑
i=1

αix
S
i , ∥α∥1 ≤ Λ1},

where Λ1 ≥ 0. Define rT and rS∪T as follows: rT =
√
∑mi=1 ∥xTi ∥2

2

m
and rS∪T = maxx∈S∪T ∥x∥2. Then,

the empirical Rademacher complexity of the family of data-dependent hypothesis setsH = (HS)S∈Xm
can be upper-bounded as follows:

R̂◇
S,T (H) ≤ rT rS∪TΛ1

√
2 log(4m)

m
≤ r2

S∪TΛ1

√
2 log(4m)

m
.

Proof. The following inequalities hold:

R̂◇
S,T (H) = 1

m
E
σ
[ sup
h∈Hσ

S,T

m

∑
i=1

σih(xTi )] =
1

m
E
σ
[ sup
∥α∥1≤Λ1

m

∑
i=1

σi
m

∑
j=1

αjx
ST,σ
j ⋅ xTi ]

= 1

m
E
σ
[ sup
∥α∥1≤Λ1

m

∑
j=1

αj (x
ST,σ
j

m

∑
i=1

σi ⋅ xTi )]

= Λ1

m
E
σ
[ max
j∈[m]

∣xST,σj ⋅
m

∑
i=1

σix
T
i ∣ ]

≤ Λ1

m
E
σ
[ max

x′∈S∪T
σ′∈{−1,+1}

m

∑
i=1

σi(σ′x′ ⋅ xTi )].

The norm of the vector z′ ∈ Rm with coordinates (σ′x′ ⋅ xTi ) can be bounded as follows:
¿
ÁÁÀ

m

∑
i=1

(σ′x′ ⋅ xTi )2 ≤ ∥x′∥

¿
ÁÁÀ

m

∑
i=1

∥xTi ∥2 ≤ rS∪T
√
mrT .

Thus, by Massart’s lemma, since ∣S ∪ T ∣ ≤ 2m, the following inequality holds:

R̂◇
S,T (H) ≤ rT rS∪TΛ1

√
2 log(4m)

m
≤ r2

S∪TΛ1

√
2 log(4m)

m
,

which completes the proof.

Notice that the bound on the Rademacher complexity in Lemma 2is non-trivial since it depends on
the samples S and T , while a standard Rademacher complexity for non-data-dependent hypothesis
set containing HS would require taking a maximum over all samples S of size m.

Lemma 3. Suppose X = RN , and for every sample S ∈ Zm we associate a matrix AS ∈ Rd×N for
some d > 0, and let WS,Λ = {w ∈ Rd ∶ ∥A⊺

Sw∥2 ≤ Λ} for some Λ > 0. Consider the hypothesis

set HS ∶= {x↦ w⊺ASx∶ w ∈WS,Λ}. Then, the empirical Rademacher complexity of the family of

data-dependent hypothesis setsH = (HS)S∈Zm can be upper-bounded as follows:

R̂◇
S,T (H) ≤

Λ
√
∑mi=1 ∥xTi ∥2

2

m
≤ Λr√

m
,

where r = supi∈[m] ∥xTi ∥2.
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Proof. Let XT = [xT1 ⋯xTm]. The following inequalities hold:

R̂◇
S,T (H) = 1

m
E
σ
[ sup
h∈Hσ

S,T

m

∑
i=1

σih(xTi )] =
1

m
E
σ
[ sup
w∶ ∥A⊺

S
w∥2≤Λ

w⊺ASXTσ]

≤ Λ

m
E
σ
[∥XTσ∥2] (Cauchy-Schwarz)

≤ Λ

m

√
E
σ
[∥XTσ∥2

2] (Jensen’s ineq.)

≤ Λ

m

¿
ÁÁÀE

σ
[

m

∑
i,j=1

σiσj(xTi ⋅ xTj )]

=
Λ
√
∑mi=1 ∥xTi ∥2

2

m
,

which completes the proof.

B.2 Concentration

Lemma 4. Let H a family of β-stable data-dependent hypothesis sets. Then, for any δ > 0, with
probability at least 1−δ (over the draw of two samples S and T with size m), the following inequality
holds:

∣R̂◇
S,T (G) −R◇

m(G)∣ ≤

√
[(mβ + 1)2 +m2β2] log 2

δ

2m
.

Proof. Let T ′ be a sample differing from T only by point. Fix η > 0. For any σ, by definition of the
supremum, there exists h′ ∈Hσ

S,T ′ such that:

m

∑
i=1

σiL(h′, zTi ) ≥ sup
h∈Hσ

S,T ′

m

∑
i=1

σiL(h, zT
′

i ) − η.

By the β-stability ofH, there exists h ∈Hσ
S,T such that for any z ∈ Z, ∣L(h′, z) −L(h, z)∣ ≤ β. Thus,

we have

sup
h∈Hσ

S,T ′

m

∑
i=1

σiL(h, zT
′

i ) ≤
m

∑
i=1

σiL(h′, zT
′

i ) + η ≤
m

∑
i=1

[σi(L(h, zT
′

i ) + β)] + η.

Since the inequality holds for all η > 0, we have

1

m
sup

h∈Hσ
S,T ′

m

∑
i=1

σiL(h, zT
′

i ) ≤ 1

m

m

∑
i=1

σi(L(h, zT
′

i ) + β) ≤ 1

m
sup

h∈Hσ
S,T

m

∑
i=1

σiL(h, zTi ) + β + 1

m
.

Thus, replacing T by T ′ affects R̂◇
S,T (G) by at most β + 1

m
. By the same argument, changing sample

S by one point modifies R̂◇
S,T (G) at most by β. Thus, by McDiarmid’s inequality, for any δ > 0,

with probability at least 1 − δ, the following inequality holds:

∣R̂◇
S,T (G) −R◇

m(G)∣ ≤

√
[(mβ + 1)2 +m2β2] log 2

δ

2m
.

This completes the proof.
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C Proof of Lemma 1

Proof. Let S ∈ Zm, z ∈ S, and z′ ∈ Z. For any h ∈HS and h′ ∈HSz↔z′ , by the β-uniform stability
ofH, there exists h′′ ∈HS such that L(h′, z) −L(h′′, z) ≤ β. Thus,

L(h′, z) −L(h, z) = L(h′, z) −L(h′′, z) +L(h′′, z) −L(h, z) ≤ β + sup
h′′, h∈HS

L(h′′, z) −L(h, z).

This implies the inequality

sup
h∈HS ,h′∈HSz↔z′

L(h′, z) −L(h, z) ≤ β + sup
h′′, h∈HS

L(h′′, z) −L(h, z),

and the lemma follows.
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D Proof of Theorem 1

In this section, we present the proof of Theorem 1.

