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Abstract

In this paper, we study the multi-armed bandit problem in the batched setting
where the employed policy must split data into a small number of batches. While
the minimax regret for the two-armed stochastic bandits has been completely
characterized in [PRCS16], the effect of the number of arms on the regret for the
multi-armed case is still open. Moreover, the question whether adaptively chosen
batch sizes will help to reduce the regret also remains underexplored. In this
paper, we propose the BaSE (batched successive elimination) policy to achieve the
rate-optimal regrets (within logarithmic factors) for batched multi-armed bandits,
with matching lower bounds even if the batch sizes are determined in an adaptive
manner.

1 Introduction and Main Results

Batch learning and online learning are two important aspects of machine learning, where the learner
is a passive observer of a given collection of data in batch learning, while he can actively determine
the data collection process in online learning. Recently, the combination of these learning procedures
has been arised in an increasing number of applications, where the active querying of data is possible
but limited to a fixed number of rounds of interaction. For example, in clinical trials [Tho33, Rob52],
data come in batches where groups of patients are treated simultaneously to design the next trial. In
crowdsourcing [KCS08], it takes the crowd some time to answer the current queries, so that the total
time constraint imposes restrictions on the number of rounds of interaction. Similar problems also
arise in marketing [BM07] and simulations [CG09].

In this paper we study the influence of round constraints on the learning performance via the following
batched multi-armed bandit problem. Let I = {1, 2, · · · ,K} be a given set of K ≥ 2 arms of a
stochastic bandit, where successive pulls of an arm i ∈ I yields rewards which are i.i.d. samples from
distribution ν(i) with mean µ(i). Throughout this paper we assume that the reward follows a Gaussian
distribution, i.e., ν(i) = N (µ(i), 1), where generalizations to general sub-Gaussian rewards and
variances are straightforward. Let µ? = maxi∈[K] µ

(i) be the expected reward of the best arm, and
∆i = µ? − µ(i) ≥ 0 be the gap between arm i and the best arm. The entire time horizon T is splitted
into M batches represented by a grid T = {t1, · · · , tM}, with 1 ≤ t1 < t2 < · · · < tM = T , where
the grid belongs to one of the following categories:

1. Static grid: the grid T = {t1, · · · , tM} is fixed ahead of time, before sampling any arms;
2. Adaptive grid: for j ∈ [M ], the grid value tj may be determined after observing the rewards

up to time tj−1 and using some external randomness.

Note that the adaptive grid is more powerful and practical than the static one, and we recover batch
learning and online learning by setting M = 1 and M = T , respectively. A sampling policy
π = (πt)

T
t=1 is a sequence of random variables πt ∈ [K] indicating which arm to pull at time t ∈ [T ],

where for tj−1 < t ≤ tj , the policy πt depends only on observations up to time tj−1. In other words,
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the policy πt only depends on observations strictly anterior to the current batch of t. The ultimate
goal is to devise a sampling policy π to minimize the expected cumulative regret (or pseudo-regret,
or simply regret), i.e., to minimize E[RT (π)] where

RT (π) ,
T∑
t=1

(
µ? − µ(πt)

)
= Tµ? −

T∑
t=1

µ(πt).

Let ΠM,T be the set of policies with M batches and time horizon T , our objective is to characterize
the following minimax regret and problem-dependent regret under the batched setting:

R?min-max(K,M, T ) , inf
π∈ΠM,T

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT (π)], (1)

R?pro-dep(K,M, T ) , inf
π∈ΠM,T

sup
∆>0

∆ · sup
{µ(i)}Ki=1:∆i∈{0}∪[∆,

√
K]

E[RT (π)]. (2)

Note that the gaps between arms can be arbitrary in the definition of the minimax regret, while a lower
bound on the minimum gaps is present in the problem-dependent regret. The constraint ∆i ≤

√
K is

a technical condition in both scenarios, which is more relaxed than the usual condition ∆i ∈ [0, 1].
These quantities are motivated by the fact that, when M = T , the upper bounds of the regret for
multi-armed bandits usually take the form [Vog60, LR85, AB09, BPR13, PR13]

E[RT (π1)] ≤ C
√
KT,

E[RT (π2)] ≤ C
∑

i∈[K]:∆i>0

max{1, log(T∆2
i )}

∆i
,

where π1, π2 are some policies, and C > 0 is an absolute constant. These bounds are also tight in
the minimax sense [LR85, AB09]. As a result, in the fully adaptive setting (i.e., when M = T ), we
have the optimal regrets R?min-max(K,T, T ) = Θ(

√
KT ), and R?pro-dep(K,T, T ) = Θ(K log T ). The

target is to find the dependence of these quantities on the number of batches M .

Our first result tackles the upper bounds on the minimax regret and problem-dependent regret.
Theorem 1. For any K ≥ 2, T ≥ 1, 1 ≤ M ≤ T , there exist two policies π1 and π2 under static
grids (explicitly defined in Section 2) such that if maxi∈[K] ∆i ≤

√
K, we have

E[RT (π1)] ≤ polylog(K,T ) ·
√
KT

1

2−21−M ,

E[RT (π2)] ≤ polylog(K,T ) · KT 1/M

mini 6=? ∆i
,

where polylog(K,T ) hides poly-logarithmic factors in (K,T ).

The following corollary is immediate.
Corollary 1. For theM -batchedK-armed bandit problem with time horizon T , it is sufficient to have
M = O(log log T ) batches to achieve the optimal minimax regret Θ(

√
KT ), and M = O (log T ) to

achieve the optimal problem-dependent regret Θ(K log T ), where both optimal regrets are within
logarithmic factors.

