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A Appendix

A.1 Mathematical background

In this section we introduce a few needed definitions from random matrix theory and free probability.
See Bai and Silverstein [2010], Paul and Aue [2014], Yao et al. [2015] for references on random matrix
theory and Voiculescu et al. [1992], Hiai and Petz [2006], Nica and Speicher [2006], Anderson et al.
[2010] for references on free probability. The reader interested in the structure of the proofs may
skip to the following sections, and refer back to this section when needed.
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The data are the n × p matrix X and contain p features of n samples. Recall that for an
n× p matrix M with n ≥ p, such that the eigenvalues of n−1M>M are λj , the empirical spectral
distribution (e.s.d.) of M is the cdf of the eigenvalues. Formally, it is the mixture 1

p

∑p
j=1 δλj

where
δλ denotes a point mass distribution at λ.

The aspect ratio of X is γp = p/n. We consider limits with p→∞ and γp → γ ∈ (0,∞). If the
e.s.d. converges weakly, as n, p,→ ∞, to some distribution F , this is called the limiting spectral
distribution (l.s.d.) of X.

The Stieltjes transform of a distribution F is defined for complex valued numbers with positive
imaginary part, for which z ∈ C+ = {z ∈ C : Imag(z) > 0} as

m(z) =

∫
dF (x)

x− z
.

This can be used to define the S-transform of a distribution F , which is a key tool for free
probability. This is defined as the solution to the equation, which is unique under certain conditions
(see Voiculescu et al. [1992]),

mF (
z + 1

zS(z)
) = −zS(z).

In addition to Stieltjes transform, there are other useful transforms of a distribution. The η-
transform of F is defined by

ηF (z) =

∫
1

1 + zx
dF (x) =

1

z
mF (−1

z
). (A.1)

Now let us give a typical and key example of a result from asymptotic random matrix theory.
Suppose the rows of X are iid p-dimensional observations xi, for i = 1, . . . , n. Let Σ be the
covariance matrix of xi. We consider a model of the form X = ZΣ1/2, where the entries of Z are iid
with zero mean and unit variance, and the e.s.d. of Σ converges weakly to a probability distribution
H. Then the Marchenko-Pastur theorem (see Marchenko and Pastur [1967], Bai and Silverstein
[2010]) states that the e.s.d. of the sample covariance matrix n−1X>X converges almost surely in
distribution to a distribution Fγ , whose Stieltjes transform is the unique solution of a certain fixed
point equation. A lot of information can be extracted from this equation, and we will see examples
in the proofs.

Random matrix theory is related to free probability. Here we briefly introduce a few concepts
in free probability that will be used in the proofs. A non-commutative probability space is a pair
(A, τ), where A is a non-commutative algebra with the unit 1 and τ : A → R is a linear functional
such that τ(1) = 1. If τ(ab) = τ(ba) for all a, b ∈ A, then τ is called a trace. If τ(a∗a) ≥ 0, for all
a ∈ A and the equality holds iff a = 0, then the trace τ is called faithful. There is also an inner
product, and thus a norm, induced by τ :

〈a, b〉 = τ(a∗b), ‖a‖2 = 〈a, a〉.

For a ∈ A with a = a∗, the spectral radius ρ(a) is defined by ρ(a) = limk→∞ |τ(a2k)| 1
2k , whenever

this limit exists. The elements in A are called (non-commutative) random variables, and the law (or
distribution) of a random variable a ∈ A is a linear functional on the polynomial algebra [X] that
maps any P (x) ∈ [X] to τ(P (a)). The connection between the non-commutative probability space
and classical probability theory is the spectral theorem, stating that for all a ∈ A with bounded
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spectral radius, there exists a unique Borel probability measure µa such that for any polynomial
P (x) ∈ [X],

τ(P (x)) =

∫
P (t)dµa(t).

We can also define the Stieltjes transform of a ∈ A by

ma(z) = τ((a− z)−1) = −
∞∑
k=0

τ(ak)

zk+1
,

which is the same as the Stieltjes transform of the probability measure µa associated with a.
Returning to random matrices, one can easily verify that

(A = (L∞− ⊗Mn(R)), τ =
1

n
E tr)

is a non-commutative probability space and τ = 1
nE tr is a faithful trace, where L∞− denotes the

collection of random variables with all moments finite. For X ∈ L∞−⊗Mn(R), the spectral radius is
‖‖X‖op‖L∞ , the essential supremum of the operator norm. The probability measure corresponding
to the law of X is the expected empirical spectral distribution

µX =
1

n
E

n∑
i=1

δλi ,

where λi-s are the eigenvalues of X.
A collection of random variables {a1, . . . , ak} ⊂ A are said to be freely independent (or just

free) if
τ [Πm

j=1Pj(aij − τ(Pj(aij )))] = 0,

for any positive integer m, any polynomials P1, . . . , Pm and any indices i1, . . . , im ∈ [k] with no two
adjacent ij equal Voiculescu et al. [1992], Nica and Speicher [2006]. A sequence of random variables
{a1,n, . . . , ak,n}n≥1 ⊂ A is said to be asymptotically free if

τ [Πm
j=1Pj(aij ,n − τ(Pj(aij ,n)))]→ 0,

for any positive integer m, any polynomials P1, . . . , Pm and any indices i1, . . . , im ∈ [k] with no
two adjacent ij equal. If a, b ∈ A are free, then the law of their product is called their freely
multiplicative convolution, and is denoted a� b.

A fundamental result is that the S-transform of a � b equals the products of Sa(z) and Sb(z)
Voiculescu et al. [1992], Nica and Speicher [2006]. In addition, random matrices with sufficiently
independent entries and ”near-uniformly” distributed eigenvectors tend to be asymptotically free
in the high-dimensional limit. This is a powerful tool to find the l.s.d. of a product of random
matrices.

A.2 Finite-sample results for fixed matrices

We start with finite-sample results that are true for any fixed sketching matrix S. These results will
be fundamental in all remaining work. Later, to simplify these results, we will make probabilistic
assumptions. First we find a more explicit form of the relative efficiencies.

3



Proposition A.1 (Finite n results). Taking expectations only over the noise ε and εt, fixing X
and S, the efficiencies have the following forms:

V E(β̂s, β̂)|X,S =
tr[Q1]

tr[(X>X)−1]
, PE(β̂s, β̂)|X,S =

tr[Q2]

p
,

OE(β̂s, β̂)|X,S =
1 + x>t Q1xt

1 + x>t (X>X)−1xt
,

where Q0 = (X>S>SX)−1X>S>S, while Q1 = Q0Q
>
0 , and Q2 = XQ1X

>.

