
A Industrial Process Control Benchmark

To study trajectory optimization, we first consider the problem of control of a simple industrial process.
An effective industrial control system could achieve better production and economic efficiency than
manually operated controls. In this paper, we learn the dynamics of an industrial process and use it to
optimize the controls, by minimizing a cost function. In some critical processes, safety is of utmost
importance and regularization methods could prevent adaptive control methods from exploring unsafe
trajectories.

We consider the problem of control of a continuous nonlinear two-phase reactor from [28]. The
simulated industrial process consists of a single vessel that represents a combination of the reactor
and separation system. The process has two feeds: one contains substances A, B and C and the other
one is pure A. Reaction A + C→ D occurs in the vapour phase. The liquid is pure D which is the
product. The process is manipulated by three valves which regulate the flows in the two feeds and
an output stream which contains A, B and C. The plant has ten measured variables including the
flow rates of the four streams (F1, . . . , F4), pressure, liquid holdup volume and mole % of A, B and
C in the purge. The control problem is to transition to a specified product rate and maintain it by
manipulating the three valves. The pressure must be kept below the shutdown limit of 3000 kPa. The
original paper suggests a multiloop control strategy with several PI controllers [28].

We collected simulated data corresponding to about 0.5M steps of operation by randomly generating
control setpoints and using the original multiloop control strategy. The collected data were used to
train a neural network model with one layer of 80 LSTM units and a linear readout layer to predict
the next-step measurements. The inputs were the three controls and the ten process measurements.
The data were pre-processed by scaling such that the standard deviation of the derivatives of each
measured variable was of the same scale. This way, the model learned better the dynamics of slow
changing variables. We used a fully-connected network architecture with 8 hidden layers (100-200-
100-20-100-200-100) to train a DAE on windows of five successive measurement-control pairs. The
scaled measurement-control pairs in a window were concatenated to a single vector and corrupted
with zero-mean Gaussian noise (σ = 0.03) and the DAE was trained to denoise it.

The trained model was then used for optimizing a sequence of actions to ramp production as rapidly
as possible from F4 = 100 to F4 = 130 kmol h−1, while satisfying all other constraints [Scenario
II from 28]. We formulated the objective function as the Euclidean distance to the desired targets
(after pre-processing). The targets corresponded to the following targets for three measurements:
F4 = 130 kmol h−1 for product rate, 2850 kPa for pressure and 63 mole % for A in the purge.

We optimized a plan of actions 30 hours ahead (or 300 discretized time steps). The optimized sequence
of controls were initialized with the original multiloop policy applied to the trained dynamics model.
That control sequence together with the predicted and the real outcomes (black and red curves
respectively) are shown in Fig. 1a. We then optimized the control sequence using 10000 iterations of
Adam with learning rate 0.01 without and with DAE regularization (with penalty α‖g(xt)− xt‖2).

The results are shown in Fig. 1. One can see that without regularization the control signals are
changed abruptly and the trajectory imagined by the model deviates from reality (Fig. 1b). In contrast,
the open-loop plan found with the DAE regularization is noticeably the best solution (Fig. 1c), leading
the plant to the specified product rate much faster than the human-engineered multiloop PI control
from [28]. The imagined trajectory (black) stays close to predictions and the targets are reached in
about ten hours. This shows that even in a low-dimensional environment with a large amount of
training data, regularization is necessary for planning using a learned model.

B Description of Environments

Cartpole. This task involves a pole attached to a moving cart in a frictionless track, with the goal of
swinging up the pole and balancing it in an upright position in the center of the screen. The cost at
every time step is measured as the angular distance between the tip of the pole and the target position.
Each episode is 200 steps long.

Reacher. This environment consists of a simulated PR2 robot arm with seven degrees of freedom,
with the goal of reaching a particular position in space. The cost at every time step is measured as the

12



distance between the arm and the target position. The target position changes every episode. Each
episode is 150 steps long.

Pusher. This environment also consists of a simulated PR2 robot arm, with a goal of pushing an
object to a target position that changes every episode. The cost at every time step is measured as the
distance between the object and the target position. Each episode is 150 steps long.

Half-cheetah. This environment involves training a two-legged "half-cheetah" to run forward as fast
as possible by applying torques to 6 different joints. The cost at every time step is measured as the
negative forward velocity. Each episode is 1000 steps long, but the length is reduced to 200 for the
benchmark with [6].