For the lower bounds of the regret, we treat the static grid and the adaptive grid separately. The next
theorem presents the lower bounds under any static grid.
Theorem 2. For the M -batched K-armed bandit problem with time horizon T and any static grid,
the minimax and problem-dependent regrets can be lower bounded as

R?min-max(K,M, T ) ≥ c ·
√
KT

1

2−21−M ,

R?pro-dep(K,M, T ) ≥ c ·KT 1
M ,

where c > 0 is a numerical constant independent of K,M, T .

We observe that for any static grids, the lower bounds in Theorem 2 match those in Theorem 1
within poly-logarithmic factors. For general adaptive grids, the following theorem shows regret lower
bounds which are slightly weaker than Theorem 2.
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Theorem 3. For the M -batched K-armed bandit problem with time horizon T and any adaptive
grid, the minimax and problem-dependent regrets can be lower bounded as

R?min-max(K,M, T ) ≥ cM−2 ·
√
KT

1

2−21−M ,

R?pro-dep(K,M, T ) ≥ cM−2 ·KT 1
M ,

where c > 0 is a numerical constant independent of K,M, T .

Compared with Theorem 2, the lower bounds in Theorem 3 lose a polynomial factor in M due
to a larger policy space. However, since the number of batches M of interest is at most O(log T )
(otherwise by Corollary 1 we effectively arrive at the fully adaptive case with M = T ), this penalty
is at most poly-logarithmic in T . Consequently, Theorem 3 shows that for any adaptive grid, albeit
conceptually more powerful, its performance is essentially no better than that of the best static grid.
Specifically, we have the following corollary.
Corollary 2. For the M -batched K-armed bandit problem with time horizon T with either static or
adaptive grids, it is necessary to have M = Ω(log log T ) batches to achieve the optimal minimax
regret Θ(

√
KT ), and M = Ω (log T/ log log T ) to achieve the optimal problem-dependent regret

Θ(K log T ), where both optimal regrets are within logarithmic factors.

In summary, the above results have completely characterized the minimax and problem-dependent
regrets for batched multi-armed bandit problems, within logarithmic factors. It is an outstanding open
question whether the M−2 term in Theorem 3 can be removed using more refined arguments.

1.1 Related works

The multi-armed bandits problem is an important class of sequential optimization problems which
has been extensively studied in various fields such as statistics, operations research, engineering,
computer science and economics over the recent years [BCB12]. In the fully adaptive scenario, the
regret analysis for stochastic bandits can be found in [Vog60, LR85, BK97, ACBF02, AB09, AMS09,
AB10, AO10, GC11, BPR13, PR13].

There is less attention on the batched setting with limited rounds of interaction. The batched setting
is studied in [CBDS13] under the name of switching costs, where it is shown that O(log log T )
batches are sufficient to achieve the optimal minimax regret. For small number of batches M , the
batched two-armed bandit problem is studied in [PRCS16], where the results of Theorems 1 and 2 are
obtained for K = 2. However, the generalization to the multi-armed case is not straightforward, and
more importantly, the practical scenario where the grid is adaptively chosen based on the historic data
is excluded in [PRCS16]. For the multi-armed case, a different problem of finding the best k arms
in the batched setting has been studied in [JJNZ16, AAAK17], where the goal is pure exploration,
and the error dependence on the time horizon decays super-polynomially. We also refer to [DRY18]
for a similar setting with convex bandits and best arm identification. The regret analysis for batched
stochastic multi-armed bandits still remains underexplored.

We also review some literature on general computation with limited rounds of adaptivity, and in
particular, on the analysis of lower bounds. In theoretical computer science, this problem has
been studied under the name of parallel algorithms for certain tasks (e.g., sorting and selection)
given either deterministic [Val75, BT83, AA88] or noisy outcomes [FRPU94, DKMR14, BMW16].
In (stochastic) convex optimization, the information-theoretic limits are typically derived under
the oracle model where the oracle can be queried adaptively [NY83, AWBR09, Sha13, DRY18].
However, in the previous works, one usually optimizes the sampling distribution over a fixed sample
size at each step, while it is more challenging to prove lower bounds for policies which can also
determine the sample size. There is one exception [AAAK17], whose proof relies on a complicated
decomposition of near-uniform distributions. Hence, our technique of proving Theorem 3 is also
expected to be an addition to these literatures.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we introduce the BaSE policy for
general batched multi-armed bandit problems, and show that it attains the upper bounds in Theorem 1
under two specific grids. Section 3 presents the proofs of lower bounds for both the minimax and
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problem-dependent regrets, where Section 3.1 deals with the static grids and Section 3.2 tackles the
adaptive grids. Experimental results are presented in Section 4. The auxiliary lemmas and the proof
of main lemmas are deferred to supplementary materials.

1.3 Notations

For a positive integer n, let [n] , {1, · · · , n}. For any finite set A, let |A| be its cardinality. We adopt
the standard asymptotic notations: for two non-negative sequences {an} and {bn}, let an = O(bn)
iff lim supn→∞ an/bn < ∞, an = Ω(bn) iff bn = O(an), and an = Θ(bn) iff an = O(bn)
and bn = O(an). For probability measures P and Q, let P ⊗ Q be the product measure with
marginals P and Q. If measures P and Q are defined on the same probability space, we denote
by TV(P,Q) = 1

2

∫
|dP − dQ| and DKL(P‖Q) =

∫
dP log dP

dQ the total variation distance and
Kullback–Leibler (KL) divergences between P and Q, respectively.