Proof. The OLS before and after sketching give the estimators β̂ and β̂s

β̂full = (X>X)−1X>Y = β + (X>X)−1X>ε,

β̂sub = (X̃>X̃)−1X̃>Ỹ = β + (X̃>X̃)−1X̃>ε = β +Q0ε.

We define the ”hat” matrices

H = X(X>X)−1X>,

H̃ = X(X̃>X̃)−1X̃>S = X(X>S>SX)−1X>S>S = XQ0.

These are both projection matrices, i.e., they satisfy the relations H2 = H, H̃2 = H̃. By our
assumptions, we have that Eε [ε] = 0n, Eε

[
εε>

]
= σ2In, tr[H] = tr[H̃] = p. Therefore, we can

calculate as follows.

1. Variance efficiency:

Eε
[
‖β̂ − β‖2

]
= Eε

[
‖(X>X)−1X>ε‖2

]
= σ2 tr[(X>X)−1]

Eε
[
‖β̂s − β‖2

]
= Eε

[
‖Q0ε‖2

]
= σ2 tr(Q0Q

>
0 ).

This proves the formula for V E.

2. Prediction efficiency:

Eε
[
‖Xβ −Xβ̂‖2

]
= Eε

[
‖Hε‖2

]
= σ2 tr[H] = pσ2,

Eε
[
‖Xβ −Xβ̂s‖2

]
= Eε

[
‖H̃ε‖2

]
= σ2 tr[H̃>H̃] = σ2 tr(Q2).

This finishes the calculation for PE.

3. Out-of-sample efficiency:

Eε,εt
[
(yt − x>t β̂)2

]
= Eε,εt

[
(εt − x>t (X>X)−1X>ε)2

]
= Eε,εt

[
ε2
t + ε>X(X>X)−1xtx

>
t (X>X)−1X>ε

]
= σ2(1 + x>t (X>X)−1xt),

Eε,εt
[
(yt − x>t β̂s)2

]
= Eε,εt

[
(εt − x>t Q0ε)

2
]

= σ2(1 + x>t Q0Q
>
0 xt).
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This finishes the proof.

The expressions simplify considerably for orthogonal matrices S. Suppose that S is an r × n
matrix such that SS> = Ir, then we have the following result:

Proposition A.2 (Finite n results for orthogonal S). When S is an orthogonal matrix, the above
formulas simplify to

V E =
tr[(X>S>SX)−1]

tr[(X>X)−1]
, PE =

tr[(X>S>SX)−1X>X]

p
,

OE =
1 + x>t (X>S>SX)−1xt

1 + x>t (X>X)−1xt
.

Proof. Since S satisfies SS> = Ir, we have (S>S)2 = S>S. Thus, Q1 = Q0Q
>
0 = (X>S>SX)−1.

With this, the results follow directly from Proposition A.1.

Actually these formulas hold for any S s.t. X>S>SX is nonsingular and S>S is idempotent.

A.3 Proof of Theorem 2.1

The proof below utilizes the orthogonal invariance of Gaussian matrices and properties of Wishart
matrices. For any X ∈ Rn×p with n ≥ p and with full column rank, we have the singular value
decomposition (SVD) X = UΛV >, where U ∈ Rn×p, V ∈ Rp×p are both orthogonal matrices, while
Λ ∈ Rp×p is a diagonal matrix, whose diagonal entries are the singular values of X. Therefore

V E(β̂s, β̂) =
E
[
tr((X>S>SX)−2X>(S>S)2X)

]
E [tr[(X>X)−1]]

=
E
[
tr(Λ−2(U>S>SU)−1U>(S>S)2U(U>S>SU)−1)

]
E [tr(Λ−2)]

,

PE(β̂s, β̂) =
E
[
tr((X>S>SX)−1X>X(X>S>SX)−1X>(S>S)2X)

]
p

=
E
[
tr((U>S>SU)−2U>(S>S)2U)

]
p

,

OE(β̂s, β̂) =
1 + E

[
x>t (X>S>SX)−1X>(S>S)2X(X>S>SX)−1xt

]
1 + E

[
x>t (X>X)−1xt

]
=

1 + E
[
x>t V Λ−1(U>S>SU)−1U>(S>S)2U(U>S>SU)−1Λ−1V >xt

]
1 + E

[
x>t V Λ−2V >xt

] .

We can see that the first two relative efficiencies do not depend on the right singular vectors of X.
We denote by U⊥ ∈ Rn×(n−p) a complementary orthogonal matrix of U , such that UU> +

U⊥U⊥> = In. Let S1 = SU , S2 = SU⊥, of sizes r × p, and r × (n − p), respectively. Then S1

and S2 both have iid N (0, 1) entries and they are independent from each other, because of the
orthogonal invariance of a Gaussian random matrix. Also note that

SS> = S(UU> + U⊥U⊥>)S> = S1S
>
1 + S2S

>
2 ,
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and

S>1 S1 ∼ Wp(Ip, r), S2S
>
2 ∼ Wr(Ir, n− p),

where Wp(Σ, r) is the Wishart distribution with r degrees of freedom and scale matrix Σ. Then by
the properties of Wishart distribution [e.g., Anderson, 2003], when r − p > 1, we have

E
[
(S>1 S1)−1

]
=

Ip
r − p− 1

, E
[
S2S

>
2

]
= (n− p)Ir.

Hence the numerator of V E equals

E
[
tr
(
Λ−2(U>S>SU)−1U>(S>S)2U(U>S>SU)−1

)]
= E

[
tr
(
Λ−2(S>1 S1)−1S1(S1S

>
1 + S2S

>
2 )S>1 (S>1 S1)−1

)]
= tr

(
Λ−2(Ip + E

[
(S>1 S1)−1S>1 S2S

>
2 S1(S>1 S1)−1

]
)
)

= tr
(
Λ−2(Ip + E

[
(S>1 S1)−1S>1 (n− p)IpS1(S>1 S1)−1

]
)
)

= tr
(
Λ−2(Ip + (n− p)E

[
(S>1 S1)−1

]
)
)

= tr

(
Λ−2(1 +

n− p
r − p− 1

)

)
,

and the denominator tr[(X>X)−1] = tr[(V Λ2V >)−1] = tr(Λ−2), so we have V E(β̂s, β̂) = 1+ n−p
r−p−1 .

This finishes the calculation for VE. See Section A.5 for the remaining details of this theorem.

A.4 Proof of Theorem 2.2

The proof idea is to use a Lindeberg swapping argument to show that the results from Gaussian
matrices extend to iid matrices provided that the first two moments match.

