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In this supplementary material, we review the related methodologies in §1, prove the convergence in
§2, present additional simulation of logistic regression in §3, illustrate more regression examples on
UCI datasets in §4, and show the experimental setup in §5.

1 Stochastic Approximation

1.1 Special Case: Robbins–Monro Algorithm

Robbins–Monro algorithm is the first stochastic approximation algorithm to deal with the root finding
problem which also applies to the stochastic optimization problem. Given the random output of
H(θ,β) with respect to β, our goal is to find θ∗ such that

h(θ∗) = Eθ∗ [H(θ∗,β)] =

∫
H(θ∗,β)fθ∗(dβ) = 0, (1)

where Eθ∗ denotes the expectation with respect to the distribution of β given θ∗. To implement the
Robbins–Monro Algorithm, we can generate iterates as follows∗:

(1) Sample βk+1 from the invariant distribution fθk(β),
(2) Update θk+1 = θk + ωk+1H(θk,βk+1).

Note that in this algorithm, H(θ,β) is the unbiased estimator of h(θ), that is for k ∈ N+, we have

Eθk [H(θk,βk+1)− h(θk)|Fk] = 0. (2)

If there exists an antiderivative Q(θ,β) that satisfies H(θ,β) = ∇θQ(θ,β) and Eθ[Q(θ,β)] is
concave, it is equivalent to solving the stochastic optimization problem maxθ∈ΘEθ[Q(θ,β)].

1.2 General Stochastic Approximation

The stochastic approximation algorithm is an iterative recursive algorithm consisting of two steps:

(1) Sample βk+1 from the transition kernel Πθk(βk, ·), which admits fθk(β) as the invariant
distribution,

(2) Update θk+1 = θk + ωk+1H(θk,βk+1).

The general stochastic approximation [Benveniste et al., 1990] differs from the Robbins-Monro
algorithm in that sampling x from a transition kernel instead of a distribution introduces a Markov
state-dependent noise H(θk, xk+1)− h(θk).
∗We change the notation a little bit, where βk ∈ Rd and θk are the parameters at the k-th iteration.
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2 Convergence Analysis

2.1 Convergence of Hidden Variables

The stochastic gradient Langevin Dynamics with a stochastic approximation adaptation (SGLD-SA)
is a mixed half-optimization-half-sampling algorithm to handle complex Bayesian posterior with
latent variables, e.g. the conjugate spike-slab hierarchical prior formulation. Each iteration of the
algorithm consists of the following steps:

(1) Sample βk+1 using SGLD based on θk, i.e.

βk+1 = βk + ε∇βL̃(βk,θk) +
√

2ετ−1ηk, (3)

where ηk ∼ N (0, I);
(2) Optimize θk+1 from the following recursion

θk+1 = θk + ωk+1 (gθk(βk+1)− θk)

= (1− ωk+1)θk + ωk+1gθk(βk+1),
(4)

where gθk(·) is some mapping to derive the optimal θ based on the current β.

Remark: Define H(θk,βk+1) = gθk(βk+1)− θk. In this formulation, our target is to find θ∗ that
solves h(θ∗) = E[H(θ,β)] = 0.

General Assumptions

To provide the L2 upper bound for SGLD-SA, we first lay out the following assumptions:
Assumption 1 (Step size and Convexity). {ωk}k∈N is a positive decreasing sequence of real numbers
such that

ωk → 0,

∞∑
k=1

ωk = +∞. (5)

There exist δ > 0 and θ∗ such that for θ ∈ Θ: †

〈θ − θ∗, h(θ)〉 ≤ −δ‖θ − θ∗‖2, (6)

with additionally

lim
k→∞

inf 2δ
ωk
ωk+1

+
ωk+1 − ωk
ωk+1

2
> 0. (7)

Then for any α ∈ (0, 1] and suitable A and B, a practical ωk can be set as

ωk = A(k +B)−α (8)

Assumption 2 (Smoothness). L(β,θ) is M -smooth with M > 0, i.e. for any β, ι ∈ B, θ,υ ∈ Θ.

