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1 Detailed Proofs

In this section, we give detailed proofs for the inequality in the connection with OT with Euclidean
ground metric (i.e. W2 metric) for TW distance, and investigate an empirical relation between
TSW and W2 metric, especially when one increases the number of tree-slices in TSW. Additionally,
we also provide proofs for negative definiteness of `1 distance (used in the proof of Proposition 2 in
the main text [Le et al., 2019c]), and indefinite divisibility for TSW kernel.

1.1 Proof of: W2(µ̃, ν̃) ≤WdHT
(µ̃, ν̃)/2 + β

√
d/2H

For two point clouds µ̃, ν̃ containing n data points xi |1≤i≤n, zj |1≤j≤n respectively, let c be a
ground cost metric, and Σn be the set of all permutations of n elements, the OT can be reformulated
as an optimal assignment problem as follow:

Wc(µ̃, ν̃) = min
σ∈Σn

1

n

n∑
i=1

c(xi, zσ(i)). (1)

At a height level i in T , the maximum Euclidean distance between any two data points in a same
hypercube, denoted as ∆i, we have

∆i = β
√
d/2i.

Let Ei(i+1) be a set of all edges between a height level i and a height level (i+ 1) in T . So, for any
e ∈ Ei(i+1), we have

we = β
√
d/2i+1.

Let qi be the number of matched pairs at a height level i. Consequently, (n− qi) is the number of
unmatched pairs at the height level i. Moreover, for the number of unmatched pairs at the height level
i, observe that

n− qi =
1

2

∑
e∈E(i−1)i

|µ̃(Γ(ve))− ν̃(Γ(ve))|. (2)

In the right hand side of Equation (2), for all edges between the height level (i− 1) and i of tree T .
Note that the total mass in subtree Γ(ve) is equal to the total mass flowing through edge e, we have
P(r, x) |x∈µ̃ and P(r, z) |z∈ν̃ count the total number of visits on each edge in Ei(i+1) for µ̃ and ν̃
respectively, and their absolute different number is twice to the number of unmatched pairs at the
height level i, as described in Equation (2).
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Figure 1: A frequency of near-neighbor rank on the W2 space for the nearest neighbor w.r.t. TSW.

Therefore, the TW distance is as follow:

WdHT
(µ̃, ν̃) =

1

n

H−1∑
i=0

2wēi(i+1)
(n− qi+1) =

1

n

H−1∑
i=0

∆i(n− qi+1), (3)

where ēi(i+1) is an edge in Ei(i+1), and note that ∆i = 2wēi(i+1)
.

Moreover, we have (qi − qi+1) is the number of pairs matched at a height level i, but unmatched at a
height level (i+ 1). Additionally, note that q0 = n, qH = 0, and ∆i = ∆i−1/2, then we have

W2(µ̃, ν̃) ≤ 1

n

H−1∑
i=0

∆i (qi − qi+1) (4)

= WdHT
(µ̃, ν̃)− 1

n

H−1∑
i=0

∆i(n− qi) (5)

= WdHT
(µ̃, ν̃)− 1

n

H∑
i=1

∆i−1(n− qi)/2 + ∆H (6)

= WdHT
(µ̃, ν̃)/2 + β

√
d/2H . (7)

For the first equal, we added and subtracted n for the term in the parenthesis and note Equation (3) for
WdHT

. For the second equal, in the second term, for the element with i = 0, note that (n− q0) = 0,
we added and subtracted the element with i = H . For the third equal, we grouped the first two terms
and note that ∆H = β

√
d/2H for the third term.

Empirical relation between TSW and OT with Euclidean ground metric. The hypercube tree-
sliced metric (i.e. partition-based tree metric) is our suggestion to build practical tree metrics for
TSW when used on low-dimensional data spaces. We emphasize that we do not try to mimic the
Euclidean OT (i.e. W2) or the sliced-Wasserstein (SW), but rather propose a variant of OT distance.
As stated in the main text [Le et al., 2019c], SW is a special case of TSW. From an empirical point
of view, we have carried out the following experiment to investigate an empirical relation between
TSW and W2 distance:

For a query point q, let p be its nearest neighbor w.r.t. TSW. Figure 1 illustrates that p is very likely
among the top 5 on MPEG7 dataset, and top 10 on Orbit dataset, near neighbors on the W2 space.
Results are averaged over 1000 runs of random split 90%/10% for training and test. When the
number of tree-slices in TSW increases, the W2 near-neighbor rank of p is improved. These empirical
results suggest that TSW may agree with some aspects of W2.
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Figure 2: Results of SVM and time consumption of kernel matrices of kTW with different (ns, HT , κ),
and kSW with different ns on RECIPE dataset.