Since the error criteria are invariant under the scaling of S, we can assume without loss of
generality that the entries of S are n−1/2sij , where sij are iid random variables of zero mean, unit
variance, and finite fourth moment. We also let T = n−1/2tij , tij being iid standard Gaussian
random variables, for all i ∈ [r], j ∈ [n].

Let s (respectively, t) be the rn-dimensional vector whose entries are sij (respectively, tij)
aligned by columns. Then there is a bijection from s to S, and from t to T . We already know
that the desired results for V E and PE hold if S = T , and they only depend on E [tr(Q1)] and
E [tr(Q2)].

For OE, under the extra assumptions that X = ZΣ1/2, we already proved in Theorem 2.1 that

E
[
x>t (

1

p
X>X)−1xt

]
− tr[(

1

p
Z>Z)−1]

a.s.−−→ 0,

E
[
x>t Q1xt

]
− tr(Q1)

a.s.−−→ 0,

so the results for OE will only depend on E [tr[Q1]] as well. Thus we only need to show that
E [tr[Q1(S,X)] has the same limit as E [tr[Q1(T,X)]], and E [tr[Q2(S,X)] has the same limit as
E [tr[Q2(T,X)]], as n goes to infinity.

Since SX has a nonzero chance of being singular, it is necessary first to show the universality
for a regularized trace. See Section A.6.1 for the proof of Lemma A.3 below. In the rest of the
proof, we let N = rn.
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Lemma A.3 (Universality for regularized trace functionals). Let zn = i
n ∈ C, where i is the

imaginary unit. Define the functions fN , gN : RN → R as

fN (s) =
1

p
tr[(X>S>SX − znIp)−2X>(S>S)2X], (A.2)

gN (s) =
1

p
tr[(X>S>SX − znIp)−1X>X(X>S>SX − znIp)−1X>(S>S)2X], (A.3)

Then limn→∞ |E [fN (s)]− E [fN (t)] | = 0, limn→∞ |E [gN (s)]− E [gN (t)] | = 0.

Next we show that the regularized trace functionals have the same limit as the ones we want.
See Section A.6.2 for the proof.

Lemma A.4 (Convergence of trace functionals). Define the functions f∞, g∞ : RN → R

f∞(s) =
1

p
tr[(X>S>SX)−2X>(S>S)2X] =

1

p
tr[Q1(S,X)], (A.4)

g∞(s) =
1

p
tr[(X>S>SX)−1X>X(X>S>SX)−1X>(S>S)2X] =

1

p
tr[Q2(S,X)]. (A.5)

Then

lim
n→∞

|E [fN (s)]− E [f∞(s)] | = lim
n→∞

|E [fN (t)]− E [f∞(t)] | = 0,

lim
n→∞

|E [gN (s)]− E [g∞(s)] | = lim
n→∞

|E [gN (t)]− E [g∞(t)] | = 0.

According to lemma A.3 and A.4, we know that

lim
n→∞

1

p
E [tr[Q1(S,X)]] = lim

n→∞

1

p
E [tr[Q1(T,X)]] ,

lim
n→∞

1

p
E [tr[Q2(S,X)]] = lim

n→∞

1

p
E [tr[Q2(T,X)]] ,

which concludes the proof of Theorem 2.2.

A.5 Proof of Theorem 2.1

For the numerator of OE, note that

E
[
x>t V Λ−1(U>S>SU)−1U>(S>S)2U(U>S>SU)−1Λ−1V >xt

]
= tr[E

[
(S>1 S1)−1S>1 (S1S

>
1 + S2S

>
2 )S1(S>1 S1)−1

]
Λ−1V >xtx

>
t V Λ−1]

= tr[(Ip + E
[
(S>1 S1)−1S>1 (n− p)IrS1(S>1 S1)−1

]
)Λ−1V >xtx

>
t V Λ−1]

= tr[(Ip +
n− p

r − p− 1
Ip)Λ

−1V >xtx
>
t V Λ−1]

= (1 +
n− p

r − p− 1
)x>t V Λ−2V >xt.
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Therefore

OE(β̂s, β̂) =
1 + (1 + n−p

r−p−1 )x>t (X>X)−1xt

1 + x>t (X>X)−1xt
.

Additionally, if xt = Σ1/2zt and X = ZΣ1/2, we have x>t (X>X)−1xt = z>t (Z>Z)−1zt. Since zt has
iid entries of zero mean and unit variance, we have

E
[
z>t (Z>Z)−1zt

]
= tr[E

[
(Z>Z)−1

]
E
[
ztz
>
t

]
] = tr[E

[
(Z>Z)−1

]
]

Note that the e.s.d. of 1
nZ
>Z converges almost surely to the standard Marc̆enko−Pastur law

[Marchenko and Pastur, 1967, Bai and Silverstein, 2010] whose Stieltjes transform m(z) satisfies
the equation

m(z) =
1

1− γ − z − zγm(z)

for z /∈ [(1−√γ)2, (1 +
√
γ)2]. Letting z = 0, we have m(0) = 1/(1− γ), thus

tr[(
1

n
ZZ>)−1]

a.s.−−→ 1

1− γ
, tr[(

1

p
ZZ>)−1]

a.s.−−→ γ

1− γ
.

Therefore E
[
x>t (X>X)−1xt

] a.s.−−→ γ
1−γ and almost surely

OE(β̂s, β̂)→
1 + (1 + 1−γ

ξ−γ ) γ
1−γ

1 + γ
1−γ

=
ξ − γ2

ξ − γ
, as n→∞.

Similarly for the numerator of PE, we have

E
[
tr((U>S>SU)−2U>(S>S)2U)

]
= E

[
tr((S>1 S1)−2S>1 (S1S

>
1 + S2S

>
2 )S1)

]
= E

[
tr(Ip + (S>1 S1)−2S>1 S2S

>
2 S1)

]
= p+ tr(E

[
(S>1 S1)−2S>1 (n− p)IrS1

]
)

= p+ (n− p) tr(E
[
(S>1 S1)−1

]
)

= p+
(n− p)p
r − p− 1

,

therefore

PE(β̂s, β̂) =
p+ (n−p)p

r−p−1

p
= 1 +

n− p
r − p− 1

.

This finishes the proof.

A.6 Proof of Theorem 2.2

A.6.1 Proof of Lemma A.3

The proof of this lemma relies on the Lindeberg Principle, similar to the Generalized Lindeberg
Principle, Theorem 1.1 of Chatterjee [2006]. The first claim shows universality assuming bounded
third derivatives.
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Lemma A.5 (Universality theorem). Suppose s and t are two independent random vectors in RN
with independent entries, satisfying E [si] = E [ti] and E

[
s2
i

]
= E

[
t2i
]

for all 1 ≤ i ≤ N , and

E
[
|si|3 + |ti|3

]
≤ M < ∞. Suppose fN ∈ C3(RN ,R) and |∂

3fN
∂s3i
| is bounded above by LN for all

1 ≤ i ≤ N and almost surely as N goes to infinity,then

|E [fN (s)− fN (t)] | = O(LNN), as N →∞.