2 The BaSE Policy

In this section, we propose the BaSE policy for the batched multi-armed bandit problem based on
successive elimination, as well as two choices of the static grids to prove Theorem 1.

2.1 Description of the policy

The policy that achieves the optimal regrets is essentially adapted from Successive Elimination (SE).
The original version of SE was introduced in [EDMM06], and [PR13] shows that in the M = T case
SE achieves both the optimal minimax and problem-dependent rates. Here we introduce a batched
version of SE called Batched Successive Elimination (BaSE) to handle the general case M ≤ T .

Given a pre-specified grid T = {t1, · · · , tM}, the idea of the BaSE policy is simply to explore
in the first M − 1 batches and then commit to the best arm in the last batch. At the end of each
exploration batch, we remove arms which are probably bad based on past observations. Specfically,
let A ⊆ I denote the active arms that are candidates for the optimal arm, where we initialize A = I
and sequentially drop the arms which are “significantly” worse than the “best” one. For the first
M − 1 batches, we pull all active arms for a same number of times (neglecting rounding issues1) and
eliminate some arms from A at the end of each batch. For the last batch, we commit to the arm in A
with maximum average reward.

Before stating the exact algorithm, we introduce some notations. Let

Ȳ i(t) =
1

|{s ≤ t : arm i is pulled at time s}|

t∑
s=1

Ys1{arm i is pulled at time s}

denote the average rewards of the arm i up to time t, and γ > 0 is a tuning parameter associated with
the UCB bound. The algorithm is described in detail in Algorithm 1.

Note that the BaSE algorithm is not fully specified unless the grid T is determined. Here we provide
two choices of static grids which are similar to [PRCS16] as follows: let

u1 = a, um = a
√
um−1, m = 2, · · · ,M, tm = bumc, m ∈ [M ],

u′1 = b, u′m = bu′m−1, m = 2, · · · ,M, t′m = bu′mc, m ∈ [M ],

where parameters a, b are chosen appropriately such that tM = t′M = T , i.e.,

a = Θ
(
T

1

2−21−M

)
, b = Θ

(
T

1
M

)
. (3)

For minimizing the minimax regret, we use the “minimax” grid defined by Tminimax = {t1, · · · , tM};
as for the problem-dependent regret, we use the “geometric" grid which is defined by Tgeometric =
{t′1, · · · , t′M}. We will denote by π1

BaSE and π2
BaSE the respective policies under these grids.

1There might be some rounding issues here, and some arms may be pulled once more than others. In this
case, the additional pull will not be counted towards the computation of the average reward Ȳ i(t), which ensures
that all active arms are evaluated using the same number of pulls at the end of any batch. Note that in this way,
the number of pulls for each arm is underestimated by at most half, therefore the regret analysis in Theorem 4
will give the same rate in the presence of rounding issues.
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Algorithm 1: Batched Successive Elimination (BaSE)

Input: Arms I = [K]; time horizon T ; number of batches M ; grid T = {t1, ..., tM}; tuning
parameter γ.

Initialization: A ← I.
for m← 1 to M − 1 do

(a) During the period [tm−1 + 1, tm], pull an arm from A for a same number of times.
(b) At time tm:
Let Ȳ max(tm) = maxj∈A Ȳ

j(tm), and τm be the total number of pulls of each arm in A.
for i ∈ A do

if Ȳ max(tm)− Ȳ i(tm) ≥
√
γ log(TK)/τm then

A ← A− {i}.
end

end
end
for t← tM−1 + 1 to T do

pull arm i0 such that i0 ∈ arg maxj∈A Ȳ
j(tM−1) (break ties arbitrarily).

end
Output: Resulting policy π.

2.2 Regret analysis

The performance of the BaSE policy is summarized in the following theorem.
Theorem 4. Consider an M -batched, K-armed bandit problem where the time horizon is T . let
π1

BaSE be the BaSE policy equipped with the grid Tminimax and π2
BaSE be the BaSE policy equipped

with the grid Tgeometric. For γ ≥ 12 and maxi∈[K] ∆i = O(
√
K), we have

E[RT (π1
BaSE)] ≤ C logK

√
log(KT ) ·

√
KT

1

2−21−M , (4)

E[RT (π2
BaSE)] ≤ C logK log(KT ) · KT 1/M

mini6=? ∆i
, (5)

where C > 0 is a numerical constant independent of K,M and T .

Note that Theorem 4 implies Theorem 1. In the sequel we sketch the proof of Theorem 4, where the
main technical difficulity is to appropriately control the number of pulls for each arm under batch
constraints, where there is a random number of active arms in A starting from the second batch. We
also refer to a recent work [EKMM19] for a tighter bound on the problem-dependent regret with an
adaptive grid.

Proof of Theorem 4. For notational simplicity we assume that there are K + 1 arms, where arm 0 is
the arm with highest expected reward (denoted as ?), and ∆i = µ? − µi ≥ 0 for i ∈ [K]. Define the
following events: for i ∈ [K], let Ai be the event that arm i is eliminated before time tmi , where

mi = min

{
j ∈ [M ] : arm i has been pulled at least τ?i ,

4γ log(TK)

∆2
i

times before time tj ∈ T
}
,

with the understanding that if the minimum does not exist, we set mi = M and the event Ai occurs.
Let B be the event that arm ? is not eliminated throughout the time horizon T . The final “good event"
E is defined as E = (∩Ki=1Ai) ∩B. We remark that mi is a random variable depending on the order
in which the arms are eliminated. The following lemma shows that by our choice of γ ≥ 12, the
good event E occurs with high probability.

Lemma 1. The event E happens with probability at least 1− 2
TK .