Ant. This is the most challenging environment we consider. It consists of a four-legged "ant"
controlled by applying torques to its 8 joints. Similar to [25], we use a gear ratio to 30 for all joints
(this prevents the ant from flipping over frequently during the initially phase of training). The cost,
similar to Half-cheetah, is the negative forward velocity. Each episode is 1000 steps long.

Table 2: Dimensionalities of observation and action spaces of the environments used in this paper

Environment Observation space Action space

Cartpole 5 1

Reacher 17 7

Pusher 20 7

Half-cheetah 19 6

Ant 111 8

C Additional Experimental Details

For MPC, we use the same planning horizon as PETS (Table 5). The important hyperparameters
for all our experiments are shown in Tables 3 and 4. We found the DAE noise level, regularization
penalty weight α and Adam learning rate to be the most important hyperparameters.

0 1 2 3 4 5 6 7 8 9 10
Episodes

−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

R
et

ur
n

Halfcheetah

Baseline w/ DAE reg., 100 epochs
PETS, 100 epochs
PETS, 5 epochs
BNN, 100 epochs (Baseline)
BNN, 5 epochs

Figure 6: Effect of increased number of training epochs after every episode: we can see that training
the dynamics model for more epochs after each episode leads to a much better performance in the
initial episodes. With this modification, a single dynamics model with no regularization seems to
work almost as well as PETS. It can also be clearly seen that the use of denoising regularization
enables an improvement in the learning progress. To compare with PETS, we used the CEM optimizer
in this ablation study.

13



Table 3: Important hyperparameters used in our experiments for comparison with PETS. Additionally,
for the experiments with gradient-based trajectory optimization on Reacher and Pusher, we initialize
the trajectory with a few iterations (2 iterations for Reacher and 5 iterations for Pusher) of CEM.

Environment Optimizer Optim Iters Epochs Adam LR α DAE noise σ

Cartpole CEM 5 500 - 0.001 0.1
Adam 10 500 0.001 0.001 0.2

Reacher CEM 5 500 - 0.01 0.1
Adam 5 300 1 0.01 0.1

Pusher CEM 5 500 - 0.01 0.1
Adam 5 300 1 0.01 0.1

Half-cheetah CEM 5 100 - 2 0.1
Adam 10 200 0.1 1 0.2

Ant CEM 5 400 - 0.045 0.3
Adam 10 1000 0.075 0.03 0.4

Table 4: Important hyperparameters used in our experiments for comparison with MB-MPO

Environment Optimizer Optim Iters Epochs Adam LR α DAE noise σ

Half-cheetah CEM 5 20 - 2 0.2
Adam 10 40 0.1 1 0.1

Table 5: MPC planning horizons used in our experiments

Environment Cartpole Reacher Pusher Half-cheetah Ant

Planning Horizon 25 25 25 30 35

D Comparison to Gaussian regularization

To emphasize the importance of denoising regularization, we also compare against a simple Gaussian
regularization baseline: we fit a Gaussian distribution (with diagonal covariance matrix) to the states
and actions in the replay buffer and regularize the trajectory optimization by adding a penalty term
to the cost, proportional to the negative log probability of the states and actions in the trajectory
(Equation 4). The performance of this baseline in the Half-cheetah task (with an episode length of
200) is shown in Fig. 7. We observe that the Gaussian distribution poorly fits the trajectories and
consistently leads the optimization to a bad local minimum.

E Preliminary Experiments on Exploration

To improve the asymptotic performance of our agent, we perform some preliminary experiments
on exploration by injecting random noise into the optimized actions. In Figure 8, we show that
asymptotic performance can greatly benefit from random exploration, suggesting a line of future
work.

F Visualization of Trajectory Optimization in End-to-End Experiments

In Figures 9 and 10, we visualize trajectory optimization at different timesteps t during Episode 5
of end-to-end experiments in Cartpole and Half-cheetah. It can be observed that the DAE penalty
correlates with the inaccuracies of the model and that the DAE regularization is effective in guiding
the optimization procedure to remain within the data distribution.

14



0 2 4 6 8 10
Episodes

500

400

300

200

100

0

100

200

R
et

ur
n

Halfcheetah (episode length = 200)

Adam w/ DAE reg.
Adam w/ Gaussian reg.
Adam w/ No reg.