‖∇βL(β,θ)−∇βL(ι,υ)‖ ≤M‖β − ι‖+M‖θ − υ‖. (9)

Assumption 3 (Dissipative). There exist constants m > 0, b ≥ 0, s.t. for all β ∈ β and θ ∈ Θ, we
have

〈∇βL(β,θ),β〉 ≤ b−m‖β‖2. (10)

Assumption 4 (Gradient condition). The stochastic noise χk ∈ B, which comes from
∇βL̃(βk,θk)−∇βL(βk,θk), is a white noise or Martingale difference noise and is independent
with each other.

E[χk|Fk] = 0. (11)

The scale of the noise is bounded by

E‖χ‖2 ≤M2E‖β‖2 +M2E‖θ‖2 +B2. (12)

for constants M,B > 0.
†‖ · ‖ is short for ‖ · ‖2
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In addition to the assumptions, we also assume the existence of Markov transition kernel, the proof
goes beyond the scope of our paper.
Proposition 1. There exist constants M,B > 0 such that

‖gθ(β)‖2 ≤M2‖β‖2 +B2 (13)

Proof. As shown in Eq.(12), Eq.(13) and Eq.(15) in the main body, ρ, δ and κ are clearly bounded.
It is also easy to verify that σ in Eq.(14) in the main body satisfies (13). For convenience, we choose
the same M and B (large enough) as in (12).

Proposition 2. For any β ∈ B, it holds that

‖∇βL(β,θ)‖2 ≤ 3M2‖β‖2 + 3M2‖θ‖2 + 3B2 (14)

for constants M and B.

Proof. Suppose there is a minimizer (θ∗,β∗) such that ∇βL(β∗,θ∗) = 0 and θ∗ has reached the
stationary point, following Assumption 3 we have,

〈∇βL(β∗,θ∗),β∗〉 ≤ b−m‖β∗‖2.

Therefore, ‖β∗‖2 ≤ b
m . Since θ∗ is the stationary point, θ∗ = (1− ω)θ∗ + ωgθ∗(β∗). By (13), we

have ‖gθ∗(β∗)‖2 ≤M2‖β∗‖2+B2, which implies that ‖θ∗‖2 = ‖gθ∗(β∗)‖2 ≤M2‖β∗‖2+B2 ≤
b
mM

2 +B2. By the smoothness assumption 2, we have

‖∇βL(β,θ)‖
≤‖∇βL(β∗,θ∗)‖+M‖β − β∗‖+M‖θ − θ∗‖

≤0 +M(‖β‖+

√
b

m
+ ‖θ‖+ ‖θ∗‖)

≤M‖θ‖+M‖β‖+M(

√
b

m
+

√
b

m
M2 +B2)

≤M‖θ‖+M‖β‖+ B̄,

where B̄ = M(
√

b
mM

2 +B2 +
√

b
m ). Therefore,

‖∇βL(β,θ)‖2 ≤ 3M2‖β‖2 + 3M2‖θ‖2 + 3B̄2.

For notation simplicity, we can choose the same B (large enough) to bound (12), (13) and (14).

Lemma 1 (Uniform L2 bounds). For all 0 < ε < Re(
m−
√
m2−4M2(M2+1)

4M2(M2+1) ), there exist G,G > 0

such that supE‖βk‖2 ≤ G and supE‖θk‖2 ≤ G, where G = ‖β0‖2 + 1
m (b+ 2εB2(M2 + 1) + τd)

and G = M2G+B2.

Proof. From (3), we have

E‖βk+1‖2

=E
∥∥∥βk + ε∇βL̃(βk,θk)

∥∥∥2 + 2τεE‖ηk‖2 +
√

8ετE〈βk + ε∇βL̃(βk,θk),ηk〉

=E
∥∥∥βk + ε∇βL̃(βk,θk)

∥∥∥2 + 2τεd,

(15)

Moreover, the first item in (15) can be expanded to

E
∥∥∥βk + ε∇βL̃(βk,θk)

∥∥∥2
= E ‖βk + ε∇βL(βk,θk)‖2 + ε2E ‖χk‖2 − 2εE [E (〈βk + ε∇βL(βk,θk),χk〉|Fk)]

= E ‖βk + ε∇βL(βk,θk)‖2 + ε2E ‖χk‖2 ,

(16)
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where (11) is used to cancel the inner product item.