The proof of Lemma 1 is postponed to the supplementary materials. By Lemma 1, the expected regret
RT (π) (with π = π1

BaSE or π2
BaSE) when the event E does not occur is at most

E[RT (π)1(Ec)] ≤ T max
i∈[K]

∆i · P(Ec) = O(1). (6)

5



Next we condition on the event E and upper bound the regret E[RT (π1
BaSE)1(E)] for the minimax

grid Tminimax. The analysis of the geometric grid Tgeometric is entirely analogous, and is deferred to the
supplementary materials.

For the policy π1
BaSE, let I0 ⊆ I be the (random) set of arms which are eliminated at the end of the

first batch, I1 ⊆ I be the (random) set of remaining arms which are eliminated before the last batch,
and I2 = I − I0 − I1 be the (random) set of arms which remain in the last batch. It is clear that the
total regret incurred by arms in I0 is at most t1 ·maxi∈[K] ∆i = O(

√
Ka), and it remains to deal

with the sets I1 and I2 separately.

For arm i ∈ I1, let σi be the (random) number of arms which are eliminated before the arm i. Observe
that the fraction of pullings of arm i is at most 1

K−σi
before arm i is eliminated. Moreover, by the

definition of tmi
, we must have

τ?i > (number of pullings of arm i before tmi−1) ≥ tmi−1

K
=⇒ ∆i

√
tmi−1 ≤

√
4γK log(TK).

Hence, the total regret incurred by pulling an arm i ∈ I1 is at most (note that tj ≤ 2a
√
tj−1 for any

j = 2, 3, · · · ,M by the choice of the grid)

∆i ·
tmi

K − σi
≤ ∆i ·

2a
√
tmi−1

K − σi
≤

2a
√

4γK log(TK)

K − σi
.

Note that there are at most t elements in (σi : i ∈ I1) which are at least K − t for any t = 2, · · · ,K,
the total regret incurred by pulling arms in I1 is at most

∑
i∈I1

2a
√

4γK log(TK)

K − σi
≤ 2a

√
4γK log(TK) ·

K∑
t=2

1

t
≤ 2a logK

√
4γK log(TK). (7)

For any arm i ∈ I2, by the previous analysis we know that ∆i
√
tM−1 ≤

√
4γK log(TK). Hence,

let Ti be the number of pullings of arm i, the total regret incurred by pulling arm i ∈ I2 is at most

∆iTi ≤ Ti

√
4γK log(TK)

tM−1
≤ Ti
T
· 2a
√

4γK log(TK),

where in the last step we have used that T = tM ≤ 2a
√
tM−1 in the minimax grid Tminimax. Since∑

i∈I2 Ti ≤ T , the total regret incurred by pulling arms in I2 is at most∑
i∈I2

Ti
T
· 2a
√

4γK log(TK) ≤ 2a
√

4γK log(TK). (8)

By (7) and (8), the inequality

RT (π1
BaSE)1(E) ≤ 2a

√
4γK log(TK)(logK + 1) +O(

√
Ka)

holds almost surely. Hence, this inequality combined with (6) and the choice of a in (3) yields the
desired upper bound (4).

3 Lower Bound

This section presents lower bounds for the batched multi-armed bandit problem, where in Section
3.1 we design a fixed multiple hypothesis testing problem to show the lower bound for any policies
under static grids, while in Section 3.2 we construct different hypotheses for different policies under
general adaptive grids.

3.1 Static grid

The proof of Theorem 2 relies on the following lemma.
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Lemma 2. For any static grid 0 = t0 < t1 < · · · < tM = T and the smallest gap ∆ ∈ (0,
√
K],

the following minimax lower bound holds for any policy π under this grid:

sup
{µ(i)}Ki=1:∆i∈{0}∪[∆,

√
K]

E[RT (π)] ≥ ∆ ·
M∑
j=1

tj − tj−1

4
exp

(
−2tj−1∆2

K − 1

)
.

We first show that Lemma 2 implies Theorem 2 by choosing the smallest gap ∆ > 0 appropriately.
By definitions of the minimax regret R?min-max and the problem-dependent regret R?pro-dep, choosing
∆ = ∆j =

√
(K − 1)/(tj−1 + 1) ∈ [0,

√
K] in Lemma 2 yields that

R?min-max(K,M, T ) ≥ c0
√
K · max

j∈[M ]

tj√
tj−1 + 1

,

R?pro-dep(K,M, T ) ≥ c0K · max
j∈[M ]

tj
tj−1 + 1

,

for some numerical constant c0 > 0. Since t0 = 0, tM = T , the lower bounds in Theorem 2 follow.

Next we employ the general idea of the multiple hypothesis testing to prove Lemma 2. Consider the
following K candidate reward distributions:

P1 = N (∆, 1)⊗N (0, 1)⊗N (0, 1)⊗ · · · ⊗ N (0, 1),

P2 = N (∆, 1)⊗N (2∆, 1)⊗N (0, 1)⊗ · · · ⊗ N (0, 1),

P3 = N (∆, 1)⊗N (0, 1)⊗N (2∆, 1)⊗ · · · ⊗ N (0, 1),

...
PK = N (∆, 1)⊗N (0, 1)⊗N (0, 1)⊗ · · · ⊗ N (2∆, 1).

We remark that this construction is not entirely symmetric, where the reward distribution of the first
arm is always N (∆, 1). The key properties of this construction are as follows:

1. For any i ∈ [K], arm i is the optimal arm under reward distribution Pi;
2. For any i ∈ [K], pulling a wrong arm incurs a regret at least ∆ under reward distribution Pi.