Proof. We will use the following symmetrization result, which holds for any ε > 0 with nε2 ≥ 2 for
data-dependent hypothesis sets (Lemma 5 below):

P
S∼Dm

[ sup
h∈HS

R(h) − R̂S(h) > ε] ≤ 2 P
S∼Dm

T∼Dn

[ sup
h∈HS

R̂T (h) − R̂S(h) >
ε

2
]. (13)

Thus, we will seek to bound the right-hand side as follows, where we write (S,T ) ∼ U to indicate that
the sample S of size m is drawn uniformly without replacement from U and that T is the remaining
part of U , that is (S,T ) = U :

P
S∼Dm

T∼Dn

[ sup
h∈HS

R̂T (h) − R̂S(h) >
ε

2
]

= E
U∼Dm+n

⎡⎢⎢⎢⎢⎣
P

(S,T )∼U
∣S∣=m,∣T ∣=n

[ sup
h∈HS

R̂T (h) − R̂S(h) >
ε

2
] ∣ U

⎤⎥⎥⎥⎥⎦

≤ E
U∼Dm+n

⎡⎢⎢⎢⎢⎣
P

(S,T )∼U
∣S∣=m,∣T ∣=n

[ sup
h∈HU,m

R̂T (h) − R̂S(h) >
ε

2
] ∣ U

⎤⎥⎥⎥⎥⎦
.

To upper bound the probability inside the expectation, we use an extension of McDiarmid’s inequality
to sampling without replacement [Cortes et al., 2008], which applies to symmetric functions. We can
apply that extension to Φ(S) = suph∈HU,m

R̂T (h)−R̂S(h), for a fixed U , since Φ(S) is a symmetric
function of the sample points z1, . . . , zm) in S. Changing one point in S affects Φ(S) at most by
1
m
+ 1
m
= m+u

mu
, thus, by the extension of McDiarmid’s inequality to sampling without replacement,

for a fixed U ∈ Zm+n, the following inequality holds:

P
(S,T )∼U

∣S∣=m,∣T ∣=n

[ sup
h∈HU,m

R̂T (h) − R̂S(h) >
ε

2
] ≤ exp [ − 2

η

mn

m + n
( ε

2
−E[Φ(S)])

2

], (14)

where η = m+n
m+n− 1

2

1
1− 1

2max{m,n}
≤ 3. Plugging in the bound on E[Φ(S)] of Lemma 6 below, and

setting

ε = max
U∈Zm+n

2R̂◇
U,m(G) + 3

√
( 1
m
+ 1
n
) log( 2

δ
) + 2

√
( 1
m
+ 1
n
)3
mn,

which satisfies nε2 ≥ 2, it is easy to check that the RHS in (14) becomes smaller than δ
2

. This in turn
implies, via (13), that the probability that suph∈HS

R(h) − R̂S(h) > ε is at most δ, completing the
proof.

The following lemma shows that the standard symmetrization lemma holds for data-dependent
hypothesis sets. This observation was already made by Gat [2001] (see also Lemma 2 in [Cannon
et al., 2002]) for the symmetrization lemma of Vapnik [1998][p. 139], used by the author in the case
n = m. However, that symmetrization lemma of Vapnik [1998] holds only for random variables
taking values in {0,1} and its proof is not complete since the hypergeometric inequality is not proven.

Lemma 5. Let n ≥ 1 and fix ε > 0 such that nε2 ≥ 2. Then, the following inequality holds:

P
S∼Dm

[ sup
h∈HS

R(h) − R̂S(h) > ε] ≤ 2 P
S∼Dm

T∼Dn

[ sup
h∈HS

R̂T (hS) − R̂S(hS) >
ε

2
].

Proof. The proof is standard. Below, we are giving a concise version mainly for the purpose of
verifying that the data-dependency of the hypothesis set does not affect its correctness.
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Fix η > 0. By definition of the supremum, there exists hS ∈HS such that

sup
h∈HS

R(h) − R̂S(h) − η ≤ R(hS) − R̂S(hS).

Since R̂T (hS) − R̂S(hS) = R̂T (hS) −R(hS) +R(hS) − R̂S(hS), we can write

1R̂T (hS)−R̂S(hS)> ε2
≥ 1R̂T (hS)−R(hS)>− ε2

1R(hS)−R̂S(hS)>ε = 1R(hS)−R̂T (hS)< ε2
1R(hS)−R̂S(hS)>ε.

Thus, for any S ∈ Zm, taking the expectation of both sides with respect to T yields

P
T∼Dn

[R̂T (hS) − R̂S(hS) >
ε

2
] ≥ P

T∼Dn
[R(hS) − R̂T (hS) <

ε

2
] 1R(hS)−R̂S(hS)>ε

= [1 − P
T∼Dn

[R(hS) − R̂T (hS) ≥
ε

2
]] 1R(hS)−R̂S(hS)>ε

≤ [1 − 4 Var[L(hS , z)]
nε2

] 1R(hS)−R̂S(hS)>ε (Chebyshev’s ineq.)

≥ [1 − 1

nε2
] 1R(hS)−R̂S(hS)>ε ,

where the last inequality holds since L(hS , z) takes values in [0,1]:

Var[L(hS , z)] = E
z∼D

[L2(hS , z)] − E
z∼D

[L(hS , z)]2 ≤ E
z∼D

[L(hS , z)] − E
z∼D

[L(hS , z)]2

= E
z∼D

[L(hS , z)](1 − E
z∼D

[L(hS , z)]) ≤
1

4
.

Taking expectation with respect to S gives

P
S∼Dm

T∼Dn

[R̂T (hS) − R̂S(hS) >
ε

2
] ≥ [1 − 1

nε2
] P
S∼Dm

[R(hS) − R̂S(hS) > ε]

≥ 1

2
P

S∼Dm
[R(hS) − R̂S(hS) > ε] (nε2 ≥ 2)

≥ 1

2
P

S∼Dm
[ sup
h∈HS

R(h) − R̂S(h) > ε + η].

Since the inequality holds for all η > 0, by the right-continuity of the cumulative distribution function,
it implies

P
S∼Dm

T∼Dn

[R̂T (hS) − R̂S(hS) >
ε

2
] ≥ 1

2
P

S∼Dm
[ sup
h∈HS

R(h) − R̂S(h) > ε].

Since hS is in HS , by definition of the supremum, we have

P
S∼Dm

T∼Dn

[ sup
h∈HS

R̂T (h) − R̂S(h) >
ε

2
] ≥ P

S∼Dm

T∼Dn

[R̂T (hS) − R̂S(hS) >
ε

2
],

which completes the proof.

The following lemma provides a bound on E[Φ(S)]:
Lemma 6. Fix U ∈ Zm+n. Then, the following upper bound holds:

E
(S,T )∼U

∣S∣=m,∣T ∣=n

[ sup
h∈HU,m

R̂T (h) − R̂S(h)] ≤ R̂◇
U,m(G) +

¿
ÁÁÀ log(2e)(m + n)3

2(mn)2
.