Figure 7: Comparison to Gaussian regularization: we can see that trajectory optimization with
Adam without any regularization is very unstable and completely fails in the initial episodes. While
Gaussian regularization helps in the first few episodes, it is not able to fit the data properly and seems
to consistently lead the optimization to a local minimum. As shown earlier in Fig. 5, denoising regu-
larization is able to successfully regularize the optimization, enabling good asymptotic performance
from very few episodes of interaction.

Figure 8: In this plot we show the cumulative reward obtained during training by our method when
we inject noise to actions in order to improve exploration of the state-action space. Plots are averaged
over 5 seeds, and show mean and standard deviation.

15



Optimizer: CEM Optimizer: Adam

0.6

0.8

1.0

1.2

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

0.6

0.8

1.0

1.2
No Regularization

0 10 20 30 40 50
Planning Iterations

0.5

1.0

1.5

2.0

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0.5

1.0

1.5

2.0

0.45

0.50

0.55

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

0.45

0.50

0.55

No Regularization

0 10 20 30 40 50
Planning Iterations

3.0

3.5

4.0

4.5

5.0

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

3.0

3.5

4.0

4.5

5.0

(a) t = 0 (b) t = 0

5.0

7.5

10.0

12.5

15.0

17.5

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

5.0

7.5

10.0

12.5

15.0

17.5
No Regularization

0 10 20 30 40 50
Planning Iterations

2.5

5.0

7.5

10.0

12.5

15.0

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

2.5

5.0

7.5

10.0

12.5

15.0

12

13

14

15

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

12

13

14

15

No Regularization

0 10 20 30 40 50
Planning Iterations

2.5

5.0

7.5

10.0

12.5

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

2.5

5.0

7.5

10.0

12.5

(c) t = 10 (d) t = 10

23.0

23.5

24.0

24.5

25.0

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

23.0

23.5

24.0

24.5

25.0
No Regularization

0 10 20 30 40 50
Planning Iterations

0.5

1.0

1.5

2.0

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0.5

1.0

1.5

2.0

23.0

23.5

24.0

24.5

25.0

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

23.0

23.5

24.0

24.5

25.0
No Regularization

0 10 20 30 40 50
Planning Iterations

0.6

0.8

1.0

1.2

1.4

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0.6

0.8

1.0

1.2

1.4

(e) t = 50 (f) t = 50

Figure 9: Visualization of trajectory optimization at different timesteps t during Episode 5 of end-to-
end training in the Cartpole environment. Here, the red line denotes the rewards predicted by the
model (imagination) and the black line denotes the true rewards obtained when applying the sequence
of optimized actions (reality).

16



Optimizer: CEM Optimizer: Adam

10

0

10

20

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

10

0

10

20

No Regularization

0 10 20 30 40 50
Planning Iterations

4

5

6

7

8

9

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

5

10

15

20

0

10

20

30

40

50

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

0

500

1000

No Regularization

0 10 20 30 40 50
Planning Iterations

12.5

15.0

17.5

20.0

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0

250000

500000

750000

1000000

(a) t = 0 (b) t = 0

40

45

50

55

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

30

40

50

60

No Regularization

0 10 20 30 40 50
Planning Iterations

3.00

3.25

3.50

3.75

4.00

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0

50

100

0

20

40

60

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

0

200

400

600

800

No Regularization

0 10 20 30 40 50
Planning Iterations

10

15

20

25

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0

100000

200000

300000

400000

(c) t = 10 (d) t = 10

45

50

55

60

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

40

50

60

70

80
No Regularization

0 10 20 30 40 50
Planning Iterations

3.0

3.5

4.0

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0

20

40

60

20

40

60

80

C
um

ul
at

iv
e 

R
ew

ar
d

DAE Regularization

0

200

400

600

800

No Regularization

0 10 20 30 40 50
Planning Iterations

10

15

20

25

D
AE

 P
en

al
ty

0 10 20 30 40 50
Planning Iterations

0

100000

200000

300000

400000

(e) t = 50 (f) t = 50

Figure 10: Visualization of trajectory optimization at different timesteps t during Episode 5 of
end-to-end training in the Half-cheetah environment. Here, the red line denotes the rewards predicted
by the model (imagination) and the black line denotes the true rewards obtained when applying the
sequence of optimized actions (reality).

17


