
Combinatorial Bayesian Optimization
using the Graph Cartesian Product

Supplementary Material

1 Graph Cartesian product

1.1 Graph Cartesian product and Hamming distance

Theorem 1.1.1. Assume a combinatorial graph G = (V, E) constructed from categorical variables,
C1, · · · , CN , that is, G is a graph Cartesian product �i G(Ci) of complete sub-graphs {G(Ci)}i.
Then the shortest path s(v1, v2;G) between vertices v1 = (c

(1)
1 , · · · , c(1)

N), v2 = (c
(2)
1 , · · · , c(2)

N) ∈ V
on G is equal to the Hamming distance between (c

(1)
1 , · · · , c(1)

N) and (c
(2)
1 , · · · , c(2)

N).

Proof. From the graph Cartesian product definition we have that the shortest path between v1 and v2

consists of edges that change a value in one categorical variable at a time. As a result, an edge between
c
(1)
i and c(2)

i , i.e., a difference in the i-th categorical variable, and all other edges fixed contributes
one error to the Hamming distance. Therefore, we can define the shortest path between v1 and v2 as
the sum over all edges for which c(1)

i and c(2)
i are different, s(v1, v2;G) =

∑
i 1[c

(1)
i 6= c

(2)
i] that is

equivalent to the definition of the Hamming distance between two sets of categorical choices.

1.2 Graph Fourier transform with graph Cartesian product

Graph Cartesian products can help us improve the scalability of the eigendecomposition [15]. The
Laplacian of the Cartesian product G1�G2 of two sub-graphs G1 and G2 can be algebraically expressed
using the Kronecker product ⊗ and the Kronecker sum ⊕ [15]:

L(G1�G2) = L(G1)⊕ L(G2) = L(G1)⊗ I1 + I2 ⊗ L(G2), (6)

where I denotes the identity matrix. As a consequence, considering the eigensystems {(λ(1)
i , u

(1)
i)}

and {(λ(2)
j , u

(2)
j)} of G1 and G2, respectively, the eigensystem of G1�G2 is {(λ(1)

i +λ
(2)
j , u

(1)
i ⊗u

(2)
j)}.

Proposition 1.2.1. Assume a graph G = (V, E) is the graph cartesian product of sub-graphs
G = �i,Gi. Then graph Fourier Transform of G can be computed in O(

∑m
i=1 |Vi|3) while the direct

computation takes O(
∏m
i=1 |Vi|3).

Proof. Graph Fourier Transform is eigendecomposition of graph Laplacian L(G) where G = (V, E).
Eigendecomposition is of cubic complexity with respect to the number of rows(= the number of
columns), which is the number of vertices | V | for graph Laplacian L(G). If we directly compute
eigendecomposition of L(G), it costs O(

∏
i | V |3). If we utilize graph Cartesian product, then we

compute eigendecomposition for each sub-graphs and combine those to obtain eigendecomposition
of the original full graph G. The cost for eigendecomposition of each subgraphs is O(| Vi |3) and in
total, it is summed to O(

∑
i | V |3). For graph Cartesian product, graph Fourier Transform can be

computed in O(
∑
i | V |3).

Remark In the computation of gram matrices, eigenvalues from sub-graphs are summed and entries
of eigenvectors are multiplied. Compared to the cost of O(

∏
i | V |3), this overhead is marginal. Thus

with graph Cartesian product, the ARD diffusion kernel can be computed efficiently with a pre-
computed eigensystem for each sub-graphs. This pre-computation is performed efficiently by using
Prop. 1.2.1

1

2 Surrogate model fitting

In the surrogate model fitting step of COMBO, GP-parameters are sampled from the posterior using
slice sampling [30, 32] as in Spearmint [42, 43].

2.1 GP-parameter posterior sampling

For a nonzero mean function, the marginal likelihood of D = (V,y) is

−1

2
(y −m)T (σ2

fKV V + σ2
nI)−1(y −m)− 1

2
log det(σ2

fKV V + σ2
nI)− n

2
log 2π (7)

where m is the value of constant mean function. With ARD diffusion kernel, the gram matrix is given
by

σ2
fKV V + σ2

nI = σ2
f

⊗
i

Ui exp−βiΛi UTi + σ2
nI (8)

where Λi is a diagonal matrix whose diagonal entries are eigenvalues of a sub-graph given to
a combinatorial variable L(G(Ci)), Ui is a orthogonal matrix whose columns are corresponding
eigenvalues of L(G(Ci)), signal variance σ2

f and noise variance σ2
n.