For m = n, the inequality becomes:

E
(S,T )∼U

∣S∣=m,∣T ∣=n

[ sup
h∈HU,m

R̂T (h) − R̂S(h)] ≤ R̂◇
U,m(G) + 2

√
log(2e)
m

.
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Proof. The proof is an extension of the analysis of maximum discrepancy in [Bartlett and Mendelson,
2002]. Let ∣σ∣ denote ∑m+n

i=1 σi and let I ⊆ [− (m+n)2

m
, (m+n)2

n
] denote the set of values ∣σ∣ can take.

For any q ∈ I , define s(q) as follows:

s(q) = E
σ
[ sup
h∈HU,m

1

m + n

m+n
∑
i=1

σiL(h, zUi )∣ ∣σ∣ = q].

Let ∣σ∣+ denote the number of positive σis, taking value m+n
n

, then ∣σ∣ can be expressed as follows:

∣σ∣ =
m+n
∑
i=1

σi = ∣σ∣+
m + n
n

− (m + n − ∣σ∣+)
m + n
m

= (m + n)2

mn
(∣σ∣+ − n). (15)

Thus, we have ∣σ∣ = 0 iff ∣σ∣+ =m, and the condition (∣σ∣ = 0) precisely corresponds to having the
equality

1

m + n

m+n
∑
i=1

σiL(h, zUi ) = R̂T (h) − R̂S(h),

where S is the sample of size m defined by those zis for which σi takes value m+n
n

. In view of that,
we have

E
(S,T )∼U

∣S∣=m,∣T ∣=n

[ sup
h∈HU,m

R̂T (h) − R̂S(h)] = s(0).

Let q1, q2 ∈ I , with q1 = p1
m+n
n

− (m + n − p1)m+n
m

, q2 = p2
m+n
n

− (m + n − p2)m+n
m

and q1 ≤ q2.
Then, we can write

s(q1) = E
⎡⎢⎢⎢⎣
sup
g∈G

p1

∑
i=1

1

n
L(h, zi) −

m+n
∑

i=p1+1

1

m
L(h, zi)

⎤⎥⎥⎥⎦

s(q2) = E
⎡⎢⎢⎢⎢⎣

sup
g∈G

p1

∑
i=1

1

n
L(h, zi) −

m+n
∑

i=p1+1

1

m
L(h, zi) +

p2

∑
i=p1+1

[ 1

n
+ 1

m
]L(h, zi)

⎤⎥⎥⎥⎥⎦
.

Thus, we have the following Lipschitz property:

∣s(q2) − s(q1)∣ ≤ ∣p2 − p1∣[
1

m
+ 1

n
] = ∣(p2 − n) − (p1 − n)∣[

1

m
+ 1

n
] (using (15))

= ∣q2 − q1∣
mn

(m + n)2
[ 1

m
+ 1

n
]

= ∣q2 − q1∣
m + n

.

By this Lipschitz property, we can write

P [∣s(∣σ∣) − s(E[∣σ∣])∣ > ε] ≤ P [∣∣σ∣ −E[∣σ∣]∣ > (m + n)ε] ≤ 2 exp [ − 2
(mn)2ε2

(m + n)3
],

since the range of each σi is m+n
n

+ m+n
m

= (m+n)2

mn
. We now use this inequality to bound the second

moment of Z = s(∣σ∣) − s(E[∣σ∣]) = s(∣σ∣) − s(0), as follows, for any u ≥ 0:

E[Z2] = ∫
+∞

0
P[Z2 > t]dt

= ∫
u

0
P[Z2 > t]dt + ∫

+∞

u
P[Z2 > t]dt

≤ u + 2∫
+∞

u
exp [ − 2

(mn)2t

(m + n)3
]dt

≤ u + [(m + n)3

(mn)2
exp [ − 2

(mn)2t

(m + n)3
]]

+∞

u

= u + (m + n)3

(mn)2
exp [ − 2

(mn)2u

(m + n)3
].
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Choosing u = 1
2

log(2)(m+n)3

(mn)2 to minimize the right-hand side gives E[Z2] ≤ log(2e)(m+n)3

2(mn)2 . By

Jensen’s inequality, this implies E[∣Z ∣] ≤
√

log(2e)(m+n)3

2(mn)2 and therefore

E
(S,T )∼U

∣S∣=m,∣T ∣=n

[ sup
h∈HU,m

R̂T (h) − R̂S(h)] = s(0) ≤ E[s(∣σ∣)] +

¿
ÁÁÀ log(2e)(m + n)3

2(mn)2
.

Since we have E[s(∣σ∣)] = R̂◇
U,m(G), this completes the proof.
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E Proof of Theorem 2

In this section, we present the full proof of Theorem 2. The proof of each of the three bounds (9),
(10) and (11) are given in separate subsections.

E.1 Proof of bound (9)

Proof. For any two samples S,S′, define the Ψ(S,S′) as follows:

Ψ(S,S′) = sup
h∈HS

R(h) − R̂S′(h).

The proof consists of applying McDiarmid’s inequality to Ψ(S,S). For any sample S′ differing from
S by one point, we can decompose Ψ(S,S) −Ψ(S′, S′) as follows:

Ψ(S,S) −Ψ(S′, S′) = [Ψ(S,S) −Ψ(S,S′)] + [Ψ(S,S′) −Ψ(S′, S′)].

Now, by the sub-additivity of the sup operation, the first term can be upper-bounded as follows:

Ψ(S,S) −Ψ(S,S′) ≤ sup
h∈HS

[R(h) − R̂S(h)] − [R(h) − R̂S′(h)]

≤ sup
h∈HS

1

m
[L(h, z) −L(h, z′)] ≤ 1

m
,

where we denoted by z and z′ the labeled points differing in S and S′ and used the 1-boundedness of
the loss function.

We now analyze the second term:

Ψ(S,S′) −Ψ(S′, S′) = sup
h∈HS

[R(h) − R̂S′(h)] − sup
h∈HS′

[R(h) − R̂S′(h)].

By definition of the supremum, for any ε > 0, there exists h ∈HS such that

sup
h∈HS

[R(h) − R̂S′(h)] − ε ≤ [R(h) − R̂S′(h)]

By the β-stability of (HS)S∈Zm , there exists h′ ∈HS′ such that for all z, ∣L(h, z)−L(h′, z)∣ ≤ β. In
view of these inequalities, we can write

Ψ(S,S′) −Ψ(S′, S′) ≤ [R(h) − R̂S′(h)] + ε − sup
h∈HS′

[R(h) − R̂S′(h)]

≤ [R(h) − R̂S′(h)] + ε − [R(h′) − R̂S′(h′)]

≤ [R(h) −R(h′)] + ε + [R̂S′(h′) − R̂S′(h)]
≤ ε + 2β.

Since the inequality holds for any ε > 0, it implies that Ψ(S,S′) −Ψ(S′, S′) ≤ 2β. Summing up the
bounds on the two terms shows the following:

Ψ(S,S) −Ψ(S′, S′) ≤ 1

m
+ 2β.