As a result, since the average regret serves as a lower bound of the worst-case regret, we have

sup
{µ(i)}Ki=1:∆i∈{0}∪[∆,

√
K]

ERT (π) ≥ 1

K

K∑
i=1

T∑
t=1

EP t
i
Rt(π) ≥ ∆

T∑
t=1

1

K

K∑
i=1

P ti (πt 6= i), (9)

where P ti denotes the distribution of observations available at time t under Pi, and Rt(π) denotes
the instantaneous regret incurred by the policy πt at time t. Hence, it remains to lower bound the
quantity 1

K

∑K
i=1 P

t
i (πt 6= i) for any t ∈ [T ], which is the subject of the following lemma.

Lemma 3. Let Q1, · · · , Qn be probability measures on some common probability space (Ω,F), and
Ψ : Ω→ [n] be any measurable function (i.e., test). Then for any tree T = ([n], E) with vertex set
[n] and edge set E, we have

1

n

n∑
i=1

Qi(Ψ 6= i) ≥
∑

(i,j)∈E

1

2n
exp(−DKL(Qi‖Qj)).

The proof of Lemma 3 is deferred to the supplementary materials, and we make some remarks below.
Remark 1. A more well-known lower bound for 1

n

∑n
i=1Qi(Ψ 6= i) is the Fano’s inequality [CT06],

which involves the mutual information I(U ;X) with U ∼ Uniform([n]) and PX|U=i = Qi. However,
since I(U ;X) = EPU

DKL(PX|U‖PX), Fano’s inequality gives a lower bound which depends
linearly on the pairwise KL divergence rather than exponentially and is thus loose for our purpose.
Remark 2. An alternative lower bound is to use 1

2n2

∑
i 6=j exp(−DKL(Qi‖Qj)), i.e., the summation

is taken over all pairs (i, j) instead of just the edges in a tree. However, this bound is weaker than
Lemma 3, and in the case where Qi = N (i∆, 1) for some large ∆ > 0, Lemma 3 with the
tree T = ([n], {(1, 2), (2, 3), · · · , (n − 1, n)}) is tight (giving the rate (exp(−O(∆2))) while the
alternative bound loses a factor of n (giving the rate exp(−O(∆2))/n).
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To lower bound (9), we apply Lemma 3 with the star tree T = ([n], {(1, i) : 2 ≤ i ≤ n}). For
i ∈ [K], denote by Ti(t) the number of pulls of arm i anterior to the current batch of t. Hence,∑K
i=1 Ti(t) = tj−1 if t ∈ (tj−1, tj ]. Moreover, since DKL(P t1‖P ti ) = 2∆2EP t

1
Ti(t), we have

1

K

K∑
i=1

P ti (πt 6= i) ≥ 1

2K

K∑
i=2

exp(−DKL(P t1‖P ti )) =
1

2K

K∑
i=2

exp(−2∆2EP t
1
Ti(t))

≥ K − 1

2K
exp

(
− 2∆2

K − 1
EP t

1

K∑
i=2

Ti(t)

)
≥ 1

4
exp

(
−2∆2tj−1

K − 1

)
. (10)

Now combining (9) and (10) completes the proof of Lemma 2.

3.2 Adaptive grid

Now we investigate the case where the grid may be randomized, and be generated sequentially in
an adaptive manner. Recall that in the previous section, we construct multiple fixed hypotheses and
show that no policy under a static grid can achieve a uniformly small regret under all hypotheses.
However, this argument breaks down even if the grid is only randomized but not adaptive, due to the
non-convex (in (t1, · · · , tM )) nature of the lower bound in Lemma 2. In other words, we might not
hope for a single fixed multiple hypothesis testing problem to work for all policies. To overcome
this difficulty, a subroutine in the proof of Theorem 3 is to construct appropriate hypotheses after the
policy is given (cf. the proof of Lemma 4). We sketch the proof below.

We shall only prove the lower bound for the minimax regret, where the analysis of the problem-
dependent regret is entirely analogous. Consider the following time T1, · · · , TM ∈ [1, T ] and gaps
∆1, · · · ,∆M ∈ (0,

√
K] with

Tj = bT
1−2−j

1−2−M c, ∆j =

√
K

36M
· T−

1−21−j

2(1−2−M ) , j ∈ [M ]. (11)

Let T = {t1, · · · , tM} be any adaptive grid, and π be any policy under the grid T . For each
j ∈ [M ], we define the event Aj = {tj−1 < Tj−1, tj ≥ Tj} under policy π with the convention that
t0 = 0, tM = T . Note that the events A1, · · · , AM form a partition of the entire probability space.
We also define the following family of reward distributions: for j ∈ [M − 1], k ∈ [K − 1] let

Pj,k = N (0, 1)⊗ · · · ⊗ N (0, 1)⊗N (∆j + ∆M , 1)⊗N (0, 1)⊗ · · · ⊗ N (0, 1)⊗N (∆M , 1),

where the k-th component of Pj,k has a non-zero mean. For j = M , we define

PM = N (0, 1)⊗ · · · ⊗ N (0, 1)⊗N (∆M , 1).

Note that this construction ensures that Pj,k and PM only differs in the k-th component, which is
crucial for the indistinguishability results in Lemma 5.

We will be interested in the following quantities:

pj =
1

K − 1

K−1∑
k=1

Pj,k(Aj), j ∈ [M − 1], pM = PM (AM ),

where Pj,k(A) denotes the probability of the event A given the true reward distribution Pj,k and the
policy π. The importance of these quantities lies in the following lemmas.
Lemma 4. If pj ≥ 1

2M for some j ∈ [M ], then we have

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT (π)] ≥ cM−2 ·
√
KT

1

2−21−M ,

where c > 0 is a numerical constant independent of (K,M, T ) and (π, T ).