Remark In the implementation of eq. (8), a normalized version exp−βiΛi /Ψi where Ψi =

1/|Vi|
∑
j=1,···|Vi| exp−βiλ

(i)
j is used for numerical stability instead of exp−βiΛi .

In the surrogate model fitting step of COMBO, all GP-parameters are sampled from posterior which
is proportional to the product of above marginal likelihood and priors on all GP-parameters such as
βi’s, signal variance σ2

f , noise variance σ2
n and constant mean function value m. In COMBO all

GP-parameters are sampled using slice sampling [32].

A single step of slice sampling in COMBO consists of multiple univariate slice sampling steps:
1. m : constant mean function value m
2. σ2

f : signal variance
3. σ2

n : noise variance
4. {βi}i with a randomly shuffled order

In COMBO, slice sampling does warm-up with 100 burn-in steps and at every new evaluation, 10
more samples are generated to approximate the posterior.

2.2 Priors

Especially in BO where data is scarce, priors used in the posterior sampling play an extremely
important role. The Horseshoe priors are specified for βi’s with the design goal of variable selection
as stated in the main text. Here, we provide details about other GP-parameters including constant
mean function value m, signal variance σ2

f and noise variance σ2
n.

2.2.1 Prior on constant mean function value m

Given D = (V,y) the prior over the mean function is the following:

p(m) ∝
{
N (µ, σ2) if ymin ≤ m ≤ ymax
0 otherwise

(9)

where µ = mean(y), σ = (ymax − ymin)/4, ymin = min(y) and ymax = max(y).

This is the truncated Gaussian distribution between ymin and ymax with a mean at the sample mean
of y. The truncation bound is set so that untruncated version can sample in truncation bound with the
probability of around 0.95.

2.2.2 Prior on signal variance σ2
f

Given D = (V,y) the prior over the log-variance is the following:

p(log(σ2
f)) ∝

{
N (µ, σ2) if

σ2
y

KV V max
≤ σ2

f ≤
σ2
y

KV V min

0 otherwise
(10)

2

where σ2
y = variance(y), µ = 1

2 (
σ2
y

KV V min
+

σ2
y

KV V max
), σ = 1

4 (
σ2
y

KV V min
+

σ2
y

KV V max
), KV Vmin =

min(KV V), KV Vmax = max(KV V) and KV V = K(V, V).

This is the truncated Log-Normal distribution. The intuition behind this choice of prior is that in
GP prior, σ2

fKV V is covariance matrix of y with the assumption of very small noise variance σ2
n.

The truncation bound is set so that untruncated version can sample in truncation bound with the
probability of around 0.95. Since for larger σ2

f , the the magnitude of the change of σ2
f has less

significant effect than for smaller σ2
f . In order to take into account relative amount of change in σ2

f ,
the Log-Normal distribution is used rather than the Normal distribution.

2.2.3 Priors on scaling factor βi and noise variance σ2
n

We use the Horseshoe prior for βi and σ2
n in order to encourage sparsity. Since the probability density

of the Horseshoe is intractable, its closed form bound is used as a proxy [7]:

K

2
log(1 +

4τ2

x2
) < p(x) < K log(1 +

2τ2

x2
) (11)

where x = βi or x = σ2
n, τ is a global shrinkage parameter and K = (2π3)−1/2 [7]. Typically, the

upper bound is used to approximate Horseshoe density. For βi, we use τ = 5 to avoid excessive
sparsity. For σ2

n, we use τ =
√

0.05 that prefers very small noise similarly to the Spearmint
implementation.5

2.3 Slice Sampling

At every new evaluation in COMBO, we draw samples of βi. For each βi the sampling procedure is
the following:

SS-1 Set t = 0 and choose a starting β(t)
i for which the probability is non-zero.

SS-2 Sample a value q uniformly from [0, p(β
(t)
i |D, β

(t)
−i ,m

(t), (σ2
f)(t), (σ2

n))(t)].

SS-3 Draw a sample βi uniformly from regions, p(βi|D, β(t)
−i ,m

(t), (σ2
f)(t), (σ2

n)(t)) > q.

SS-4 Set β(t+1)
i = βi and repeat from SS-2 using β(t+1)

i .

In SS-2, we step out using doubling and shrink to draw a new value. For detailed explanation about
slice sampling, please refer to [32]. For other GP-parameters, the same univariate slice sampling is
applied.