Thus, by McDiarmid’s inequality, for any δ > 0, with probability at least 1 − δ, we have

Ψ(S,S) ≤ E[Ψ(S,S)] + (1 + 2βm)
√

1
2m

log( 1
δ
). (16)
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We now bound E[Ψ(S,S)] by 2R◇
m(G) as follows:

E
S∼Dm

[Ψ(S,S)]

= E
S∼Dm

[ sup
h∈HS

[R(h) − R̂S(h)]]

= E
S∼Dm

[ sup
h∈HS

[ E
T∼Dm

[R̂T (h)] − R̂S(h)]] (def. of R(h))

≤ E
S,T∼Dm

[ sup
h∈HS

R̂T (h) − R̂S(h)] (sub-additivity of sup)

= E
S,T∼Dm

[ sup
h∈HS

1

m

m

∑
i=1

[L(h, zTi ) −L(h, zSi )]]

= E
S,T∼Dm

[E
σ
[ sup
h∈Hσ

S,T

1

m

m

∑
i=1

σi[L(h, zTi ) −L(h, zSi )]]] (symmetry)

≤ E
S,T∼Dm

σ

[ sup
h∈Hσ

S,T

1

m

m

∑
i=1

σiL(h, zTi ) + sup
h∈Hσ

S,T

1

m

m

∑
i=1

−σiL(h, zSi )] (sub-additivity of sup)

= E
S,T∼Dm

σ

[ sup
h∈Hσ

S,T

1

m

m

∑
i=1

σiL(h, zTi ) + sup
h∈H−σ

T,S

1

m

m

∑
i=1

−σiL(h, zSi )] (Hσ
S,T =H−σ

T,S)

= E
S,T∼Dm

σ

[ sup
h∈Hσ

S,T

1

m

m

∑
i=1

σiL(h, zTi ) + sup
h∈Hσ

T,S

1

m

m

∑
i=1

σiL(h, zSi )] (symmetry)

= 2R◇
m(G). (linearity of expectation)

Now, we show that ES∼Dm[Ψ(S,S)] ≤ χ̄. To do so, first fix ε > 0. By definition of the supremum,
for any S ∈ Zm, there exists hS such that the following inequality holds:

sup
h∈HS

[R(h) − R̂S(h)] − ε ≤ R(hS) − R̂S(hS).

Now, by definition of R(hS), we can write

E
S∼Dm

[R(hS)] = E
S∼Dm

[ E
z∼D

(L(hS , z)] = E
S∼Dm

z∼D

[L(hS , z)].

Then, by the linearity of expectation, we can also write

E
S∼Dm

[R̂S(hS)] = E
S∼Dm

z∼S

[L(hS , z)] = E
S∼Dm

z′∼D
z∼S

[L(hSz↔z′ , z
′)].

In view of these two equalities, we can now rewrite the upper bound as follows:

E
S∼Dm

[Ψ(S,S)] ≤ E
S∼Dm

[R(hS) − R̂S(hS)] + ε

= E
S∼Dm

z′∼D

[L(hS , z′)] − E
S∼Dm

z′∼D
z∼S

[L(hSz↔z′ , z
′)] + ε

= E
S∼Dm

z′∼D
z∼S

[L(hS , z′) −L(hSz↔z′ , z
′)] + ε

= E
S∼Dm

z′∼D
z∼S

[L(hSz↔z′ , z) −L(hS , z)] + ε

≤ χ̄ + ε.

Since the inequality holds for all ε > 0, it implies ES∼Dm [Ψ(S,S)] ≤ χ̄. Plugging in these upper
bounds on the expectation in the inequality (16) completes the proof.
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E.2 Proof of bound (10)

The proof of bound (10) relies on recent techniques introduced in the differential privacy literature to
derive improved generalization guarantees for stable data-dependent hypothesis sets [Steinke and
Ullman, 2017, Bassily et al., 2016] (see also [McSherry and Talwar, 2007]). Our proof also benefits
from the recent improved stability results of Feldman and Vondrak [2018]. We will make use of the
following lemma due to Steinke and Ullman [2017, Lemma 1.2], which reduces the task of deriving a
concentration inequality to that of upper bounding an expectation of a maximum.
Lemma 7. Fix p ≥ 1. Let X be a random variable with probability distribution D and X1, . . . ,Xp

independent copies of X . Then, the following inequality holds:

P
X∼D

[X ≥ 2 E
Xk∼D

[max{0,X1, . . . ,Xp}]] ≤
log 2

p
.

We will also use the following result which, under a sensitivity assumption, further reduces the task
of upper bounding the expectation of the maximum to that of bounding a more favorable expression.
Lemma 8 ([McSherry and Talwar, 2007, Bassily et al., 2016, Feldman and Vondrak, 2018]). Let
f1, . . . , fp∶Zm → R be p functions with sensitivity ∆. Let A be the algorithm that, given a dataset

S ∈ Zm and a parameter ε > 0, returns the index k ∈ [p] with probability proportional to e
εfk(S)

2∆ .
Then, A is ε-differentially private and, for any S ∈ Zm, the following inequality holds:

max
k∈[p]

{fk(S)} ≤ E
k=A(S)

[fk(S)] +
2∆

ε
log p.

Notice that, if we define fp+1 = 0, then, by the same result, the algorithm A returning the index

k ∈ [p + 1] with probability proportional to e
εfk(S)1k≠(p+1)

2∆ is ε-differentially private and the following
inequality holds for any S ∈ Zm:

max{0,max
k∈[p]

{fk(S)}} = max
k∈[p+1]

{fk(S)} ≤ E
k=A(S)

[fk(S)] +
2∆

ε
log(p + 1). (17)

Equipped with these lemmas, we can now turn to the proof of bound (10):

Proof. For any two samples S,S′ of size m, define Ψ(S,S′) as follows:

Ψ(S,S′) = sup
h∈HS

R(h) − R̂S′(h).

The proof consists of deriving a high-probability bound for Ψ(S,S). To do so, by Lemma 7 applied to
the random variable X = Ψ(S,S), it suffices to bound ES∼Dpm [max{0,maxk∈[p] {Ψ(Sk, Sk)}}],
where S = (S1, . . . , Sp) with Sk, k ∈ [p], independent samples of size m drawn from Dm.

To bound that expectation, we can use Lemma 8 and instead bound ES∼Dpm

k=A(S)
[Ψ(Sk, Sk)], where A is

an ε-differentially private algorithm.

Now, to apply Lemma 8, we first show that, for any k ∈ [p], the function fk ∶S → Ψ(Sk, Sk) is
∆-sensitive with ∆ = 1

m
+2β. Fix k ∈ [p]. Let S′ = (S′1, . . . , S′p) be in Zpm and assume that S′ differs

from S by one point. If they differ by a point not in Sk (or S′k), then fk(S) = fk(S′). Otherwise,
they differ only by a point in Sk (or S′k) and fk(S) − fk(S′) = Ψ(Sk, Sk) − Ψ(S′k, S′k). We can
decompose this term as follows:

Ψ(Sk, Sk) −Ψ(S′k, S′k) = [Ψ(Sk, Sk) −Ψ(Sk, S′k)] + [Ψ(Sk, S′k) −Ψ(S′k, S′k)].