Lemma 5. The following inequality holds:
∑M
j=1 pj ≥

1
2 .

The detailed proofs of Lemma 4 and Lemma 5 are deferred to the supplementary materials, and we
only sketch the ideas here. Lemma 4 states that, if any of the events Aj occurs with a non-small
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probability in the respective j-th world (i.e., under the mixture of (Pj,k : k ∈ [K − 1]) or PM ), then
the policy π has a large regret in the worst case. The intuition behind Lemma 4 is that, if the event
tj−1 ≤ Tj−1 occurs under the reward distribution Pj,k, then the observations in the first (j − 1)
batches are not sufficient to distinguish Pj,k from its (carefully designed) perturbed version with
size of perturbation ∆j . Furthermore, if in addition tj ≥ Tj holds, then the total regret is at least
Ω(Tj∆j) due to the indistinguishability of the ∆j perturbations in the first j batches. Hence, if Aj
occurs with a fairly large probability, the resulting total regret will be large as well.

Lemma 5 complements Lemma 4 by stating that at least one pj should be large. Note that if all pj
were defined in the same world, the partition structure of A1, · · · , AM would imply

∑
j∈[M ] pj ≥ 1.

Since the occurrence of Aj cannot really help to distinguish the j-th world with later ones, Lemma 5
shows that we may still operate in the same world and arrive at a slightly smaller constant than 1.

Finally we show how Lemma 4 and Lemma 5 imply Theorem 3. In fact, by Lemma 5, there exists
some j ∈ [M ] such that pj ≥ (2M)−1. Then by Lemma 4 and the arbitrariness of π, we arrive at the
desired lower bound in Theorem 3.

4 Experiments

This section contains some experimental results on the performances of BaSE policy under different
grids. The default parameters are T = 5 × 104,K = 3,M = 3 and γ = 1, and the mean reward
is µ? = 0.6 for the optimal arm and is µ = 0.5 for all other arms. In addition to the minimax and
geometric grids, we also experiment on the arithmetic grid with tj = jT/M for j ∈ [M ]. Figure 1
(a)-(c) display the empirical dependence of the average BaSE regrets under different grids, together
with the comparison with the centralized UCB1 algorithm [ACBF02] without any batch constraints.
We observe that the minimax grid typically results in a smallest regret among all grids, and M = 4
batches appear to be sufficient for the BaSE performance to approach the centralized performance.
We also compare our BaSE algorithm with the ETC algorithm in [PRCS16] for the two-arm case, and
Figure 1 (d) shows that BaSE achieves lower regrets than ETC. The source codes of the experiment
can be found in https://github.com/Mathegineer/batched-bandit.
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(a) Average regret vs. the number of batches M .
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Figure 1: Empirical regret performances of the BaSE policy.
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A Auxiliary Lemmas

The following lemma is a generalization of [Tsy08, Lemma 2.6].
Lemma 6. Let P and Q be any probability measures on the same probability space. Then

TV(P,Q) ≤
√

1− exp(−DKL(P‖Q)) ≤ 1− 1

2
exp (−DKL(P‖Q)) .

Proof. Observe that the proof of [Tsy08, Lemma 2.6] gives(∫
min{dP, dQ}

)(∫
max{dP, dQ}

)
≥ exp (−DKL(P‖Q)) .

Since ∫
min{dP, dQ} = 1− TV(P,Q),∫
max{dP, dQ} = 1 + TV(P,Q),

the first inequality follows. The second inequality follows from the basic inequality
√

1− x ≤ 1−x/2
for any x ∈ [0, 1].

The following lemma presents a graph-theoretic inequality, which is the crux of Lemma 3.
Lemma 7. Let T = (V,E) be a tree on V = [n], and x ∈ Rn be any vector. Then

n∑
i=1

xi −max
i∈[n]

xi ≥
∑

(i,j)∈E

min{xi, xj}.

Proof. Without loss of generality we assume that x1 ≤ x2 ≤ · · · ≤ xn. For any k ∈ [n−1], we have∑
(i,j)∈E

1(min{xi, xj} ≥ xk) = |{(i, j) ∈ E : i ≥ k, j ≥ k}| ≤ n− k,

where the last inequality is due to the fact that restricting the tree T on the vertices {k, k + 1, · · · , n}
is still acyclic. Hence,

n∑
i=1

xi −max
i∈[n]

xi =

n−1∑
i=1

xi = (n− 1)x1 +

n−1∑
k=2

(n− k)(xk − xk−1)

≥ (n− 1)x1 +

n−1∑
k=2

(xk − xk−1)
∑

(i,j)∈E

1(min{xi, xj} ≥ xk)

=
∑

(i,j)∈E

(
x1 +

n−1∑
k=2

(xk − xk−1)1(min{xi, xj} ≥ xk)

)

=
∑

(i,j)∈E

min{xi, xj},

where we have used that |E| = n− 1 for any tree.