The lemma below shows that the third derivatives are actually bounded for our functions of
interest, and that the LN are of order N−3/2.

Since we know the singular values of X are uniformly bounded away from zero and infinity,
there exists a constant c > 0, such that

1

c
≤ σmin(X) ≤ σmax(X) ≤ c.

Lemma A.6 (Bounding the third derivatives). Let fN (s) and gN (s) be defined in (A.2) and (A.3),
where the entries of s are independent, of zero mean, unit variance and finite fourth moment.
Then there exists some constant φ = φ(c, ξ, γ) > 0, such that for any partial derivative ∂α = ∂

∂ij
,

∀i ∈ [r], j ∈ [n],

|∂3
αfN | ≤ φN−5/4, |∂3

αgN | ≤ φN−5/4

hold almost surely as n goes to infinity.

The above two lemmas conclude the proof of Lemma A.3. Next we prove them in turn.

Proof. (Proof of Lemma A.5) The main idea of this proof is borrowed from the proof of Theorem
1.1 of Chatterjee [2006]. For each fixed N , We write

s = (s1, . . . , sN ), t = (t1, . . . , tN ).

For each i = 0, 1, . . . , N , define

zi = (s1, . . . , si−1, si, ti+1, . . . , tN ),

z0
i = (s1, . . . , si−1, 0, ti+1, . . . , tN ).

Note that z0 = t, zN = s. By a Taylor expansion, we have almost surely that

|fN (zi)− fN (z0
i )− ∂ifN (z0

i )si −
1

2
∂2
i fN (z0

i )s2
i | ≤

1

6
LN |si|3,

|fN (zi−1)− fN (z0
i )− ∂ifN (z0

i )ti −
1

2
∂2
i fN (z0

i )t2i | ≤
1

6
LN |ti|3.

Thus

|fN (zi)− fN (zi−1)− ∂ifN (z0
i )(si − ti)−

1

2
∂2
i fN (z0

i )(s2
i − t2i )| ≤

1

6
(|si|3 + |ti|3)LN .
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Since

fN (s)− fN (t) =

N∑
i=1

fN (zi)− fN (zi−1),

we have

|fN (s)− fN (t)−
N∑
i=1

∂ifN (z0
i )(si − ti)−

N∑
i=1

1

2
∂2
i fN (z0

i )(s2
i − t2i )| ≤

N∑
i=1

1

6
(|si|3 + |ti|3)LN

almost surely as N goes to infinity. By the bounded convergence theorem, and because the first
two moments of s, t match, we have

|E [fN (s)− fN (t)] | ≤ 1

6
E
[
(|si|3 + |ti|3)

]
LNN,

thus

|E [fN (s)− fN (t)] | ≤ O(LNN).

This proves Lemma A.5.

Proof. (Proof of Lemma A.6) We will show that the third derivative of fN and gN are both bounded
in magnitude by N−5/4, or equivalently, n−5/2. For any α = (i, j) ∈ [r] ⊗ [n], denote ∂α = ∂

∂ij
.

Define
Gn(S) = (X>S>SX − znIp)−2X>(S>S)2X,

then we have fN (s) = 1
p tr(Gn(S)) and

(X>S>SX − znIp)2Gn(S) = X>(S>S)2X. (A.6)

Take derivative w.r.t. α on both sides and we get

∂α[(X>S>SX − znIp)2] ·Gn(S) + (X>S>SX − znIp)2 · ∂αGn(S) = ∂α[X>(S>S)2X]. (A.7)

We have

∂α[(X>S>SX − znIp)2] = ∂α[(X>S>SX)2]− 2zn∂α(X>S>SX)

= ∂α(X>S>SX) · (X>S>SX) + (X>S>SX) · ∂α(X>S>SX)

− 2zn∂α(X>S>SX),

and

∂α(X>S>SX) = X>[∂α(S>) · S + S> · ∂αS]X = X>(n−1/2EjiS + S>n−1/2Eij)X,

where Eij ∈ Rr×n whose (i, j)-th entry is 1 and the rest are all zeros, and Eji = E>ij . Therefore

∂α[(X>S>SX − znIp)2] = [X>(EjiS + S>Eij)XX
>S>SX +X>S>SXX>(EjiS + S>Eij)X

− 2znX
>(EjiS + S>Eij)X]n−1/2. (A.8)
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Similarly,

∂α[X>(S>S)2X] = X>[∂α(S>S) · (S>S) + (S>S) · ∂α(S>S)]X

=
{
X>[(EjiS + S>Eij)(S

>S) + (S>S)(EjiS + S>Eij)]X
}
n−1/2. (A.9)

Denoting P (S) = X>S>SX and Q(S) = EjiS+S>Eij , substituting (A.8),(A.9) into (A.7), we get

∂αG(S) = (P (S)− znIp)−2{X>[Q(S)S>S + S>SQ(S)]X

− [X>Q(S)XP (S) + P (S)X>Q(S)X − 2znX
>Q(S)X]}G(S)n−1/2. (A.10)

Next we will show that the trace of ∂αG(S) is bounded by n−1/2. By the inequality ‖AB‖ ≤ ‖A‖‖B‖
and the lemma A.7 below, we only need to show that the sum of the absolute values of the eigenvalues
of Q(S) and the spectral norms of

X>X, S>S, P (S), (P (S)− znIp)−2, G(S)

are all bounded above by some constants only dependent on c and ξ.

Lemma A.7. (Trace of products). Suppose A,B are two n × n diagonalizable complex matrices,
then

| tr(AB)| ≤ |λ|max(A)

n∑
i=1

|µi|,

where |λ|max(A) is the largest absolute value of eigenvalues of A and µi are the eigenvalues of B.

Note that

Q(S) = EjiS + S>Eij = ejSi· + S>i· e
>
j ,

where ej is an n× 1 vector with the jth entry equal to 1 and the rest equal to 0, Si· is the ith row
of S. The eigenvalues of Q(S) are Sij ± ‖Si·‖, according to Lemma A.8 below.

Lemma A.8. (Rank two matrices.) Let u, v ∈ Rn and u>v 6= 0, then the nonzero eigenvalues of
uv> + vu> are u>v ± ‖u‖‖v‖, both with multiplicity 1.