Now, by the sub-additivity of the sup operation, the first term can be upper-bounded as follows:

Ψ(Sk, Sk) −Ψ(Sk, S′k) ≤ sup
h∈HSk

[R(h) − R̂Sk(h)] − [R(h) − R̂S′
k
(h)]

≤ sup
h∈HSk

1

m
[L(h, z) −L(h, z′)] ≤ 1

m
,
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where we denoted by z and z′ the labeled points differing in Sk and S′k and used the 1-boundedness
of the loss function.

We now analyze the second term:

Ψ(Sk, S′k) −Ψ(S′k, S′k) = sup
h∈HSk

[R(h) − R̂S′
k
(h)] − sup

h∈HS′
k

[R(h) − R̂S′
k
(h)].

By definition of the supremum, for any η > 0, there exists h ∈HSk such that

sup
h∈HSk

[R(h) − R̂S′
k
(h)] − η ≤ [R(h) − R̂S′

k
(h)]

By the β-stability of (HS)S∈Zm , there exists h′ ∈ HS′
k

such that for all z, ∣L(h, z) −L(h′, z)∣ ≤ β.
In view of these inequalities, we can write

Ψ(Sk, S′k) −Ψ(S′k, S′k) ≤ [R(h) − R̂S′
k
(h)] + η − sup

h∈HS′
k

[R(h) − R̂S′
k
(h)]

≤ [R(h) − R̂S′
k
(h)] + η − [R(h′) − R̂S′

k
(h′)]

≤ [R(h) −R(h′)] + η + [R̂S′
k
(h′) − R̂S′

k
(h)]

≤ η + 2β.

Since the inequality holds for any η > 0, it implies that Ψ(Sk, S′k) −Ψ(S′k, S′k) ≤ 2β. Summing up
the bounds on the two terms shows the following:

Ψ(Sk, Sk) −Ψ(S′k, S′k) ≤
1

m
+ 2β.

Having established the ∆-sensitivity of the functions fk, k ∈ [p], we can now apply Lemma 8. Fix
ε > 0. Then, by Lemma 8 and (17), the algorithmA returning k ∈ [p+1] with probability proportional

to e
εΨ(Sk,Sk)1k≠(p+1)

2∆ is ε-differentially private and, for any sample S ∈ Zpm, the following inequality
holds:

max{0,max
k∈[p]

{Ψ(Sk, Sk)}} ≤ E
k=A(S)

[Ψ(Sk, Sk)] +
2∆

ε
log(p + 1).

Taking the expectation of both sides yields

E
S∼Dpm

[max{0,max
k∈[p]

{Ψ(Sk, Sk)}}] ≤ E
S∼Dpm

k=A(S)

[Ψ(Sk, Sk)] +
2∆

ε
log(p + 1). (18)

We will show the following upper bound on the expectation: ES∼Dpm

k=A(S)
[Ψ(Sk, Sk)] ≤ (eε − 1) + eεχ.

To do so, first fix η > 0. By definition of the supremum, for any S ∈ Zm, there exists hS ∈HS such
that the following inequality holds:

sup
h∈HS

[R(h) − R̂S(h)] − η ≤ R(hS) − R̂S(hS).

In what follows, we denote by Sk,z↔z
′
∈ Zpm the result of modifying S = (S1, . . . , Sp) ∈ Zpm by

replacing z ∈ Sk with z′.

23



Now, by definition of the algorithm A, we can write:

E
S∼Dpm

k=A(S)

[R(hSk)] = E
S∼Dpm

k=A(S)

[ E
z′∼D

[L(hSk , z
′)]] (def. of R(hSk))

= E
S∼Dpm

z′∼D

[
p

∑
k=1

P[A(S) = k]L(hSk , z
′)] (def. of E

k=A(S)
)

=
p

∑
k=1

E
S∼Dpm

z′∼D

[P[A(S) = k]L(hSk , z
′)] (linearity of expect.)

≤
p

∑
k=1

E
S∼Dpm

z′∼D, z∼Sk

[eε P[A(Sk,z↔z
′
) = k]L(hSk , z

′)] (ε-diff. privacy of A)

=
p

∑
k=1

E
S∼Dpm

z′∼D, z∼Sk

[eε P[A(S) = k]L(hSz↔z′
k

, z)] (swapping z′ and z)

≤
p

∑
k=1

E
S∼Dpm

z′∼D, z∼Sk

[eε P[A(S) = k]L(hSk , z)] + e
εχ. (By Lemma 9 below)

Now, observe that Ez∼Sk[L(hSk , z)] coincides with R̂(hSk), the empirical loss of hSk . Thus, we
can write

E
S∼Dpm

k=A(S)

[R(hSk)] ≤
p

∑
k=1

E
S∼Dpm

z∼Sk

[eε P[A(S) = k] R̂Sk(hSk)] + e
εχ,

and therefore

E
S∼Dpm

k=A(S)

[Ψ(Sk, Sk)] ≤
p

∑
k=1

E
S∼Dpm

k=A(S)

[(eε − 1)R̂Sk(hSk)] + e
εχ + η

≤ (eε − 1) + eεχ + η.

Since the inequality holds for any η > 0, we have

E
S∼Dpm

k=A(S)

[Ψ(Sk, Sk)] ≤ (eε − 1) + eεχ.

Thus, by (18), the following inequality holds:

E
S∼Dpm

[max{0,max
k∈[p]

{Ψ(Sk, Sk)}}] ≤ (eε − 1) + eεχ + 2∆

ε
log(p + 1). (19)

For any δ ∈ (0,1), choose p = log 2
δ

, which implies log(p+1) = log [ 2+δ
δ

] ≤ log 3
δ

. Then, by Lemma 7,
with probability at least 1 − δ over the draw of a sample S ∼Dm, the following inequality holds for
all h ∈HS :

R(h) ≤ R̂S(h) + (eε − 1) + eεχ + 2∆

ε
log [3

δ
] . (20)

For ε ≤ 1
2

, the inequality (eε − 1) ≤ 2ε holds. Thus,

(eε − 1) + eεχ + 2∆

ε
log [3

δ
] ≤ 2ε +

√
eχ + 2∆

ε
log [3

δ
]

Choosing ε =
√

∆ log [ 3
δ
] gives

R(h) ≤ R̂S(h) +
√
eχ + 4

√
∆ log [3

δ
]

= R̂S(h) +
√
eχ + 4

√
[ 1
m
+ 2β] log [ 3

δ
].
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Combining this inequality with the inequality of Theorem 2 related to the Rademacher complexity:

∀h ∈HS ,R(h) ≤ R̂S(h) + 2R◇
m(G) + [1 + 2βm]

√
log 1

δ

2m
, (21)

and using the union bound complete the proof.