3 Acquisition function maximization

In the acquisition function maximization step, we begin with candidate vertices chosen to balance
between exploration and exploitation. 20, 000 vertices are randomly selected for exploration. To
balance exploitation, we use 20 spray vertices similar to spray points6 in [42]. Spray vertices
are randomly chosen in the neighborhood of a vertex with the best evaluation (e.g, nbd(vbest, 2) =
{v|d(v, vbest) ≤ 2}). Out of 20, 020 initial vertices, 20 vertices with the highest acquisition values are
used as initial points for further optimization. This type of combination of heuristics for exploration
and exploitation has shown improved performances [13, 28].

We use a breadth-first local search (BFLS) to further optimize the acquisition function. At a given
vertex we compare acquisition values on adjacent vertices. We then move to the vertex with the
highest acquisition value and repeat until no acquisition value on an adjacent vertex is higher than
acquisition value at the current vertex.

5https://github.com/JasperSnoek/spearmint
6https://github.com/JasperSnoek/spearmint/blob/b37a541be1ea035f82c7c82bbd93f5b4320e7d91/

spearmint/spearmint/chooser/GPEIOptChooser.py#L235

3

https://github.com/JasperSnoek/spearmint/blob/b37a541be1ea035f82c7c82bbd93f5b4320e7d91/spearmint/spearmint/chooser/GPEIOptChooser.py#L235
https://github.com/JasperSnoek/spearmint/blob/b37a541be1ea035f82c7c82bbd93f5b4320e7d91/spearmint/spearmint/chooser/GPEIOptChooser.py#L235

3.1 Non-local search for acquisition function optimization

We tried simulated annealing as a non-local search in different ways, namely:

1. Randomly split 20 initial points into 2 sets of 10 points and optimize from 10 points in one
set with BFLS and optimize from 10 points in another set with simulated annealing.

2. For given 20 initial points, optimize from 20 points with BFLS and optimize from the same
20 points with simulated annealing.

3. For given 20 initial points, firstly optimize from 20 points with BFLS and use 20 points
optimized by BFLS as initial points for optimization using simulated annealing.

The optimum of all 3 methods is hardly better than the optimum discovered solely by BFLS. Therefore,
we decided to stick to the simpler procedure without SA.

4 Experiments

4.1 Bayesian optimization with binary variables

4.1.1 Ising sparsification

Ising sparsification is about approximating a zero-field Ising model expressed by p(z) =
1
Zp

exp{z>Jpz}, where z ∈ {−1, 1}n, Jp ∈ Rn×n is an interaction symmetric matrix, and
Zp =

∑
z exp{z>Jpz} is the partition function, using a model q(z) with Jqij = xijJ

p
ij where

xij ∈ {0, 1} are the decision variables. The objective function is the regularized Kullback-Leibler
divergence between p and q.

L(x) = DKL(p||q) + λ‖x‖1 (12)

where λ > 0 is the regularization coefficient DKL could be calculated analytically [2]. We follow the
same setup as presented in [2], namely, we consider 4× 4 grid of spins, and interactions are sampled
randomly from a uniform distribution over [0.05, 5]. The exhaustive search requires enumerating all
224 configurations of x that is infeasible. We consider λ ∈ {0, 10−4, 10−2}. We set the budget to
170 evaluations.

Method λ = 0.0

SMAC 0.1516±0.0404
TPE 0.4039±0.1087
SA 0.0953±0.0331
BOCS− SDP 0.1049±0.0308

COMBO 0.1030±0.0351

Figure 3: Ising sparsification (λ = 0.0)

4

Method λ = 0.0001

SMAC 0.2192±0.0522
TPE 0.4437±0.0952
SA 0.1166±0.0353
BOCS− SDP 0.0586±0.0125

COMBO 0.0812±0.0279

Figure 4: Ising sparsification (λ = 0.0001)

Method λ = 0.01

SMAC 0.3501±0.0447
TPE 0.6091±0.1071
SA 0.3342±0.0636
BOCS− SDP 0.3001±0.0389

COMBO 0.3166±0.0420

Figure 5: Ising sparsification (λ = 0.01)