First note that |Sij | ≤ σmax(S) and ‖Si·‖
a.s.−−→ 1 by the law of large number. It is also known

that as n→∞ and r/n→ ξ, we have

λmin(S>S)
a.s.−−→ (1−

√
ξ)2, λmax(S>S)

a.s.−−→ (1 +
√
ξ)2,

see Bai and Silverstein [2010]. So the sum of the absolute values of the eigenvalues of Q(S) is
bounded above by 2(2 +

√
ξ), almost surely as n tends to infinity.

By our assumption, the eigenvalues of X>X are bounded in the interval [ 1
c2 , c

2].
Suppose the eigenvalues of X>S>SX are λ1 ≥ . . . ≥ λp. So almost surely,

λp ≥ λmin(X>X)λmin(S>S) ≥ 1

c2
(1−

√
ξ)2,

λ1 ≤ λmax(X>X)λmax(S>S) ≤ c2(1 +
√
ξ)2,

11



Since the complex matrix X>S>SX−znIp is diagonalizable, and its eigenvalues are λ1−zn, . . . , λp−
zn. Thus the eigenvalues of (X>S>SX − znIp)

−2 are 1
(λ1−zn)2 , . . . ,

1
(λp−zn)2 . Because λi ∈ R,

zn = i/n and |λi − zn| > |λi|, the largest absolute eigenvalue of (X>S>SX − znIp)−2 is bounded

above by 1
λ2
p
, that is, ‖(P (S)− znIp)−2‖ ≤ 1

λ2
p
≤ c4

(1−
√
ξ)4

.

We also have

‖G(S)‖ ≤ ‖(P (S)− znIp)−2‖‖X>(S>S)2X‖

≤ c4

(1−
√
ξ)4

c2(1 +
√
ξ)4 = c6

(1 +
√
ξ)4

(1−
√
ξ)4

.

Thus tr[∂αG(S)] is bounded by O(n−1/2). Since p/n → γ, there exists a constant φ1(c, γ, ξ), such
that

|fN | =
1

p
| tr[∂αG(S)]| ≤ φ1(c, γ, ξ)n−3/2.

Next we will bound the second derivative of fN from above by n−2. Take the second derivative
w.r.t. to α on both sides of (A.6), we have

∂2
α[(X>S>SX − znIp)2] ·G(S) + 2∂α[(X>S>SX − znIp)2] · ∂αG(S)+(X>S>SX − znIp)2∂2

αG(S)

= ∂2
α[X>(S>S)2X],

(A.11)

and thus

∂2
αG(S) = (X>S>SX − znIp)−2[∂2

α[X>(S>S)2X]− ∂2
α[(X>S>SX − znIp)2] ·G(S)−

2∂α[(X>S>SX − znIp)2] · ∂αG(S)]. (A.12)

Using (A.8), we have

∂2
α[(X>S>SX − znIp)2] = ∂α[X>(EjiS + S>Eij)XX

>S>SX +X>S>SXX>(EjiS + S>Eij)X

− 2znX
>(EjiS + S>Eij)X]n−1/2

= {X>(EjiEij + EjiEij)XX
>S>SX+

X>(EjiS + S>Eij)XX
>(EjiS + S>Eij)X+

X>(EjiS + S>Eij)XX
>(EjiS + S>Eij)X+

X>S>SXX>(EjiEij + EjiEij)X−

2znX
>(EjiEij + EjiEij)X}

1

n

= {2(X>(EjiS + S>Eij)X)2

+ 2X>EjjXX
>S>SX + 2X>S>SXX>EjjX − 4znX

>EjjX}
1

n
.

Using (A.9), we have

∂2
α[X>(S>S)2X] = ∂α[

{
X>[(EjiS + S>Eij)(S

>S) + (S>S)(EjiS + S>Eij)]X
}

]n−1/2

= X>[2EjjS
>S + 2(EjiS + S>Eij)

2 + 2S>SEjj ]X
1

n
.
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By the same arguments, we can show that the traces of the three terms on the right hand side of
(A.12) are bounded above by n−1 in magnitude, therefore the second derivative of fN is bounded
by n−2. Also by the same reasoning, we can show that there exists some constant φ3(c, ξ, γ), such
that |∂3

αfN (s)| ≤ φ3(c, ξ, γ)N−5/4, holds almost surely as n goes to infinity.
We then use similar methods to bound the third derivative of gN (s). Define

Hn(S) = (X>S>SX − znIp)−1X>X(X>S>SX − znIp)−1X>(S>S)2X,

then

gN (s) =
1

p
tr[Hn(s)].

Note also that

(X>S>SX − znIp)(X>X)−1(X>S>SX − znIp)Hn(S) = X>(S>S)2X.

Taking derivative w.r.t. to α on both sides we have

n−1/2[X>(EjiS + S>Eij)X(X>X)−1(X>S>SX − znIp)Hn(S)+

(X>S>SX − znIp)(X>X)−1X>(EjiS + S>Eij)XHn(S)]+

(X>S>SX − znIp)(X>X)−1(X>S>SX − znIp)∂αHn(S)

= n−1/2[X>(EjiS + S>Eij)S
>SX +X>S>S(EjiS + S>Eij)X].

Using similar techniques, we can show that almost surely 1
p | tr[∂αHn(S)]| is bounded in magni-

tude by n−3/2, 1
p | tr[∂

2
αHn(S)]| is bounded in magnitude by n−2, and 1

p | tr[∂
3
αHn(S)]| is bounded

in magnitude by n−5/2. Therefore almost surely |∂3
αgN (s)| ≤ φ′3N

−5/4, for some φ′3 = φ′3(c, ξ, γ).
Take φ = max(φ3, φ

′
3), and the proof of Lemma A.6 is done.

Proof. (Proof of Lemma A.7) Consider the eigendecompositions of A,B,

A = Q

 λ1

. . .

λn

Q>, B = P

 µ1

. . .

µn

P>,

then

tr(AB) = tr(Q

 λ1

. . .

λn

Q>P

 µ1

. . .

µn

P>).

Denote the n columns of Q>P as v1, . . . , vn, which are orthonormal. Then

| tr(AB)| = | tr(

 λ1

. . .

λn

 n∑
i=1

µiviv
>
i )|

= |
n∑
i=1

µiv
>
i

 λ1

. . .

λn

 vi| ≤
n∑
i=1

|µi||λ|max(A).