The following is a helper lemma for the analysis in the above proof:

Lemma 9. The following upper bound in terms of the CV-stability coefficient χ holds:

p

∑
k=1

E
S∼Dpm

z′∼D, z∼Sk

[eε P[A(S) = k] [L(hSz↔z′
k

, z) −L(hSk , z)]] ≤ e
εχ.

Proof. Upper bounding the difference of losses by a supremum to make the CV-stability coefficient
appear gives the following chain of inequalities:

p

∑
k=1

E
S∼Dpm

z′∼D, z∼Sk

[eε P[A(S) = k] [L(hSz↔z′
k

, z) −L(hSk , z)]]

≤
p

∑
k=1

E
S∼Dpm

z′∼D, z∼Sk

[eε P[A(S) = k] sup
h∈HSk

, h′∈H
Sz↔z′
k

[L(h′, z) −L(h, z)]]

=
p

∑
k=1

E
S∼Dpm

[eε P[A(S) = k] E
z′∼D, z∼Sk

[ sup
h∈HSk

, h′∈H
Sz↔z′
k

[L(h′, z) −L(h, z)] ∣ S]]

≤
p

∑
k=1

E
S∼Dpm

[eε P[A(S) = k]χ]

= E
S∼Dpm

[
p

∑
k=1

P[A(S) = k]] ⋅ eεχ

= eεχ,

which completes the proof.

E.3 Proof of bound (11)

Bound (11) is a simple consequence of the fact that the composition of the two stages of the learning
algorithm is uniformly-stable in the classical sense. Specifically, consider a learning algorithm that
consists of determining the hypothesis set HS based on the sample S and then selecting an arbitrary
(but fixed) hypothesis hS ∈HS . The following lemma shows that the uniform-stability coefficient of
this learning algorithm can be bounded in terms of its hypothesis set stability and its max-diameter.

Lemma 10. Suppose the family of data-dependent hypothesis sets H = (HS)S∈Zm is β-uniformly
stable and admits max-diameter ∆max. Then, for any two samples S,S′ ∈ Zm differing in exactly
one point, and for any z ∈ Z, we have

∣L(hS , z) −L(hS′ , z)∣ ≤ 3β +∆max.

Proof. We first show that for any two hypotheses h,h′ ∈HS and for any z ∈ Z, we have ∣L(h, z) −
L(h′, z)∣ ≤ 2β + ∆max. Indeed, let S′′ be a sample obtained by replacing an arbitrary point in S
by z. Then, by β-uniform hypothesis set stability of H, there exist hypotheses g, g′ ∈ HS′′ such
that ∣L(h, z) − L(g, z)∣ ≤ β and ∣L(h′, z) − L(g′, z)∣ ≤ β. Furthermore, since z ∈ S′′, we have
∣L(g, z) − L(g′, z)∣ ≤ ∆max. By combining these inequalities, we get that ∣L(h, z) − L(h′, z)∣ ≤
2β +∆max, as required.

Now, let h′ ∈ HS be a hypothesis such that ∣L(h′, z) − L(hS′ , z)∣ ≤ β. Since h′, hS ∈ HS , by the
analysis in the preceding paragraph, we have ∣L(hS , z) −L(h′, z)∣ ≤ 2β +∆max. Combining these
two inequalities, we have ∣L(hS , z) −L(hS′ , z)∣ ≤ 3β +∆max, completing the proof.

25



Finally, bound (11) follows immediately from the following result of Feldman and Vondrak [2019],
setting `(S, z) ∶= L(hS , z) and γ = 3β +∆max, and the fact that any two hypotheses h and h′ in HS

differ in loss on any point z by at most ∆max in order to get a bound which holds uniformly for all
h ∈HS .
Theorem 3 ([Feldman and Vondrak, 2019]). Let `∶Zm × Z → [0,1] be a data-dependent function
with uniform stability γ, i.e. for any S,S′ ∈ Zm differing in one point, and any z ∈ Z, we have
∣`(S, z) − `(S′, z)∣ ≤ γ. Then, for any δ > 0, with probability at least 1 − δ over the choice of the
sample S, the following inequality holds:

∣ E
z∼D

[`(S, z)] − E
z∼S

[`(S, z)]∣ ≤ 47γ log(m) log( 5m3

δ
) +

√
4
m

log( 4
δ
).
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F Extensions

We briefly discuss here some extensions of the framework and results presented in the previous
section.

F.1 Almost everywhere hypothesis set stability

As for standard algorithmic uniform stability, our generalization bounds for hypothesis set stability
can be extended to the case where hypothesis set stability holds only with high probability [Kutin and
Niyogi, 2002].
Definition 4. Fix m ≥ 1. We will say that a family of data-dependent hypothesis setsH = (HS)S∈Zm
is weakly (β, δ)-stable for some β ≥ 0 and δ > 0, if, with probability at least 1 − δ over the draw of a
sample S ∈ Zm, for any sample S′ of size m differing from S only by one point, the following holds:

∀h ∈HS ,∃h′ ∈HS′ ∶ ∀z ∈ Z, ∣L(h, z) −L(h′, z)∣ ≤ β. (22)

Notice that, in this definition, β and δ depend on the sample size m. In practice, we often have
β = O( 1

m
) and δ = O(e−Ω(m)). The learning bounds of Theorem 2 can be straightforwardly extended

to guarantees for weakly (β, δ)-stable families of data-dependent hypothesis sets, by using a union
bound and the confidence parameter δ.

F.2 Randomized algorithms

The generalization bounds given in this paper assume that the data-dependent hypothesis set HS is
deterministic conditioned on S. However, in some applications such as bagging, it is more natural to
think of HS as being constructed by a randomized algorithm with access to an independent source
of randomness in the form of a random seed s. Our generalization bounds can be extended in a
straightforward manner for this setting if the following can be shown to hold: there is a good set of
seeds, G, such that (a) P[s ∈ G] ≥ 1 − δ, where δ is the confidence parameter, and (b) conditioned
on any s ∈ G, the family of data-dependent hypothesis sets H = (HS)S∈Zm is β-uniformly stable.
In that case, for any good set s ∈ G, Theorem 2 holds. Then taking a union bound, we conclude
that with probability at least 1 − 2δ over both the choice of the random seed s and the sample set S,
the generalization bounds hold. This can be further combined with almost-everywhere hypothesis
stability as in section F.1 via another union bound if necessary.