Turning to the first item of (16), the dissipivatity condition (10) and the boundness of ∇βL(β,θ)
(14) give us:

E ‖βk + ε∇βL(βk,θk)‖2

= E‖βk‖2 + 2εE〈βk,∇βL(βk,θk)〉+ ε2E ‖∇βL(βk,θk)‖2

≤ E‖βk‖2 + 2ε(b−mE‖βk‖2) + ε2(3M2E‖βk‖2 + 3M2E‖θk‖2 + 3B2)

= (1− 2εm+ 3ε2M2)E‖βk‖2 + 2εb+ 3ε2B2 + 3ε2M2E‖θk‖2.

(17)

By (12), the second item of (16) is bounded by

E‖χk‖2 ≤M2E‖βk‖2 +M2E‖θk‖2 +B2. (18)

Combining (15), (16), (17) and (18), we have

E‖βk+1‖2 ≤ (1− 2εm+ 4ε2M2)E‖βk‖2 + 2εb+ 4ε2B2 + 4ε2M2E‖θk‖2 + 2τεd. (19)

Next we use proof by induction to show for k = 1, 2, . . . ,∞, E‖βk‖2 ≤ G, where

G = E‖β0‖2 +
b+ 2εB2(M2 + 1) + τd

m− 2εM2(M2 + 1)
. (20)

First of all, the case of k = 0, 1 is trivial. Then if we assume for each k ∈ 2, 3, . . . , t, E‖βk‖2 ≤ G,
E‖g(βk)‖2 ≤M2G+B2, E‖θk−1‖2 ≤M2G+B2. It follows that,

E‖θk‖2 = E‖(1− ωk)θk−1 + ωkg(βk)‖2

≤ (1− ωk)2E‖θk−1‖2 + ωk
2E‖g(βk)‖2 + 2(1− ωk)ωkE〈θk−1, g(βk)〉

≤ (1− ωk)2E‖θk−1‖2 + ωk
2E‖g(βk)‖2 + 2(1− ωk)ωk

√
E‖θk−1‖2E‖g(βk)‖2

≤ (1− ωk)2(M2G+B2) + ωk
2(M2G+B2) + 2(1− ωk)ωk(M2G+B2)

= M2G+B2,

Next, we proceed to prove E‖βt+1‖2 ≤ G and E‖θt+1‖2 ≤M2G+B2. Following (19), we have

E‖βt+1‖2

≤ (1− 2εm+ 4ε2M2)E‖βk‖2 + 2εb+ 4ε2B + 4ε2M2E‖θk‖2 + 2τεd

≤ (1− 2εm+ 4ε2M2)G+ 2εb+ 4ε2B + 4ε2M2(M2G+B2) + 2τεd

≤
(
1− 2εm+ 4ε2M2(M2 + 1)

)
G+ 2εb+ 4ε2B2(M2 + 1) + 2τεd

(21)

Consider the quadratic equation 1 − 2mx + 4M2(M2 + 1)x2 = 0. If m2 − 4M2(M2 + 1) ≥ 0,

then the smaller root is m−
√
m2−4M2(M2+1)

4M2(M2+1) which is positive; otherwise the quadratic equation has

no real solutions and is always positive. Fix ε ∈
(

0,Re

(
m−
√
m2−4M2(M2+1)

4M2(M2+1)

))
so that

0 < 1− 2εm+ 4ε2M2(M2 + 1) < 1. (22)

With (20), we can further bound (21) as follows:

E‖βt+1‖2

≤
(
1− 2εm+ 4ε2M2(M2 + 1)

) (
E‖β0‖2 + I

)
+ 2εb+ 4ε2B2(M2 + 1) + 2dτε

=
(
1− 2εm+ 4ε2M2(M2 + 1)

)
E‖β0‖2 + I−

(
2εb+ 4ε2B2(M2 + 1) + 2dτε

)
+
(
2εb+ 4ε2B2(M2 + 1) + 2ετd

)
≤ E‖β0‖2 + I ≡ G,

(23)
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where I =
b+ 2εB2(M2 + 1) + dτ

m− 2εM2(M2 + 1)
, the second to the last inequality comes from (22).