This finishes the proof.
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Proof. (Proof of Lemma A.8) It is easy to see that uv> + vu> has rank 2 and

(uv> + vu>)(
u

‖u‖
+

v

‖v‖
) = (u>v + ‖u‖‖v‖)( u

‖u‖
+

v

‖v‖
),

(uv> + vu>)(
u

‖u‖
− v

‖v‖
) = (u>v − ‖u‖‖v‖)( u

‖u‖
− v

‖v‖
).

This finishes the proof.

A.6.2 Proof of Lemma A.4

Let A = X>S>SX and B = X>S>SX − znIn, and note that we have the relationship

A−2 −B−2 = B−1(B −A)A−2 +B−2(B −A)A−1 = −zn(B−1A−2 +B−2A−1).

Thus

fN (s)− f∞(t) =
1

p
tr[(A−2 −B−2)X>(S>S)2X]

= −zn
1

p
tr[(B−1A−2 +B−2A−1)X>(S>S)2X].

If the eigenvalues of A are λ1 ≥ . . . ≥ λp > 0, then the eigenvalues of B are λ1− zn, . . . , λp− zn.
By Lemma A.7, we have

1

p
| tr[B−1A−2X>(S>S)2X]| ≤ ‖A−2X>(S>S)2X‖1

p

p∑
i=1

1

|λi − zn|

≤ 1

λ2
p

‖X>X‖‖S>S‖2 1

λp
.

Recall that λp ≥ 1
c2 (1−

√
ξ)2, then we have

1

p
| tr[B−1A−2X>(S>S)2X]| ≤ c8 (1 +

√
ξ)4

(1−
√
ξ)6

.

By the same argument, we have

1

p
| tr[B−2A−1X>(S>S)2X]| ≤ c8 (1 +

√
ξ)4

(1−
√
ξ)6

.

Hence

|fN (s)− f∞(s)| ≤ 1

p
2c8

(1 +
√
ξ)4

(1−
√
ξ)6

holds almost surely. Hence, fN (s)− f∞(s)
a.s.−−→ 0. By the bounded convergence theorem, we have

limn→∞ |E [fN (s)]−E [f∞(s)] | = 0. The other three limit statements can be proved similarly. This
finishes the proof.
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A.7 Proof of Theorem 2.3

Suppose that X has the SVD factorization X = UΛV > and let S1 = SU . The majority of the
proof will deal with the following quantities:

tr[(X>X)−1] = tr(Λ−2),

tr[(X>S>SX)−1] = tr[(ΛU>S>SUΛ)−1] = tr[(ΛS>1 S1Λ)−1],

tr[(X>S>SX)−1X>X] = tr[(U>S>SU)−1] = tr[(S>1 S1)−1].

Since we are finding the limits of these quantities, we add the subscript n to matrices like Sn, Un
from now on. Since both Sn and Un are rectangular orthogonal matrices, we embed them into full
orthogonal matrices as

Sn =

(
Sn
S⊥n

)
, Un =

(
Un
U⊥n

)
.

Suppose 1
pΛnS

>
1,nS1,nΛn has an l.s.d. bounded away from zero. Then, the limit of 1

p tr[( 1
pΛnS

>
1,nS1,nΛn)−1]

must equal to the Stieltjes transform of its l.s.d. evaluated at zero. Therefore, we first find the Stielt-
jes transforms of the l.s.d. of the matrices 1

pΛnS
>
1,nS1,nΛn. The same applies to tr[(S>1,nS1,n)−1],

except that we replace Λn with the identity matrix.
Since ΛnS

>
1,nS1,nΛn and S1,nΛ2

nS
>
1,n have the same non-zero eigenvalues, we first find the l.s.d.

of 1
nS1,nΛ2

nS
>
1,n. Note that

S1,n = SnUn =
(
Ir 0

)( Sn
S⊥n

)(
Un U⊥n

)( Ip
0

)
=
(
Ir 0

)
SnUn

(
Ip
0

)
.

Let Wn = SnUn, which is again an n×n Haar-distributed matrix due to the orthogonal invariance
of the Haar distribution. Then

S1,nΛ2
nS
>
1,n =

(
Ir 0

)
Wn

(
Ip
0

)
Λ2
n

(
Ip 0

)
W>n

(
Ir
0

)
.

Define

Cn =
1

n

(
Ir 0
0 0

)
Wn

(
Λ2
n 0

0 0

)
W>n

(
Ir 0
0 0

)
=

1

n

(
S1,nΛ2

nS
>
1,n 0

0 0

)
. (A.13)

Since X has an l.s.d., we get that the e.s.d. of

(
Λ2
n 0

0 0

)
converges to some fixed distribution

FΛ, and we know that the e.s.d. of

(
Ir 0
0 0

)
converges to Fξ = ξδ1 + (1− ξ)δ0. Then according

to Hachem [2008] or Theorem 4.11 of Couillet and Debbah [2011], the e.s.d. of Cn converges to a
distribution FC , whose η-transform ηC is the unique solution of the following system of equations,
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defined for all z ∈ C+:

ηC(z) =

∫
1

zγ(z)t+ 1
dFξ(t) =

ξ

zγ(z) + 1
+ (1− ξ),

γ(z) =

∫
t

ηC(z) + zδ(z)t
dFΛ(t),

δ(z) =

∫
t

zγ(z)t+ 1
dFξ(t) =

ξ

zγ(z) + 1
.

Moreover, we note that if the support of FΛ outside of the point mass at zero is bounded away
from the origin, then the same is also true for FC . Indeed, this follows directly from the form of
ΛnS

>
1,nS1,nΛn, as its smallest eigenvalue can be bounded below as

λmin(ΛnS
>
1,nS1,nΛn) ≥ λmin(Λn)2λmin(S>1,nS1,n).

Moreover, by assumption λmin(Λn) > c > 0 for some universal constant c, and clearly λmin(S>1,nS1,n) =
1, as S1,n is a partial orthogonal matrix. This ensures that we can use the Stieltjes transform as a
tool to calculate the limiting traces of the inverse.

Returning to our equations, using the first and the third equations to solve for δ(z) and γ(z) in
terms of ηC(z), substituting them in the second equation, we get the following fixed point equation

ηC(z) = ηΛ(z(1 +
ξ − 1

ηC(z)
). (A.14)

According to the definition of η-transform (A.1), for any distribution F with a point mass fF (0) at
zero, we have

ηF (z) =

∫
t 6=0

1

1 + zt
dF (t) + fF (0).

