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S1 Compare with NAS models1

Table S1: Test error rates (%) on CIFAR10 dataset. c/o and mixup denotes cutout [1] and mixup [14]
data augmentation.

Model Error (%) Params (M)
NASNet-A [15] 3.41 3.3
PNASNet-5 [7] 3.41 3.2
AmoebaNet-A [11] 3.34 3.2
Wide-DenseNet C3 3.81 3.4
Wide-DenseNet C2sp 3.54 3.2
NASNet-A + c/o [15] 2.65 3.3
Wide-DenseNet C2sp + c/o + mixup 2.44 3.2

In Table S1, we compare C2sp with NAS models: NASNet [15], PNASNet [7], and AmoebaNet [11].2

We apply Wide-DenseNet [3] and adjust the width and depth (K = 48,L = 50) to have approximately3

3.3M parameters. C2sp suffers less than 0.2% accuracy loss compared with state-of-the-art auto-4

generated models, and achieves better accuracy (+0.21%) when the augmentation is enhanced.5

Although NAS models leverage fragmented operators [9], e.g., pooling, group convolution, DWConv6

to improve accuracy with similar numbers of parameters, the regular-structured Wide-DenseNet has7

better memory and computational efficiency in runtime. In our reproduction, the training speeds on8

TitanXP for NASNet-A and Wide-DesNet are about 200 and 400 SPS, respectively.9

S2 Implementation details10

Results reported as mean±std in tables or error bars in figures are trained for 5 times with different11

random seeds. The default settings for CIFAR classifications are as follows: We train models for12

300 epochs with mini-batch size 64 except for the results in Table S1, which run 600 epochs as in13

[15]. We use a cosine learning rate decay [8] starting from 0.1 except for DenseNet tests, where the14

piecewise constant decay performs better. The weight decay factor is 1e-4 except for parameters in15

depthwise convolutions. The standard augmentation [6] is applied and the α equals to 1 in mixup16

augmentation.17

For ImageNet classifications, all the models are trained for 100 epochs with mini-batch size 256. The18

learning rate is set to 0.1 initially and annealed according to the cosine decay schedule. We follow19

the data augmentation in [13]. Weight decay is 1e-4 in ResNet-50 and DenseNet-121 models, and20

decreases to 4e-5 in the other compact models. Some results are worse than reported in the original21
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papers. It is likely due to the inconsistency of mini-batch size, learning rate decay, or total training22

epochs, e.g., about 420 epochs in [12].23

In generation tasks with GANs, we follow models and hypermeters recommended in [5]. The learning24

rate is 0.2, β1 is 0.5 and β2 is 0.999 for Adam optimizer [4]. The mini-batch size is 64, the ratio25

of discriminator to generator updates is 5:1 (ncritic = 5). The results in Table 3 and Figure 4 are26

trained for 200k and 500k discriminator update steps, respectively. We use the non-saturation loss27

[2] without gradient norm penalty. The spectral normalization [10] is applied in discriminators, no28

normalization is applied in generators.29
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