1.2 Proof of: Negative Definiteness for `1 Distance

For two real numbers a, b, the function (a, b) 7→ (a− b)2 is obviously negative definite. Following
[Berg et al., 1984, Corollary 2.10, p.78], the function (a, b) 7→ |a− b| is negative definite. Therefore,
`1 distance is a sum of negative definite functions. Thus, `1 distance is negative definite.

1.3 Indefinite Divisibility for Tree-Sliced-Wasserstein Kernel

Inspired by Le and Yamada Le and Yamada [2018], we derive the following proof of indefinite
divisibility for the TSW kernel. For probability µ, ν on tree T , and i ∈ N∗, let kTSWi

(µ, ν) =

exp(− tiTSW(µ, ν)). We have kTSW(·, ·) = (kTSWi
(·, ·))i, and kTSWi

(·, ·) is positive definite. Follow-
ing [Berg et al., 1984, §3, Definition 2.6, p.76], kTSW is indefinitely divisible. Therefore, one does
not need to recompute the Gram matrix of TSW kernel for each choice of t, since it indeed suffices to
compute TSW distances between empirical measures in a training set once.

2 More Experimental Results

We provide many further experimental results for our proposed tree-Wasserstein kernel on word
embedding-based document classification and topological data analysis (TDA).

2.1 Word Embedding-based Document Classification

Figure 2, Figure 3, and Figure 4 show SVM results and time consumption of kernel matrices of kTW
with different (ns, HT , κ), and kSW with different ns on RECIPE, CLASSIC, and AMAZON datasets
respectively.

2.2 Topological Data Analysis

Orbit recognition. Figure 5 shows SVM results and time consumption of kernel matrices of kTW
with different (ns, HT ) on Orbit dataset.
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Figure 3: Results of SVM and time consumption of kernel matrices of kTW with different (ns, HT , κ),
and kSW with different ns on CLASSIC dataset.
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Figure 4: Results of SVM and time consumption of kernel matrices of kTW with different (ns, HT , κ),
and kSW with different ns on AMAZON dataset.
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Figure 5: Results of SVM and time consumption of kernel matrices of kTW with different (ns, HT )
on Orbit dataset.
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Figure 6: Results of SVM and time consumption of kernel matrices of kTW with different (ns, HT )
on MPEG7 dataset.

Object shape classification. Figure 6 shows SVM results and time consumption of kernel matrices
of kTW with different (ns, HT ) on MPEG7 dataset.

Change point detection for material data analysis. Figure 7 and Figure 8 show time consumption
of kernel matrices of kTW with different (ns, HT ) on granular packing system and SiO2 datasets
respectively.

3 Some Other Relations to Other Work

OT with linear chain tree metrics. For a metric d in 1-dimensional spaces of supports, all support
data points lay on a line which is a trivial case of a tree .Therefore, all data points are nodes in a tree,
and a length of an edge equals to the distance d between two nodes of the edge. Thus, d is a tree
metric. Moreover, one can generalize the metric d in 1-dimensional spaces of supports into a geodesic
distance d′ of 1-dimensional curved manifolds, as considered in [Kolouri et al., 2019]. Similarly, one
can construct a tree T along the 1-dimensional curved manifolds where all data points are nodes in
T , and lengths of edges are computed by geodesic distance d′. Therefore, d′ is also a tree metric.

Connection with sliced-Wasserstein distances. SW is a popular variant of OT [Rabin et al., 2011,
Bonneel et al., 2015]. SW exploits a closed form computation of OT for 1-dimensional spaces
of supports by working directly with projected support data points on a real line. Since OT with
ground metrics in 1-dimensional spaces of supports is a special case of TW distance, SW distance is
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Figure 7: Time consumption of kernel matrices of kTW with different (ns, HT ) on granular packing
system dataset.
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Figure 8: Time consumption of kernel matrices of kTW with different (ns, HT ) on SiO2 dataset.

consequently a special case of tree-sliced-Wasserstein distance. Thus, tree-sliced-Wasserstein not
only preserves merits of SW, but provides more flexibility since choosing a tree rather than a line has
far more degrees of freedom, especially in high-dimensional spaces of supports.