Moreover, from (13), we also have

E‖g(βt+1)‖2 ≤M2E‖βt+1‖2 +B2 ≤M2G+B2,

E‖θt+1‖2 = E‖(1− ωt+1)θt + ωt+1g(βt+1)‖2

≤ (1− ωt+1)2E‖θt‖2 + ω2
t+1E‖g(βt+1)‖2 + 2(1− ωt+1)ωt+1E〈θt, g(βt+1)〉

≤ (1− ωt+1)2E‖θt‖2 + ω2
t+1E‖g(βt+1)‖2 + 2(1− ωt+1)ωt+1

√
E‖θt‖2E‖g(βt+1)‖2

≤ (1− ωt+1)2(M2G+B2) + ω2
t+1(M2G+B2) + 2(1− ωt+1)ωt+1(M2G+B2)

= M2G+B2,

Therefore, we have proved that for any k ∈ 1, 2, . . . ,∞, E‖βk‖2, E‖g(βk)‖2 and E‖θk‖2
are bounded. Furthermore, we notice that G can be unified to a constant G = E‖β0‖2 +
1
m

(
b+ 2εB2(M2 + 1) + τd

)
.

Assumption 5 (Solution of Poisson equation). For all θ ∈ Θ, there exists a function µθ on β that
solves the Poisson equation µθ(β)−Πθµθ(β) = H(θ,β)− h(θ), which follows that

H(θk,βk+1) = h(θk) + µθk(βk+1)−Πθkµθk(βk+1). (24)

There exists a constant C such that for all θ ∈ Θ, Πθµ is bounded, i.e.

‖Πθµθ‖ ≤ C (25)

We leave the relaxation of the above assumption for future work.

Proposition 3. There exists a constant C1 so that

Eθ[‖H(θ,β)‖2] ≤ C1(1 + ‖θ − θ∗‖2) (26)

Proof. By (13), we have

E‖gθ(β)− θ‖2 ≤ 2E‖gθ(β)‖2 + 2‖θ‖2 ≤ 2(M2E‖β‖2 +B2) + 2‖θ‖2

Since we have proved the L2 boundness of E‖β‖2, choose C ′ = max(2, 2(M2E‖β‖2 +B2)), we
have

Eθ[‖H(θ,β)‖2] ≤ C ′(1 + ‖θ‖2) = C ′(1 + ‖θ − θ∗ + θ∗‖2) ≤ C1(1 + ‖θ − θ∗‖2)

Lemma 2 is a restatement of Lemma 25 (page 247) from Benveniste et al. [1990].

Lemma 2. Suppose k0 is an integer which satisfies with

inf
k≥k0

ωk+1 − ωk
ωkωk+1

+ 2δ − ωk+1C1 > 0.

Then for any k > k0, the sequence {ΛKk }k=k0,...,K defined below is increasing 2ωk
∏K−1
j=k (1− 2ωj+1δ + ω2

j+1C1) if k < K,

2ωk if k = K.
(27)

Lemma 3. There exist λ0 and k0 such that for all λ ≥ λ0 and k ≥ k0, the sequence uk = λωk
satisfies

uk+1 ≥(1− 2ωk+1δ + ωk+1
2C1)uk + ωk+1

2C1 + ωk+1C1. (28)
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Proof. Replace uk = λωk in (28), we have

λωk+1 ≥(1− 2ωk+1δ + ωk+1
2C1)λωk + ωk+1

2C1 + ωk+1C1. (29)

According to (7) in assumption 1, we denote limk→∞ inf 2δωk+1ωk + ωk+1 − ωk by ∆+. Then the
above inequality (29) can be simplified as

λ(∆+ − ωk+1
2ωkC1) ≥ ωk+1

2C1 + ωk+1C1. (30)

Since the LHS increases to ∆+ and the RHS decreases to 0 as k →∞. There exist λ0 and k0 such
that for all λ > λ0 and k > k0, (30) holds.