B Proof of Main Lemmas

B.1 Proof of Lemma 1

Recall that the event E is defined as E = (∩Ki=1Ai)∩B. First we prove that P(Bc) is small. Observe
that if the optimal arm ? is eliminated by arm i at time t, then before time t both arms are pulled the
same number of times τ . For any fixed realization of τ , this occurs with probability at most

P

(
N (−∆i, 2τ

−1) ≥
√
γ log(TK)

τ

)
≤ P

(
N (0, 2τ−1) ≥

√
γ log(TK)

τ

)
≤ 1

(TK)3
.
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As a result, by the union bound,

P(Bc) ≤
K∑
i=1

T∑
t=1

∑
1≤τ≤T

P (arm ? is eliminated by arm i at time t with τ pulls) ≤ 1

TK
. (12)

Next we upper bound P(B∩Aci ) for any i ∈ [K]. Note that the event B∩Aci implies that the optimal
arm ? does not eliminate arm i at time tmi

∈ T , where both arms have been pulled τ ≥ τ?i times. By
the definition of τ?i , this implies that

∆i ≥ 2

√
γ log(TK)

τ
.

Hence, for any fixed realizations tmi
and τ , this event occurs with probability at most

P

(
N (∆i, 2τ

−1) ≤
√
γ log(TK)

τ

)
≤ P

(
N (0, 2τ−1) ≤ −

√
γ log(TK)

τ

)
≤ 1

(TK)3
.

Therefore, by a union bound,

P(B ∩Aci ) ≤
∑
tmi
∈T

∑
1≤τ≤T

P(arm ? does not eliminate arm i at time tmi
∈ T with τ pulls)

≤ 1

TK2
. (13)

Combining (12) and (13), we conclude that

P(Ec) ≤ P(Bc) +

K∑
i=1

P(B ∩Aci ) ≤
2

TK
.

B.2 Deferred proof of Theorem 4

The regret analysis of the policy π2
BaSE under the geometric grid is analogous to Section 2.2. Partition

the arms I = I0 ∪ I1 ∪ I2 as before, and let ∆ = min{∆i : i ∈ [K],∆i > 0} be the smallest gap.
We treat I0, I1 and I2 separately.

1. The total regret incurred by arms in I0 is at most

b · max
i∈[K]

∆i = O(b
√
K) = O

(
bK

∆

)
. (14)

2. The total regret incurred by pulling an arm i ∈ I1 is at most

∆i ·
t′mi

K − σi
≤ 1

∆
·
t′mi

∆2
i

K − σi
≤ 2b

∆
·
t′mi−1∆2

i

K − σi
≤ 2b

∆
· 4γK log(KT )

K − σi
,

where for the last inequality we have used the definition of mi. Using a similar argument
for (σi : i ∈ I1) as in Section 2.2, the total regret incurred by pulling arms in I2 is at most∑

i∈I1

2b

∆
· 4γK log(TK)

K − σi
≤ 8γbK logK log(KT )

∆
. (15)

3. The total regret incurred by pulling an arm i ∈ I2 (which is pulled Ti times) is at most

∆iTi ≤
∆2
iTi
∆
≤ 4γK log(TK)

∆
· Ti
t′M−1

≤ 8γbK log(TK)

∆
· Ti
T
,

and thus the total regret by pulling arms in I2 is at most∑
i∈I2

8γbK log(TK)

∆
· Ti
T
≤ 8γbK log(TK)

∆
. (16)

Now combining (14) to (16) together with the inequality (6) and the choice of b in (3), we arrive at
the desired upper bound (5).
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B.3 Proof of Lemma 3

It is easy to show that the minimizer of 1
n

∑n
i=1Qi(Ψ 6= i) is Ψ?(ω) = arg maxi∈[n]Qi(dω), and

thus

1

n

n∑
i=1

Qi(Ψ 6= i) ≥ 1− 1

n

∫
max{dQ1, dQ2, · · · , dQn} =

1

n

∫ [ n∑
i=1

dQi −max
i∈[n]

dQi

]
.

By Lemmas 6 and 7, we further have

1

n

n∑
i=1

Qi(Ψ 6= i) ≥
∑

(i,j)∈E

1

n

∫
min{dQi, dQj}

=
∑

(i,j)∈E

1− TV(Qi, Qj)

n

≥
∑

(i,j)∈E

1

2n
exp(−DKL(Qi‖Qj)),

as claimed.

B.4 Proof of Lemma 4

The proof of Lemma 4 relies on the reduction of the minimax lower bound to multiple hypothesis
testing. Without loss of generality we assume that j ∈ [M − 1]; the case where j = M is analogous.
For any k ∈ [K − 1], consider the following family Pj,k = (Qj,k,`)`∈[K] of reward distributions:
define Qj,k,k = Pj,k, and for ` 6= k, let Qj,k,` be the modification of Pj,k where the quantity 3∆j is
added to the mean of the `-th component of Pj,k. We have the following observations:

1. For each ` ∈ [K], arm ` is the optimal arm under reward distribution Qj,k,`;
2. For each ` ∈ [K], pulling an arm `′ 6= ` incurs a regret at least ∆j under reward distribution
Qj,k,`;

3. For each ` 6= k, the distributions Qj,k,` and Qj,k,k only differ in the `-th component.

By the first two observations, similar arguments in (9) yield to

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT (π)] ≥ ∆j

T∑
t=1

1

K

K∑
`=1

Qtj,k,`(πt 6= `),

where Qtj,k,` denotes the distribution of observations available at time t under reward distribution
Qj,k,`, and πt denotes the policy at time t. We lower bound the above quantity as

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT (π)]
(a)

≥ ∆j

T∑
t=1

1

K

∑
6̀=k

∫
min{dQtj,k,k, dQtj,k,`}

≥ ∆j

Tj∑
t=1

1

K

∑
6̀=k

∫
min{dQtj,k,k, dQtj,k,`}

(b)