Note that fC(0) = fΛ(0) = 1− γ. Since the l.s.d. of X is compactly supported and bounded away
from the origin, we know inf[supp(fΛ) ∩ R∗] and inf[supp(fΛ) ∩ R∗] are greater than zero, thus 1

t
is integrable on the set {t > 0} w.r.t. FΛ and FC . Since | z

1+tz | <
1
t when z > 0, t > 0, by the

dominated convergence theorem we have

lim
z→∞

∫
t6=0

z

1 + tz
dFC(t) =

∫
t 6=0

1

t
dFC(t),

lim
z→∞

∫
t6=0

z

1 + tz
dFΛ(t) =

∫
t 6=0

1

t
dFΛ(t),

and hence ∫
t6=0

1

t
dFC(t) = lim

z→∞
z(ηC(z)− (1− γ)), (A.15)∫

t6=0

1

t
dFΛ(t) = lim

z→∞
z(ηΛ(z)− (1− γ)), (A.16)
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and

lim
z→∞

ηC(z) = lim
z→∞

∫
t 6=0

1

1 + zt
dFC(t) + (1− γ)

=

∫
t6=0

lim
z→∞

1

1 + zt
dFC(t) + (1− γ)

= 1− γ. (A.17)

Subtracting 1 − γ from both sides of (A.14), multiplying by z(1 + ξ−1
ηC(z) ), letting z → ∞, we

obtain

lim
z→∞

z(1 +
ξ − 1

ηC(z)
)[ηC(z)− (1− γ)] = lim

z→∞
z(1 +

ξ − 1

ηC(z)
)[ηΛ(z(1 +

ξ − 1

ηC(z)
))− (1− γ)].

Note that RHS equals
∫
t 6=0

1
t dFΛ(t) by (A.16), and

LHS = lim
z→∞

z(1 +
ξ − 1

ηC(z)
)[ηC(z)− (1− γ)]

= lim
z→∞

z[ηC(z)− (1− γ)](1 +
ξ − 1

1− γ
)

=

∫
t 6=0

1

t
dFC(t)

ξ − γ
1− γ

,

where the second and the third equations follow from (A.17) and (A.16). This shows that∫
t6=0

1

t
dFΛ(t) =

ξ − γ
1− γ

∫
t6=0

1

t
dFC(t),

therefore we have proved that as n→∞,

tr[(ΛS>1 S
>
1 Λ)−1]

tr(Λ−2)
→
∫
t 6=0

1
t dFC(t)∫

t6=0
1
t dFΛ(t),

=
1− γ
ξ − γ

,

thus

lim
n→∞

V E(β̂s, β̂) =
1− γ
ξ − γ

.

This finishes the evaluation of V E.
Next, to evaluate of PE, we argue as follows: In the definition of Cn in (A.13), replace Λn by

the identity matrix. Since the results do not depend the l.s.d. of Λn, it follows directly that

PE =
tr[(X>S>SX)−1X>X]

p
=

tr[(S>1 S1)−1]

tr(Ip)
→ 1− γ

ξ − γ
.

Next, to evaluate the limit of OE, we use the additional assumption on X, that is, X = ZΣ1/2,
where Z has iid entries of zero mean, unit variance and finite fourth moment.

Note that (with convergence below always meaning almost sure convergence)

E
[
x>t (X>X)−1xt)

]
→ γ

1− γ
,
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which has been proved in Section A.3, and

1 + E
[
x>t (X>X)−1xt

]
→ 1 +

γ

1− γ
=

1

1− γ
.

On the other hand,

E
[
x>t (X>S>SX)−1xt

]
= tr(E

[
X>S>SX

]−1 E
[
xtx
>
t

]
)

= tr(E
[
(Σ1/2Z>S>SZΣ1/2)−1

]
Σ) = tr(E

[
Z>S>SZ

]−1
).

Define Cn = 1
nZ
>S>SZ, then the e.s.d. of Cn converges to a distribution FC , whose Stieltjes

transform m(z) = mC(z), z ∈ C+ is given by [Bai and Silverstein, 2010]

m(z) =
1∫

s
1+γsedFS>S(s)− z

=
1

ξ
1+γe − z

,

where

e =
1∫

s
1+γsedFS>S(s)− z

=
1

ξ
1+γe − z

.

And here FS>S is the l.s.d. of S>S, which is ξδ1 + (1− ξ)δ0. Solving these equations gives

m(z) = e(z) =
ξ − γ − z +

√
(ξ − γ − z)2 − 4zγ

2zγ
.

Therefore

lim
z→0

m(z) =
−1− 2(γ−ξ)−4γ

2(ξ−γ)

2γ
=
−1 + ξ+γ

ξ−γ

2γ
=

1

ξ − γ
.

Thus

tr((Z>S>SZ)−1) =
1

n
tr((

1

n
Z>S>SZ)−1)

a.s.−−→ γmC(0) =
γ

ξ − γ
.

Therefore

1 + E
[
x>t (X>S>SX)−1xt

]
→ 1 +

γ

ξ − γ
=

1

1− γ/ξ
,

and we have proved

lim
n→∞

OE(β̂s, β̂) = lim
n→∞

1 + E
[
x>t (X>S>SX)−1xt

]
1 + E

[
x>t (X>X)−1xt

] =
1− γ

1− γ/ξ
.

This finishes the proof.
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A.7.1 Checking the free multiplicative convolution property

Recall that the S-transform of a distribution F is defined as the solution to the equation

mF (
z + 1

zS(z)
) = −zS(z).

For more references, see for instance Voiculescu et al. [1992], Hiai and Petz [2006], Nica and
Speicher [2006], Anderson et al. [2010].

Since m( z+1
zS(z) ) = −zS(z), η(z) = 1

zm(− 1
z ), we have

−zS(z) = m(
z + 1

zS(z)
) = −zS(z)

z + 1
η(−zS(z)

z + 1
),

where S(z) is the S-transform. Therefore

ηΛ(−zSΛ(z)

z + 1
) = z + 1, ηC(−zSC(z)

z + 1
) = z + 1.

Let x = − z
z+1SC(z), then ηC(x) = z + 1 and (A.14) gives

z + 1 = ηC(x) = ηΛ(x(1 +
ξ − 1

ηC(x)
)) = ηΛ(− z

z + 1
SC(z)(1 +

ξ − 1

z + 1
))

= ηΛ(− z

z + 1
SC(z)

z + ξ

z + 1
) = ηΛ(− z

z + 1
SΛ(z)).

Therefore SΛ = z+ξ
z+1SC(z), and equivalently SC(z) = SΛ(z) z+1

z+ξ . Let S0(z) = z+1
z+ξ be the S-transform

of some distribution F0, then the corresponding Stieltjes transform is m0(z) = ξ
1−z + 1−ξ

−z , which
is the Stieltjes transform for F0 = ξδ1 + (1 − ξ)δ0. This shows that FC is a freely multiplicative
convolution of FΛ and ξδ1 + (1− ξ)δ0.