Theorem 1 (L2 convergence rate). Suppose that Assumptions 1-5 hold, there exists a constant λ such
that

E
[
‖θk − θ∗‖2

]
≤ λωk,

Proof. Denote Tk = θk − θ∗, with the help of (4) and Poisson equation (24), we deduce that

‖Tk+1‖2

=‖Tk‖2 + ωk+1
2‖H(θk,βk+1)‖2 + 2ωk+1〈Tk, H(θk,βk+1)〉

=‖Tk‖2 + ωk+1
2‖H(θk,βk+1)‖2 + 2ωk+1〈Tk, h(θk)〉+ 2ωk+1〈Tk, µθk(βk+1)−Πθkµθk(βk+1)〉

=‖Tk‖2 + D1 + D2 + D3.

First of all, according to (26) and (6), we have

ωk+1
2‖H(θk,βk+1)‖2 ≤ ωk+1

2C1(1 + ‖Tk‖2), (D1)

2ωk+1〈Tk, h(θk)〉 ≤ −2ωk+1δ‖Tk‖2, (D2)

Conduct the decomposition of D3 similar to Theorem 24 (p.g. 246) from Benveniste et al. [1990] and
Lemma A.5 [Liang, 2010].

µθk(βk+1)−Πθkµθk(βk+1)

=µθk(βk+1)−Πθkµθk(βk)︸ ︷︷ ︸
D3-1

+ Πθkµθk(βk)−Πθk−1
µθk−1

(βk)︸ ︷︷ ︸
D3-2

+ Πθk−1
µθk−1

(βk)−Πθkµθk(βk+1)︸ ︷︷ ︸
D3-3

.

(i) µθk(βk+1)−Πθkµθk(βk) forms a martingale difference sequence such that

E [µθk(βk+1)−Πθkµθk(βk)|Fk] = 0. (D3-1)

(ii) From Lemma 1, we have that E[‖Tk‖] is bounded. ‖Πθkµθk‖ is also bounded according to (25).
Therefore, together with Cauchy–Schwarz inequality, there exists a positive constant C2 such that

E
[
2ωk+1〈Tk,Πθkµθk(βk)−Πθk−1

µθk−1
(βk)〉

]
≤ ωk+1C2. (D3-2)

(iii) D3-3 can be further decomposed to D3-3a and D3-3b

〈Tk,Πθk−1
µθk−1

(βk)−Πθkµθk(βk+1)〉
=
(
〈Tk,Πθk−1

µθk−1
(βk)〉 − 〈Tk+1,Πθkµθk(βk+1)〉

)
+ (〈Tk+1,Πθkµθk(βk+1)〉 − 〈Tk,Πθkµθk(βk+1)〉)

= (zk − zk+1)︸ ︷︷ ︸
D3-3a

+ 〈Tk+1 − Tk,Πθkµθk(βk+1)〉︸ ︷︷ ︸
D3-3b

.

where zk = 〈Tk,Πθk−1
µθk−1

(βk)〉. Similar to (ii), there exists a constant C3 such that

E [2ωk+1〈Tk+1 − Tk,Πθkµθk(βk+1)〉] ≤ C3ωk+1
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Finally, add all the items D1, D2 and D3 together, for some C1 = C2 + C3, we have

E
[
‖Tk+1‖2

]
≤ (1− 2ωk+1δ + ωk+1

2C1)E
[
‖Tk‖2

]
+ ωk+1

2C1 + ωk+1C1 + 2ωk+1E[zk − zk+1].

Moreover, from (25), there exists a constant C4 such that

E[|zk|] ≤ C4. (31)

Lemma 4 is an extension of Lemma 26 (page 248) from Benveniste et al. [1990].

Lemma 4. Let {uk}k≥k0 as a sequence of real numbers such that for all k ≥ k0, some suitable
constants C1 and C1

uk+1 ≥uk
(
1− 2ωk+1δ + ωk+1

2C1

)
+ ωk+1

2C1 + ωk+1C1, (32)

and assume there exists such k0 that

E
[
‖T (k0)‖2

]
≤ u(k0). (33)

Then for all k > k0, we have

E
[
‖Tk‖2

]
≤ uk +

k∑
j=k0+1

Λkj (z(j−1) − z(j)).

Proof of Theorem 1 (Continued). From Lemma 3, we can choose λ0 and k0 which satisfy the
conditions (32) and (33)

E[‖T (k0)‖2] ≤ u(k0) = λ0ω
(k0).