≥ ∆jTj ·
1

K

∑
` 6=k

∫
min{dQTj

j,k,k, dQ
Tj

j,k,`}

≥ ∆jTj ·
1

K

∑
` 6=k

∫
Aj

min{dQTj

j,k,k, dQ
Tj

j,k,`}

(c)
= ∆jTj ·

1

K

∑
` 6=k

∫
Aj

min{dQTj−1

j,k,k , dQ
Tj−1

j,k,` }, (17)

where (a) follows by the proof of Lemma 3 and considering a star graph on [K] with center k, and
(b) is due to the identity

∫
min{dP, dQ} = 1− TV(P,Q) and the data processing inequality of the
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total variation distance, and for step (c) we note that when Aj = {tj−1 < Tj−1, tj ≥ Tj} holds, the
observations seen by the policy at time Tj are the same as those seen at time Tj−1. To lower bound
the final quantity, we further have∫

Aj

min{dQTj−1

j,k,k , dQ
Tj−1

j,k,` } =

∫
Aj

dQ
Tj−1

j,k,k + dQ
Tj−1

j,k,` − |dQ
Tj−1

j,k,k − dQ
Tj−1

j,k,` |
2

=
Q
Tj−1

j,k,k(Aj) +Q
Tj−1

j,k,` (Aj)

2
− 1

2

∫
Aj

|dQTj−1

j,k,k − dQ
Tj−1

j,k,` |

(d)

≥
(
Q
Tj−1

j,k,k(Aj)−
1

2
TV(Q

Tj−1

j,k,k , Q
Tj−1

j,k,` )

)
− TV(Q

Tj−1

j,k,k , Q
Tj−1

j,k,` )

(e)
= Pj,k(Aj)−

3

2
TV(Q

Tj−1

j,k,k , Q
Tj−1

j,k,` ), (18)

where (d) follows from |P (A)−Q(A)| ≤ TV(P,Q), and in (e) we have used the fact that the event
Aj can be determined by the observations up to time Tj−1 (and possibly some external randomness).
Also note that

1

K

∑
` 6=k

TV(Q
Tj−1

j,k,k , Q
Tj−1

j,k,` ) ≤ 1

K

∑
` 6=k

√
1− exp(−DKL(Q

Tj−1

j,k,k‖Q
Tj−1

j,k,` ))

=
1

K

∑
` 6=k

√√√√1− exp

(
−

9∆2
jEPj,k

[τ`]

2

)

≤ K − 1

K

√√√√√1− exp

− 9∆2
j

2(K − 1)

∑
` 6=k

EPj,k
[τ`]


≤ K − 1

K

√√√√1− exp

(
−

9∆2
jTj−1

2(K − 1)

)
≤ 3√

K
·
√

∆2
jTj−1 ≤

1

12M
,

(19)

where the first inequality is due to Lemma 6, the second equality evaluates the KL divergence with τ`
being the number of pulls of arm ` before time Tj−1, the third inequality is due to the concavity of
x 7→

√
1− e−x for x ≥ 0, the fourth inequality follows from

∑
` 6=k τ` ≤ Tj−1 almost surely, and

the remaining steps follow from (11) and simple algebra.

Combining (17), (18) and (19), we conclude that

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT (π)] ≥ ∆jTj

(
Pj,k(A)

2
− 1

8M

)
≥
√
KT

1

2−21−M · 1

72M

(
Pj,k(A)

2
− 1

8M

)
.

Note that the previous inequality holds for any k ∈ [K − 1], averaging over k ∈ [K − 1] yields

sup
{µ(i)}Ki=1:∆i≤

√
K

E[RT (π)] ≥
√
KT

1

2−21−M · 1

72M

(
1

2(K − 1)

K−1∑
k=1

Pj,k(A)− 1

8M

)

≥ 1

576M2
·
√
KT

1

2−21−M ,

where in the last step we have used that pj ≥ 1
2M . Hence, the proof of Lemma 4 is completed.

B.5 Proof of Lemma 5

Recall that the event Aj can be determined by the observations up to time Tj−1 (and possibly some
external randomness), the data-processing inequality gives

|PM (Aj)− Pj,k(Aj)| ≤ TV(P
Tj−1

M , P
Tj−1

j,k ).
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Note that each Pj,k only differs from PM in the k-th component with mean difference ∆j + ∆M ,
the same arguments in (19) yield

1

K − 1

K−1∑
k=1

TV(P
Tj−1

M , P
Tj−1

j,k ) ≤ 1

K − 1

K−1∑
k=1

√
1− exp(−DKL(P

Tj−1

M ‖PTj−1

j,k ))

=
1

K − 1

K−1∑
k=1

√
1− exp

(
− (∆j + ∆M )2

2
EPM

[τk]

)

≤

√√√√1− exp

(
−

2∆2
j

K − 1
EPM

[
K−1∑
k=1

τk

])

≤

√√√√1− exp

(
−

2∆2
jTj−1

K − 1

)
≤ 1

2M
,

where we define τk to be the number of pulls of arm k before the time Tj−1, and
∑K−1
k=1 τk ≤ Tj−1

holds almost surely. The previous two inequalities imply that

|PM (Aj)− pj | ≤
1

K − 1

K−1∑
k=1

|PM (Aj)− Pj,k(Aj)| ≤
1

2M
,

and consequently

M∑
j=1

pj ≥ PM (AM ) +

M−1∑
j=1

(
PM (Aj)−

1

2M

)
≥

M∑
j=1

PM (Aj)−
1

2
. (20)

Finally note that ∪Mj=1Aj is the entire probability space, we have
∑M
j=1 PM (Aj) ≥ PM (∪Mj=1Aj) =

1, and therefore (20) yields the desired inequality.
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