Positive definite kernels on OT geometry. Besides the sliced-Wasserstein kernel [Kolouri et al.,
2016, Carriere et al., 2017] which is a special case of our proposed kernel, as far as we know, there
are only the permanent [Cuturi et al., 2007] and generating function [Cuturi, 2012] kernels. However,
they are intractable.

OT with tree metrics. Recently, Le et al. also leveraged the structure of tree metrics to develop
scalable tree variants of Wassserstein barycenter [Le et al., 2019b] and Gromov-Wasserstein [Le et al.,
2019a] for large-scale applications.

4 Brief Reviews of Kernels, the Farthest-Point Clustering, and the
Synthesized Orbit Dataset

In this section, we give brief reviews for kernels, and the farthest-point clustering Gonzalez
[1985].Then, we provide details for the synthesized orbit dataset for orbit recognition).
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4.1 A Brief Review of Kernels

We review some important definitions and theorems about kernels used in our work.

Positive definite kernels [Berg et al., 1984, p.66–67]. A kernel function k : X × X → R is
positive definite if ∀n ∈ N∗,∀x1, x2, ..., xn ∈ X ,

∑
i,j cicjk(xi, xj) ≥ 0, ∀ci ∈ R.

Negative definite kernels [Berg et al., 1984, p.66–67]. A kernel function k : X × X → R
is negative definite if ∀n ≥ 2,∀x1, x2, ..., xn ∈ X ,

∑
i,j cicjk(xi, xj) ≤ 0, ∀ci ∈ R such that∑

i ci = 0.

Berg-Christensen-Ressel Theorem [Berg et al., 1984, Theorem 3.2.2, p.74]. If κ is a negative
definite kernel, then kernel kt(x, z) := exp (−tκ(x, z)) is positive definite for all t > 0.

4.2 A Brief Review of the Farthest-Point Clustering for Data Space Partition

The data space partition can be modeled as a κ-center problem. Given n data points x1, x2, ..., xn,
and a predefined number of clusters κ, the goal of κ-center problem is to find a partition of n points
into κ clusters S1, S2, ..., Sκ as well as their corresponding centers c1, c2, ..., cκ to minimize the
maximum radius of clusters.

The farthest-point clustering Gonzalez [1985] is a simple greedy algorithm, summarized in Algo-
rithm 1. Gonzalez Gonzalez [1985] also proved that the farthest-point clustering computes a partition
with maximum radius at most twice the optimum for κ-center clustering. The complexity for a direct
implementation for the farthest-point clustering as in Algorithm 1 is O(nκ). This complexity can be
reduced into O(n log κ) by using the algorithm in Feder and Greene [1988].

Algorithm 1 Farthest_Point_Clustering(X,κ)
Input: X = (x1, x2, . . . , xn): a set of n data points, and κ: the predefined number of clusters.
Output: Clustering centers c1, c2, ..., cκ and cluster index for each point xi.

1: c1 ← a random point x ∈ X .
2: Set of cluster C ← c1.
3: i← 1.
4: while i < κ and n− i > 0 do
5: i← i+ 1.
6: ci ← maxxj∈X minc∈C ‖xj − c‖. (a farthest point xj ∈ X to C).
7: C ← C ∪ ci. (Add the new center into C).
8: end while
9: Each data point xj ∈ X is assigned to its nearest center ci ∈ C.

4.3 Details of the Synthesized Orbit Dataset

Adams et al. [Adams et al., 2017, §6.4.1] proposed a synthesized dataset for link twist map, a discrete
dynamical system to model flows in DNA microarrays Hertzsch et al. [2007].

Given an initial position (a0, b0) ∈ [0, 1]
2, and t > 0, an orbit is modeled as

ai+1 = ai + tbi(1− bi) mod 1, (8)
bi+1 = bi + tai+1(1− ai+1) mod 1. (9)

There are 5 classes, corresponding to 5 different parameters t = 2.5, 3.5, 4, 4.1, 4.3. For each class,
we generated 1000 orbits with random initial positions where each orbit contains 1000 points.