From Lemma 4, it follows that for all k > k0

E
[
‖Tk‖2

]
≤ uk + E

 k∑
j=k0+1

Λkj

(
z(j−1) − z(j)

) . (34)

From (31) and the increasing property of Λkj in Lemma 2, we have

E

∣∣∣∣∣∣
k∑

j=k0+1

Λkj

(
z(j−1) − z(j)

)∣∣∣∣∣∣


=E

∣∣∣∣∣∣
k−1∑

j=k0+1

(Λkj+1 − Λkj )z(j) − 2ωkzk + Λkk0+1z
(k0)

∣∣∣∣∣∣


≤
k−1∑

j=k0+1

(Λkj+1 − Λkj )C4 + E[|2ωkzk|] + ΛkkC4

≤(Λkk − Λkk0)C4 + ΛkkC4 + ΛkkC4

≤3ΛkkC4 = 6C4ωk.

(35)

Therefore, given the sequence uk = λ0ωk that satisfies conditions (32), (33) and Lemma 4, for any
k > k0, from (34) and (35), we have

E[‖Tk‖2] ≤ uk + 3C4Λkk = (λ0 + 6C4)ωk = λωk,

where λ = λ0 + 6C4.
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Table 1: Predictive errors in logistic regression based on a test set considering different v0 and σ

MAE / MSE v0=0.01, σ=1 v0=0.001, σ=1 v0=0.01, σ=2 v0=0.001, σ=2

SGLD-SA 0.177 / 0.108 0.188 / 0.114 0.182 / 0.116 0.187 / 0.113
SGLD-EM 0.207 / 0.131 0.361 / 0.346 0.204 / 0.132 0.376 / 0.360
SGLD 0.295 / 0.272 0.335 / 0.301 0.350 / 0.338 0.337 / 0.319

2.2 Weak Convergence of Samples

In statistical models with latent variables, the gradient is often biased due to the use of stochastic
approximation. Langevin Monte Carlo with inaccurate gradients has been studied by Chen et al.
[2015], Dalalyan and Karagulyan [2018], which are helpful to prove the weak convergence of samples.
Following theorem 2 in Chen et al. [2015], we have

Corollary 1. Under assumptions in Appendix B.1 and the assumption 1 (smoothness and boundness
on the solution functional) in Chen et al. [2015], the distribution of βk converges weakly to the target
posterior as ε→ 0 and k →∞.

Proof. Since θk converges to θ∗ in SGLD-SA under assumptions in Appendix B.1 and the gradient is
M-smooth (9), we decompose the stochastic gradient∇βL̃(βk,θk) as∇βL(βk,θ

∗)+ξk+O(k−α),
where ∇βL(βk,θ

∗) is the exact gradient, ξk is a zero-mean random vector, O(k−α) is the bias term
coming from the stochastic approximation and α ∈ (0, 1] is used to guarantee the consistency in
theorem 1. Therefore, Eq.(3) can be written as

βk+1 = βk + εk
(
∇βL(βk,θ

∗) + ξk +O(k−α)
)

+
√

2εkηk, where ηk ∼ N (0, I). (36)

Following a similar proof in Chen et al. [2015], it suffices to show that
∑K
k=1 k

−α/K → 0 as
K → ∞, which is obvious. Therefore, the distribution of βk converges weakly to the target
distribution as ε→ 0 and k →∞.

3 Simulation of Large-p-Small-n Logistic Regression

Now we conduct the experiments on binary logistic regression. The setup is similar as before, except
n is set to 500, Σi,j = 0.3|i−j| and η ∼ N (0, I/2). We set the learning rate for all the three
algorithms to 0.001 × k− 1

3 and step size ωk to 10 × (k + 1000)−0.7. The binary response values
are simulated from Bernoulli(p) where p = 1/(1 + e−Xβ−η). As shown in Fig.1: SGLD fails in
selecting the right variables and overfits the data; both SGLD-EM and SGLD-SA choose the right
variables. However, SGLD-EM converges to a poor local optimum by mistakenly using L1 norm
to regularize all the variables, leading to a large shrinkage effect on β1:3. By contrast, SGLD-SA
successfully updates the latent variables and regularize β1:3 with L2 norm, yielding a better parameter
estimation for β1:3 and a stronger regularization for β4−1000. Table.1 illustrates that SGLD-SA
consistently outperforms the other methods and is robust to different initializations. We observe
that SGLD-EM sometimes performs as worse as SGLD when v0 = 0.001, which indicates that the
EM-based variable selection is not robust in the stochastic optimization of the latent variables.