F.3 Data-dependent priors

An alternative scenario extending our study is one where, in the first stage, instead of selecting
a hypothesis set HS , the learner decides on a probability distribution pS on a fixed family of
hypotheses H. The second stage consists of using that prior pS to choose a hypothesis hS ∈ H,
either deterministically or via a randomized algorithm. Our notion of hypothesis set stability could
then be extended to that of stability of priors and lead to new learning bounds depending on that
stability parameter. This could lead to data-dependent prior bounds somewhat similar to the PAC-
Bayesian bounds [Catoni, 2007, Parrado-Hernández et al., 2012, Lever et al., 2013, Dziugaite and
Roy, 2018a,b], but with technically quite different guarantees.
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G Other applications

G.1 Anti-distillation

A similar setup to distillation (section 5.4) is that of anti-distillation where the predictor f∗S in the first
stage is chosen from a simpler family, say that of linear hypotheses, and where the sample-dependent
hypothesis set HS is the subset of a very rich family H. HS is defined as the set of predictors that
are close to f∗S :

HS = {h ∈H∶ (∥(h − f∗S)∥∞ ≤ γ) ∧ (∥(h − f∗S)1S∥∞ ≤ ∆)},

with ∆ = O(1/
√
m). Thus, the restriction to S of a hypothesis h ∈ HS is close to f∗S in `∞-

norm. As shown in section 5.4, the family of hypothesis sets HS is µβ-stable. However, here,
the hypothesis sets HS could be very complex and the Rademacher complexity R◇

m(H) not very
favorable. Nevertheless, by Theorem 2, for any δ > 0, with probability at least 1 − δ over the draw of
a sample S ∼Dm, the following inequality holds for any h ∈HS :

R(h) ≤ R̂S(h) +
√
eµ(∆ + β) + 4

√
( 1
m
+ 2µβ) log( 6

δ
).

Notice that a standard uniform-stability does not apply here since the (1/
√
m)-closeness of the

hypotheses to f∗S on S does not imply their global (1/
√
m)-closeness.

G.2 Principal Components Regression

Principal Components Regression is a very commonly used technique in data analysis. In this setting,
X ⊆ Rd and Y ⊆ R, with a loss function ` that is µ-Lipschitz in the prediction. Given a sample
S = {(xi, yi) ∈ X × Y∶ i ∈ [m]}, we learn a linear regressor on the data projected on the principal
k-dimensional space of the data. Specifically, let ΠS ∈ Rd×d be the projection matrix giving the
projection of Rd onto the principal k-dimensional subspace of the data, i.e. the subspace spanned
by the top k left singular vectors of the design matrix XS = [x1, x2,⋯, xm]. The hypothesis space
HS is then defined as HS = {x↦ w⊺ΠSx∶w ∈ Rk, ∥w∥ ≤ γ}, where γ is a predefined bound on the
norm of the weight vector for the linear regressor. Thus, this can be seen as an instance of the setting
in section 5.3, where the feature mapping ΦS is defined as ΦS(x) = ΠSx.

To prove generalization bounds for this setup, we need to show that these feature mappings are stable.
To do that, we make the following assumptions:

1. For all x ∈ X, ∥x∥ ≤ r for some constant r ≥ 1.
2. The data covariance matrix Ex[xx⊺] has a gap of λ > 0 between the k-th and (k + 1)-th

largest eigenvalues.

The matrix concentration bound of Rudelson and Vershynin [2007] implies that with probability

at least 1 − δ over the choice of S, we have ∥XSX
⊺
S −mEx[xx⊺]∥ ≤ cr2

√
m log(m) log( 2

δ
) for

some constant c > 0. Suppose m is large enough so that cr2
√
m log(m) log( 2

δ
) ≤ λ

2
m. Then, the

gap between the k-th and (k + 1)-th largest eigenvalues of XSX
⊺
S is at least λ

2
m. Now, consider

changing one sample point (x, y) ∈ S to (x, y′) to produce the sample set S′. Then, we have
XS′X

⊺
S′ =XSX

⊺
S −xx

⊺+x′x
′⊺. Since ∥−xx⊺+x′x

′⊺∥ ≤ 2r2, by standard matrix perturbation theory
bounds [Stewart, 1998], we have ∥ΠS−ΠS′∥ ≤ O( r

2

λm
). Thus, ∥ΦS(x)−ΦS′(x)∥ ≤ ∥ΠS−ΠS′∥∥x∥ ≤

O( r
3

λm
).

Now, to apply the bound of (12), we need to compute a suitable bound on R◇
m(H). For this, we

apply Lemma 3. For any ∥w∥ ≤ γ, since ∥ΠS∥ = 1, we have ∥ΠSw∥ ≤ γ. So the hypothesis set
H′
S = {x ↦ w⊺ΠSx∶w ∈ Rk, ∥ΠSw∥ ≤ γ} contains HS . By Lemma 3, we have R◇

m(H′) ≤ γr√
m

.
Thus, by plugging the bounds obtained above in (12), we conclude that with probability at least 1−2δ
over the choice of S, for any h ∈HS , we have

R(h) ≤ R̂S(h) +O
⎛
⎜
⎝
µγ
r3

λ

√
log 1

δ

m

⎞
⎟
⎠
.
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H PAC-Bayesian Bounds

The PAC-Bayes framework assumes a prior distribution P over H and a posterior distribution
Q selected after observing the training sample. The framework helps derive learning bounds for
randomized algorithms with probability distribution Q, in terms of the relative entropy of Q and P .

In this section, we briefly discuss PAC-Bayesian learning bounds and present some key results. In
Subsection H.1, we give PAC-Bayes learning bounds derived from Rademacher complexity bounds,
which improve upon standard PAC-Bayes bounds [McAllester, 2003]. Similar bounds were already
shown by Kakade et al. [2008] using elegant proofs based on strong convexity. Here, we give
an alternative proof not invoking strong convexity. In Subsection H.2, we extend the PAC-Bayes
framework to one where the prior distribution is selected after observing S and will denote by PS
that prior. Finally, in Subsection H.3, we briefly discuss derandomized PAC-Bayesian bounds, that is
learning bounds derived for deterministic algorithms, using PAC-Bayes bounds.

H.1 PAC-Bayes bounds derived from Rademacher complexity bounds

We will denote by Lz the vector (L(h, z))h∈H. The expected loss of the randomized classifier Q can
then be written as Eh∼Q

z∼D
[L(h, z)] = Ez∼D [⟨Q,Lz⟩].

Define Gµ via Gµ = {Q ∈ ∆(H)∶D(Q ∥ P ) ≤ µ}, that is the family of distributions Q defined over
H with µ-bounded relative entropy with respect to P . Then, by the standard Rademacher complexity
bound [Koltchinskii and Panchenko, 2002, Mohri et al., 2018], for any δ > 0, with probability at least
1 − δ over the draw of a sample S of size m, the following holds for all Q ∈ Gµ:

E
z∼D

[⟨Q,Lz⟩] ≤ E
z∼S

[⟨Q,Lz⟩] + 2Rm(Gµ) +

√
log 1

δ

2m
. (23)

We now give an upper bound on Rm(Gµ). For any Q, define Ψ(Q) by Ψ(Q) = D(Q,P ) if
Q ∈ ∆(H) and +∞ otherwise. It is known that the conjugate function Ψ∗ of Ψ is given by
Ψ∗(U) = log (Eh∈P [eU(h)]), for all U ∈ RH (see for example [Mohri et al., 2018, Lemma B.37]).
Let Uσ = ∑mi=1 σiLzi . Then, for any t > 0, we can write:

Rm(Gµ) =
1

m
E
S,σ

[ sup
D(Q∥P )≤µ

m

∑
i=1

σi⟨Q,Lzi⟩]

= 1

m
E
S,σ

[ sup
D(Q∥P )≤µ

⟨Q,Uσ⟩] (definition of Uσ)

= 1

mt
E
S,σ

[ sup
D(Q∥P )≤µ

⟨Q, tUσ⟩] (t > 0)

≤ 1

mt
E
S,σ

[ sup
Ψ(Q)≤µ

Ψ(Q) +Ψ∗(tUσ)] (Fenchel inequality)

≤ µ

mt
+ 1

mt
E
S,σ

[Ψ∗(tUσ)].