5 More Examples on the Partition-based Tree Metric, Quantization and
Cluster Sensitivity Problems, and Persistence Diagrams

In this section, we give some examples for the partition-based tree metric, quantization and cluster
sensitivity problems and persistence diagrams.
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Figure 9: An example about the partition-based tree metric for a set of points in a 2-dimensional
space.

Figure 10: The corresponding tree structure for the example in Figure 9.
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5.1 An Example on the Partition-based Tree Metric

Given a set X of 7 data points xi |1≤i≤7 in a 2-dimensional space as illustrated in Figure 9, one can
choose a square region s0 as the largest square in Figure 9 containing all data points in X , and denote
` as the side of the largest square.

At height level 0 in tree T , applying the Partition_HC algorithm for s0, one has x∆1 (center
of s0) as a node (i.e., the root) represented for s0 in the constructed tree structure T , and 4 child
square regions1 with side `/2, denoted s1a (containing x1), s1b (containing x2, x3, x4, x5, x7), s1c

(containing x6), and s1d (containing no data points). Therefore, one can discard s1d, use either
data points (x1, or x6) or their centers represented for s1a and s1c respectively, and then apply the
recursive procedure to partition for s1b (at height level 1).

At height level 1 in tree T , applying the Partition_HC algorithm for s1b, one has x∆2 (center of
s1b) as a node represented for s1b in the constructed tree structure T , and 4 child square regions with
side `/4, denoted s2a (containing x3, x4, x5), s2b (containing x7), s2c (containing no data points),
and s2d (containing x2). Therefore, one can discard s2c, use either data points (x7, or x2) or their
centers represented for s2b and s2d respectively, and then apply the recursive procedure to partition
for s2a (at height level 2).

At height level 2 in tree T , applying the Partition_HC algorithm for s2a, one has x∆3 (center of
s2a) as a node represented for s2a in the constructed tree structure T , and 4 child square regions with
side `/8, denoted s3a (containing no data points), s3b (containing x5), s3c (containing x4), and s3d

(containing x3). Therefore, one can discard s3a, and use either data points (x5, or x4, or x3) or their
centers represented for s3b, s3c and s3d respectively.

Hence, at the end, one obtains a tree structure T as illustrated in Figure 10, containing 10 nodes
vi |1≤i≤10, and 9 edges ej |1≤j≤9. Node x1 is the root of T . The highest level in tree T is 3. For
lengths of edges in T , one can apply any metrics in the 2-dimensional space.

5.2 Some Examples and Discussion about the Quantization and Cluster Sensitivity
Problems

The quantization or cluster sensitivity problem for partition or clustering is that some close data
points are partitioned or clustered to adjacent, but different hypercubes or clusters respectively.

For example, in Figure 11, we illustrate different results of clustering, obtained with different
initializations for the farthest-point clustering for a given 10000 random data points into 20 clusters.
For data points near a border of adjacent, but different clusters, although they are very close to each
other, they are still in different clusters, or known as a cluster sensitivity problem. Whether those
data points are clustered into the same or different cluster(s), it depends on an initialization of the
farthest-point clustering. Therefore, by combining many different clustering results, obtained with
various initializations for the farthest-point clustering algorithm, one can reduce an affect of the
cluster sensitivity problem. Similarly for a quantization problem in the partition procedure (e.g. those
data points near a border of adjacent, but different square regions of the same side in Figure 9).

5.3 An Example of Persistence Diagrams

In Figure 12, we give an example of a persistence diagram on a real-value function f : X 7→ R.
Persistence homology considers a family of sublevel sets f−1((−∞, t]). When t in f−1((−∞, t])
goes from −∞ to +∞, we collect all topological events, e.g., births and deaths of connected
components (i.e., 0-dimensional topological features). As in Figure 12, connected components
appears (i.e., birth) at t = t1, t2, and disappear (i.e., death) at t = +∞, t3 respectively. Therefore,
persistence diagram of f is Dgf = {(t1,+∞), (t2, t3)}.

References
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1we use a clock order to enumerate for those child square regions: top right –> bottom right –> bottom left
–> top left.
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Figure 11: An illustration of the farthest-point clustering for 10000 data points into 20 clusters with
different initializations.

Figure 12: An example of a persistence diagram on a real-value function f : X 7→ R. With sublevel
sets f−1((−∞, t]) filtration, persistence diagram of f is Dgf = {(t1,+∞), (t2, t3)}.
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