4.1.2 Contamination control

The contamination control in food supply chain is a binary optimization problem [19]. The problem
is about minimizing the contamination of food where at each stage a prevention effort can be made
to decrease a possible contamination. Applying the prevention effort results in an additional cost
ci. However, if the food chain is contaminated at stage i, the contamination spreads at rate αi. The
contamination at the i-th stage is represented by a random variable Γi. A random variable zi denotes
a fraction of contaminated food at the i-th stage, and it could be expressed in an recursive manner,
namely, zi = αi(1 − xi)(1 − zi−1) + (1 − Γixi)zi−1, where xi ∈ {0, 1} is the decision variable
representing the preventing effort at stage i. Hence, the optimization problem is to make a decision
at each stage whether the prevention effort should be applied so that to minimize the general cost
while also ensuring that the upper limit of contamination is ui with probability at least 1− ε. The
initial contamination and other random variables follow beta distributions that results in the following
objective function

L(x) =

d∑
i=1

[
cixi +

ρ

T

T∑
k=1

1{zk>ui}

]
+ λ‖x‖1 (13)

where λ is a regularization coefficient, ρ is a penalty coefficient (we use ρ = 1) and we set T = 100.
Following [2], we assume ui = 0.1, ε = 0.05, and λ ∈ {0, 10−4, 10−2}. We set the budget to 270
evaluations.

5

Method λ = 0.0

SMAC 21.4644±0.0312
TPE 21.6408±0.0437
SA 21.4704±0.0366
BOCS− SDP 21.3748±0.0246

COMBO 21.2752±0.0292

Figure 6: Contamination control (λ = 0.0)

Method λ = 0.0001

SMAC 21.5011±0.0329
TPE 21.6868±0.0406
SA 21.4871±0.0372
BOCS− SDP 21.3792±0.0296

COMBO 21.2784±0.0314

Figure 7: Contamination control (λ = 0.0001)

Method λ = 0.01

SMAC 21.6512±0.0403
TPE 21.8440±0.0422
SA 21.6120±0.0385
BOCS− SDP 21.5232±0.0269

COMBO 21.4436±0.0293

Figure 8: Contamination control (λ = 0.01)

4.2 Bayesian optimization with ordinal and multi-categorical variables

4.2.1 Oridinal variables : discretized branin

In order to test COMBO on ordinal variables. We adopt widely used continuous benchmark branin
function. Branin is defined on [0, 1]2, we discretize each dimension with 51 equally space points so

6

that center point can be chosen in the discretized space. Therefore, the search space is comprised of 2
ordinal variables with 51 values(choices) for each.

COMBO outperforms all of its competitors. In Figure 9, SMAC and TPE exhibit similar search
progress as COMBO, but in term of the final value at 100 evaluations, those two are overtaken by
SA. COMBO maintains its better performance over all range of evaluations up to 100.

Method Branin

SMAC 0.6962±0.0705
TPE 0.7578±0.0844
SA 0.4659±0.0211

COMBO 0.4113±0.0012

Figure 9: Ordinal variables : discretized branin

4.2.2 Multi-categorical variables : pest control

Method Pest

SMAC 14.2614±0.0753
TPE 14.9776±0.0446
SA 12.7154±0.0918

COMBO 12.0012±0.0033

Figure 10: Multi-categorical variables : pest control

In the chain of stations, pest is spread in one direction, at each pest control station, the pest control
officer can choose to use a pesticide from 4 different companies which differ in their price and
effectiveness.

For N pest control stations, the search space for this problem is 5N , 4 choices of a pesticide and the
choice of not using any of it.

The price and effectiveness reflect following dynamics.

• If you have purchased a pesticide a lot, then in your next purchase of the same pesticide,
you will get discounted proportional to the amount you have purchased.
• If you have used a pesticide a lot, then pests will acquire strong tolerance to that specific

product, which decrease effectiveness of that pesticide.

Formally, there are four variables: at i-th pest control Zi is the portion of the product having pest, Ai
is the action taken, C(l)

i is the adjusted cost of pesticide of type l, T (l)
i is the beta parameter of the

7

Beta distribution for the effectiveness of pesticide of type l. It starts with initial Z0 and follows the
same evolution as in the contamination control, but after each choice of pesticide type whenever the
taken action is to use one out of 4 pesticides or no action. {C(l)

i }1,··· ,4 are adjusted in the manner
that the pesticide which has been purchased most often will get a discount for the price. {T (l)

i }1,··· ,4
are adjusted in the fashion that the pesticide which has been frequently used in previous control point
cannot be as effective as before since the insects have developed tolerance to that.