Now, we use the expression of Ψ∗ to bound the second term as follows:

E
S,σ

[Ψ∗(tUσ)] = E
S,σ

[ log ( E
h∼P

[et∑
m
i=1 σiL(h,zi)])]

≤ E
S
[ log ( E

σ,h∼P
[et∑

m
i=1 σiL(h,zi)])] (Jensen’s inequality)

= E
S
[ log ( E

h∼P
[
m

∏
i=1

cosh(tL(h, zi))])]

≤ E
S
[ log ( E

h∼P
[em

t2

2 ])] = mt
2

2
.
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Choosing t =
√

2µ
m

to minimize the bound on the Rademacher complexity gives Rm(Gµ) ≤
√

2µ
m

. In
view of that, (23) implies:

E
z∼D

[⟨Q,Lz⟩] ≤ E
z∼S

[⟨Q,Lz⟩] + 2

√
2µ

m
+

√
log 1

δ

2m
. (24)

Proceeding as in [Kakade et al., 2008], by the union bound, the result can be extended to hold for any
distribution Q, which is directly leading to the following result.
Theorem 4. Let P be a fixed prior on H. Then, for any δ > 0, with probability at least 1 − δ over the
draw of a sample S of size m, the following holds for any posterior distribution Q over H:

E
h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q

[ 1

m

m

∑
i=1

L(h, zi)] + (4 + 1√
e
)
√

max{D(Q ∥ P ),1}
m

+

√
log 1

δ

2m
.

This bound improves upon standard PAC-Bayes bounds (see for example [McAllester, 2003]) since it
does not include an additive term in

√
(logm)/m, as pointed by Kakade et al. [2008].

H.2 Data-dependent PAC-Bayes bounds

In this section, we extend the framework to one where the prior distribution is selected after observing
S and will denote by PS that prior. To analyze that scenario, we can both use the general data-
dependent learning bounds of Section 3, or the hypothesis set stability bounds of Section 4. We will
focus here on the latter.

Define the data-dependent hypothesis set GS,µ = {Q ∈ ∆(H)∶D(Q ∥ PS) ≤ µ} and assume that the
priors PS are chosen so that Gµ = (GS,µ)S is β-stable. This may be by choosing PS and PS′ to be
close in total variation or relative entropy for any two samples S and S′ differing by one point. Then,
by Theorem 2, for any δ > 0, with probably at least 1 − δ, the following holds for all Q ∈ Gµ,S :

E
h∼Q
z∼D

[L(h, z)] ≤ E
h∼Q

[ 1

m

m

∑
i=1

L(h, zi)] +min

⎧⎪⎪⎨⎪⎪⎩
min{2R◇

m(Gµ), β + ∆̄} + (1 + 2βm)
√

1
2m

log( 1
δ
),

√
e(β +∆) + 4

√
( 1
m
+ 2β) log( 6

δ
),

48(3β +∆max) log(m) log( 5m3

δ
) +

√
4
m

log( 4
δ
)
⎫⎪⎪⎬⎪⎪⎭
.

The analysis of the Rademacher complexity R◇
m(Gµ) depends on the specific properties of the family

of priors PS . Here, we initiate its analysis and leave it to the reader to complete it for a choice of the
priors.

Proceeding as in Subsection H.1, we define ΨS by ΨS(Q) = D(Q,PS) for any Q ∈ ∆(H) and
denote by Ψ∗

S its conjugate function. Let Uσ = ∑mi=1 σiLzTi . Then, for any t > 0, we can write:

R◇
m(Gµ) =

1

m
E

S,T,σ
[ sup
D(Q∥PSσ

T
)≤µ

m

∑
i=1

σi⟨Q,Lzi⟩]

= 1
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E

S,T,σ
[ sup
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T
)≤µ

⟨Q,Uσ⟩] (definition of Uσ)

= 1

mt
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S,T,σ
[ sup
D(Q∥PSσ

T
)≤µ

⟨Q, tUσ⟩] (t > 0)

≤ 1

mt
E

S,T,σ
[ sup

ΨSσ
T
(Q)≤µ

ΨSσ
T
(Q) +Ψ∗

Sσ
T
(tUσ)] (Fenchel inequality)

≤ µ

mt
+ 1

mt
E

S,T,σ
[Ψ∗

Sσ
T
(tUσ)].
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Using the expression of the conjugate function Ψ∗
Sσ
T

, as in Subsection H.1, the second term can be
bounded as follows:

E
S,T,σ

[Ψ∗
Sσ
T
(tUσ)] = E

S,T,σ
[ log ( E

h∼PSσ
T

[et∑
m
i=1 σiL(h,zi)])]

≤ E
S,T

[ log ( E
σ,h∼PSσ

T

[et∑
m
i=1 σiL(h,zi)])] (Jensen’s inequality).

This last term can be bounded using Hoeffding’s inequality and the specific properties of the priors
leading to an explicit bound on the Rademacher complexity as in Subsection H.1.

H.3 Derandomized PAC-Bayesian bounds

Derandomized versions of PAC-Bayesian bounds have been given in the past: margin bounds for
linear predictors by McAllester [2003], more complex margin bounds by Neyshabur et al. [2018]
where linear predictors are replaced with neural networks and where the norm-bound is replaced with
a more complex norm condition, and chaining-based bounds by Miyaguchi [2019].

However, the benefit of these bounds is not clear since finer Rademacher complexity bounds can be
derived for deterministic predictors. In fact, Rademacher complexity bounds can be used to derive
finer PAC-Bayes bounds than existing ones. This was already pointed out by Kakade et al. [2008]
and further shown here with an alternative proof and more favorable constants (Subsection H.1).

In fact, using the technique of obtaining KL-divergence between prior and posterior as upper bound
on the Rademacher complexity, along with the optimistic rates in [Srebro et al., 2010], one can obtain
just as in the previous section, an optimistic rate with data-dependent prior when one considers a
non-negative smooth loss and, as predictor, the expected model under the posterior. As this is a
straightforward application of the result of Srebro et al. [2010] combined with techniques presented
here, we leave this for the reader to verify by themselves.
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