4 Regression on UCI datasets

We further evaluate our model on five UCI regression datasets and show the results in Table 2.
Following Hernandez-Lobato and Adams [2015], we randomly sample 90% of each dataset for
training and leave the rest for testing. We run 20 experiments for each setup with fixed random seeds
and report the averaged error rate. Feature normalization is applied in the experiments. The model is
a simple MLP with one hidden layer of 50 units. We set the batch size to 50, the training epoch to 200,
the learning rate to 1e-5 and the default L2 to 1e-4. For SGHMC-EM and SGHMC-SA, we apply the
SSGL prior on the BNN weights (excluding biases) and fix a, ν, λ = 1, b, v1, σ = 10 and δ = 0.5.
We fine-tune the initial temperature τ and v0. As shown in Table 2, SGHMC-SA outperforms all the
baselines. Nevertheless, without smooth adaptive update, SGHMC-EM often performs worse than
SGHMC. While with simulated annealing where τ (k) = τ × 1.003k, we observe further improved
performance in most of the cases.
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Figure 1: Logistic regression simulation when v0 = 0.1 and σ = 1

Dataset Boston Yacht Energy Wine Concrete
Hyperparameters 1/0.1 1/0.1 0.1/0.1 0.5/0.01 0.5/0.07

SGHMC 2.783±0.109 0.886±0.046 1.983±0.092 0.731±0.015 6.319±0.179
A-SGHMC 2.848±0.126 0.808±0.048 1.419±0.067 0.671±0.019 5.978±0.166

SGHMC-EM 2.813±0.140 0.823±0.053 2.077±0.108 0.729±0.018 6.275±0.169
A-SGHMC-EM 2.767±0.154 0.815±0.052 1.435±0.069 0.627±0.008 5.762±0.156

SGHMC-SA 2.779±0.133 0.789±0.050 1.948±0.081 0.654±0.010 6.029±0.131
A-SGHMC-SA 2.692±0.120 0.782±0.052 1.388±0.052 0.620±0.008 5.687±0.142

Table 2: Average performance and standard deviation of Root Mean Square Error, where τ denotes
the initial inverse temperature and v0 is a hyperparameter in the SSGL prior (Hyperparameters τ/v0).

5 Experimental Setup

5.1 Network Architecture

The first DNN we use is a standard 2-Conv-2-FC CNN: it has two convolutional layers with a 2 ×
2 max pooling after each layer and two fully-connected layers. The filter size in the convolutional
layers is 5 × 5 and the feature maps are set to be 32 and 64, respectively [Jarrett et al., 2009]. The
fully-connected layers (FC) have 200 hidden nodes and 10 outputs. We use the rectified linear unit
(ReLU) as activation function between layers and employ a cross-entropy loss.

The second DNN is a 2-Conv-BN-3-FC CNN: it has two convolutional layers with a 2 × 2 max
pooling after each layer and three fully-connected layers with batch normalization applied to the first
FC layer. The filter size in the convolutional layers is 4× 4 and the feature maps are both set to 64.
We use 256× 64× 10 fully-connected layers.

5.2 Data Augmentation

The MNIST dataset is augmented by (1) randomCrop: randomly crop each image with size 28
and padding 4, (2) random rotation: randomly rotate each image by a degree in [−15◦,+15◦], (3)
normalization: normalize each image with empirical mean 0.1307 and standard deviation 0.3081.

The FMNIST dataset is augmented by (1) randomCrop: same as MNIST, (2) randomHorizontalFlip:
randomly flip each image horizontally, (3) normalization: same as MNIST, (4) random erasing
[Zhong et al., 2017].

The CIFAR10 dataset is augmented by (1) randomCrop: randomly crop each image with size 32
and padding 4, (2) randomHorizontalFlip: randomly flip each image horizontally, (3) normalization:
normalize each image with empirical mean (0.4914, 0.4822, 0.4465) and standard deviation (0.2023,
0.1994, 0.2010), (4) random erasing.
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