The portion of the product having pest follows the dynamics below

zi = αi(1− xi)(1− zi−1) + (1− Γixi)zi−1 (14)

when the pesticide is used, the effectiveness xi of pesticide follows beta distribution with the
parameters, which has been adjusted according to the sequence of actions taken in previous control
points.

Under this setting, our goal is to minimize the expense for pesticide control and the portion of
products having pest while going through the chain of pest control stations. The objective is similar
to the contamination control problem

L(x) =

d∑
i=1

[
cixi +

ρ

T

T∑
k=1

1{zk>ui}

]
(15)

However, we want to stress out that the dynamics of this problem is far more complex than the one in
the contamination control case. First, it has 25 variables and each variable has 5 categories. More
importantly, the price and effectiveness of pesticides are dynamically adjusted depending on the
previously made choice.

4.3 Weighted maximum satisfiability(wMaxSAT)
Satisfiability problem is the one of the most important and general form of combinatorial optimization
problems. SAT solver competition is held in Satisfiability conference every year.7 Due to the
resemblance between combinatorial optimizations and weighted Maximum satisfiability problems, in
which the goal is to find boolean values that maximize the combined weights of satisfied clauses, we
optimize certain benchmarks taken from Maximum atisfiability(MaxSAT) Competition 2018. We
took randomly 3 benchmarks of weighted maximum satisfiability problems with no hard clause with
the number of variables not exceeding 100.8 The weights are normalized by mean subtraction and
standard deviation division and evaluations are negated to be minimization problems.

Method 28

SMAC -20.0530±0.6735
TPE -25.2010±0.8750
SA -31.8060±1.1929
BOCS-SDP -29.4865±0.5348
BOCS-SA3 -34.7915±0.7814

COMBO -37.7960±0.2662

Figure 11: wMaxSAT28

7http://satisfiability.org/, http://sat2018.azurewebsites.net/competitions/
8https://maxsat-evaluations.github.io/2018/benchmarks.html maxcut-johnson8-2-4.clq.wcnf (28 variables),

maxcut-hamming8-2.clq.wcnf (43 variables), frb-frb10-6-4.wcnf (60 variables)

8

Method 43

SMAC -57.4217±1.7614
TPE -52.3856±1.9898
SA -75.7582±2.3048
BOCS-SDP -51.1265±1.6903
BOCS-SA3∗ -61.0186±2.2812

COMBO -85.0155±2.1390

Figure 12: wMaxSAT43∗BOCS-SA3 was run for 168 hours but could not finish 270 evaulations.

Method 60

SMAC -148.6020±1.0135
TPE -137.2104±2.8296
SA -187.5506±1.4962
BOCS-SDP -153.6722±2.0096
COMBO/GM -152.0745±8.5167

COMBO -195.6527±0.0000

Figure 13: wMaxSAT60

Figure 14: Runtime VS. Minimum on wMaxSAT28

9

Figure 15: Runtime VS. Minimum on wMaxSAT4. BOCS-SA3 did not finish all 270 evaluations
after 168 hours, we plot the runtime for BOCS-SA3 as 168 hours.

4.4 Neural architecture search(NAS)

4.4.1 Search space

Table 5: (left) Connectivity and (right) Computation type.

IN H1 H2 H3 H4 H5 OUT

IN - O X X X O X
H1 - - X O X X O
H2 - - - X O X X
H3 - - - - X O X
H4 - - - - - O O
H5 - - - - - - X

OUT - - - - - - -

MAXPOOL CONV

SMALL ID ≡ MAXPOOL(1×1) CONV(3×3)

LARGE MAXPOOL(3×3) CONV(5×5)

In our architecture search problem, the cell consists of one input state(IN), one output state(OUT)
and five hidden states(H1∼H5). The connectivity between 7 states are specified as in the left of
Table. 5 where it can be read that (IN→H1) and (IN→H5) from the first row. Input and output states
are identity maps. The computation type of each of 5 hidden states are determined by combination of
2 binary choices as in the right of Table. 5.

In total, our search space consists of 31 binary variables.9

4.4.2 Evaluation

For a given 31 binary choices, we construct a cell and stack 3 cells as follows

Input
↓

Conv(3× 16× 3× 3)-BN-ReLU
↓

Cell with 16 channels
↓

MaxPool(2× 2)-Conv(16× 32× 1× 1)
↓

Cell with 32 channels
9We design a binary search space for NAS so that to also compare with BOCS. COMBO is not restricted to

binary choices for NAS, however.

10

↓
MaxPool(2× 2)-Conv(32× 64× 1× 1)

↓
Cell with 64 channels

↓
MaxPool(2× 2)-FC(1024× 10)

↓
Output

At each MaxPool, the height and the width of features are halved.

The network is trained for 20 epochs with Adam [24] with the default settings in pytorch [36] except
for the weight decay of 5 × 10−5. CIFAR10 [26] training data is randomly shuffled with random
seed 0 in the command “numpy.RandomState(0).shuffle(indices)”. In the shuffled training data, the
first 30000 is used for training and the last 10000 is used for evaluations. Batch size is 100. Early
stopping is applied when validation accuracy is worse than the validation accuracy 10 epochs ago.

Due to the small number of epochs, evaluations are a bit noisy. In order to stabilize evaluations, we
run 4 times of training for a given architecture. On GTX 1080 Ti with 11GB, 4 runs can be run in
parallel. Depending on a given architecture training took approximately 5∼30 minutes.

Since the some binary choices result in invalid architectures, in such case, validation accuracy is
given as 10%, which is the expected accuracy of constant prediction.

The final evaluation is given as

Errorvalidation + 0.02 · FLOPs of a given architecture
Maximim FLOPs in the search space

(16)

where “Maximim FLOPs in the search space” is computed from the cell with all connectivity among
states and Conv(5 × 5) for all H1∼H5. 0.02 is set with the assumption that we can afford 1% of
increased error with 50% reduction in FLOPs.

Method NAS

RS 0.1969±0.0011
BOCS− SDP 0.1978±0.0017
RE 0.1895±0.0016

COMBO 0.1846±0.0005

Figure 16: Neural architecture search experiment.

4.4.3 Comparison to NASNet search space

Binary NASNet

Yes Invalid Architecture No
Not fixed The number of inputs to each state 2

4 The number of computation type of states 13

4.4.4 Regularized evolution hyperparameters

In evolutionary search algorithms, the choice of mutation is critical to the performance. Since
our binary search space is different from NASNet search space where Regulairzed Evolution(RE)

11

Method(#eval) NAS

RE(260) 0.1895±0.0016
RE(500) 0.1888±0.0019

COMBO(260) 0.1846±0.0005

Figure 17: Neural architecture search experiment with additional evaluations for RE (up to 500
evaluations).

was originally applied, we modify mutation steps. All possible mutations proposed in [38] can be
represented as simple binary flipping in binary search space. In binary search space, some binary
variables are about computation type and others are about connectivity. Thus uniform-randomly
choosing binary variable to flip can mutate computation type or connectivity. Since binary search
space is redundant we did not explicitly include identity mutation (not mutating). Since evolutionary
search algorithms are believed to be less sample efficient than BO, we gave an advantage to RE by
only allowing valid architectures in mutation steps.

On other crucial hyperparameters, population size P and sample size S, motivated by the best value
used in [38], P = 100, S = 25. We set our P and S to have similar ratio as the one originally
proposed. Since, we assumed less number of evaluations(260, 500) compared to 20000 in [38], we
reduced P and S. In NAS on binary search space, we used P = 50 and S = 15.

12

	Introduction
	Method
	Combinatorial graphs and kernels
	Related work
	Experiments
	Bayesian optimization with binary variables In oh2019combo, the workshop version of this paper, we found that the methods were compared on different sets of initial evaluations and different objectives coming from the random processes involved in the generation of objectives, which turned out to be disadvantageous to COMBO. We reran these experiments making sure that all methods are evaluated on the same set of 25 pairs of an objective and a set of initial evaluations.
	Bayesian optimization with ordinal and multi-categorical variables
	Neural architecture search
	Graph Cartesian product
	Graph Cartesian product and Hamming distance
	Graph Fourier transform with graph Cartesian product

	Surrogate model fitting
	Priors
	Prior on constant mean function value m
	Prior on signal variance f2
	Priors on scaling factor i and noise variance n2

	Acquisition function maximization
	Non-local search for acquisition function optimization

	Experiments
	Bayesian optimization with binary variables
	Ising sparsification
	Contamination control

	Bayesian optimization with ordinal and multi-categorical variables
	Oridinal variables : discretized branin
	Multi-categorical variables : pest control

	Neural architecture search(NAS)
	Search space
	Evaluation
	Comparison to NASNet search space
	Regularized evolution hyperparameters