A.8 Proof of Theorem 2.4

Note that B,H and D are all symmetric matrices satisfying

B2 = B, H2 = In, D
2 = In,

and P is also an orthogonal matrix, therefore

S>S = P>DHBHDP

(S>S)2 = P>DHBHDPP>DHBHDP

= P>DHBHDP = S>S.

By Proposition A.2, we only need to find

tr[(X>S>SX)−1] = tr[(X>P>DHBHDPX)−1], (A.18)

and

tr[(X>S>SX)−1X>X] = tr[(X>P>DHBHDPX)−1X>X]. (A.19)

We first have the following observation.
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Lemma A.9. For a uniformly distributed permutation matrix P , diagonal matrix B with iid diago-
nal entries of distribution µB = r

nδ1 + (1− r
n )δ0, diagonal matrix D with iid sign random variables,

equal to ±1 with probability one half, and Hadamard matrix H, we have the following equation in
distribution

X>(P>DH)B(HDP )X
d
= X>(P>DHDP )B(P>DHDP )X.

This is true, because we are simply permuting the diagonal matrix of iid Bernoullis in the middle
term; but see the end of this section for a formal proof. We call DP the signed-permutation matrix
and W = P>DHDP the bi-signed-permutation Hadamard matrix. Thus by equations (A.18),
(A.19), and Lemma A.9,

E
[
tr[(X>S>SX)−1]

]
= E

[
tr[(X>(P>DHDP )B(P>DHDP )X)−1]

]
= E

[
tr[(X>WBWX)−1]

]
,

E
[
tr[(X>S>SX)−1X>X]

]
= E

[
tr[(X>(P>DHDP )B(P>DHDP )X)−1X>X]

]
= E

[
tr[(X>WBWX)−1X>X]

]
.

Since X>WBWX has the same nonzero eigenvalues as BWXX>WB, we first find the l.s.d. of

Cn =
1

n
BnWnXnX

>
nWnBn.

The following lemma states the asymptotic freeness regarding Hadamard matrix, which will be used
to find the l.s.d. of Cn. For more references on free probability, see for instance Voiculescu et al.
[1992], Hiai and Petz [2006], Nica and Speicher [2006], Anderson et al. [2010].

Lemma A.10. (Freeness of bi-signed-permutation Hadamard matrix) Let Xn, Bn,Wn be defined
above, that is, Xn is an n× n deterministic matrix with uniformly bounded spectral norm and has
l.s.d. µX , Bn is a diagonal matrix with iid diagonal entries, and Wn is a bi-signed-permutation
matrix. Then

{Bn,
1

n
WnXnX

>
nWn}

are asymptotically free in the limit of the non-commutative probability spaces of random matrices,
as described in Section A.1. The law of

Cn =
1

n
BnWnXnX

>
nWnBn

converges to the freely multiplicative convolution of µB and µX , that is, Cn has l.s.d. µC = µB�µX .

This follows directly from Corollaries 3.5, 3.7 of Anderson and Farrell [2014]. See also Lemma
1 of Tulino et al. [2010] for earlier results on the Fourier transform.

We use µB and µX to denote the elements in the limiting non-commutative probability space,
their laws, and their corresponding probability distributions interchangeably. Since µB = ξδ1 +
(1− ξ)δ0, we have SµB

= z+1
z+ξ . From the aymptotic freeness, it follows that the S-transform of µC

is the product of that of µB , µX , so that

SµC
(z) = SµX

(z)SµB
(z) = SµX

(z)
z + 1

z + ξ
.
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We will now simplify this relation. First, note that by the definition of the S-transform, we have

ηµC
(− z

z + 1
SµC

(z)) = z + 1.

Letting y = − z
z+1SµC

, we have ηµC
(y) = z+ 1. In addition, we can simplify the original relation as

SµX
=
z + ξ

z + 1
SµC

(z) = −z + ξ

z
y,

z + 1 = ηµX
(− z

z + 1
SµX

(z)) = ηµX
(
z + ξ

z + 1
y)

= ηµX
((1 +

ξ − 1

z + 1
)y) = ηµX

((1 +
ξ − 1

ηµC
(y)

)y) = ηµC
(z).

So we have obtained

ηµX
((1 +

ξ − 1

ηµC
(y)

)y) = ηµC
(y).

This is the same equation as what we obtained in (A.14) in the proof of Haar projection. Therefore
as n→∞, we have as required

lim
n→∞

V E(β̂s, β̂) =
1− γ
ξ − γ

.

Next we consider
E
[
tr[(X>WBWX)−1X>X]

]
.

Since X has the SVD X = UΛV >, we have

E
[
tr[(X>WBWX)−1X>X]

]
= E

[
tr[(U>WBWU)−1]

]
.

Thus we can repeat the above reasoning, except that we replace X by U . Since the result does not
depend on X, we have

lim
n→∞

PE(β̂s, β̂) = lim
n→∞

E
[
tr[(X>S>SX)−1X>X]

]
p

= lim
n→∞

E
[
tr[(U>WBWU)−1]

]
tr[U>U ]

= lim
n→∞

V E(β̂s, β̂) =
1− γ
ξ − γ

.

For OE, since S satisfies (S>S)2 = S>S and the e.s.d. of S>S converges to ξδ1 + (1− ξ)δ0, the
same reasoning as in Theorem 2.3 also holds in this case for Hadamard projection. This finishes
the proof.

Proof. (Proof of Lemma A.9) Note that both B and D are diagonal matrices whose diagonal entries
are iid random variables, and P is a permutation matrix. Define B̃ = PBP> and D̃ = P>DP ,
then we have

B̃
d
= B, D̃

d
= D
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and

DP = PD̃, P>D = D̃P>. (A.20)

Hence

X>P>DHDPBP>DHDPX = X>P>DHPD̃BD̃P>HDPX

= X>P>DHPBD̃2P>HDPX

= X>P>DHPBP>HDPX

= X>P>DHB̃HDPX

d
= X>P>DHBHDPX,

where the first equation follows from (A.20), the second equation holds because D̃ and B are
diagonal entries so they commute, while the third equation holds because D̃2 = In.

A.9 Proof of Theorem 2.5

We can take

S =

 s1 0 0

0
. . . 0

0 0 sn

 ,

which is an n × n diagonal matrix and si-s are iid random variables with P [si = 1] = r
n and

P [si = 0] = 1− r
n . Since s2

i = si, we have S2 = S, hence

V E(β̂s, β̂) =
E
[
tr[(X>SX)−1]

]
tr[(X>X)−1]

PE(β̂s, β̂) =
E
[
tr[(X>SX)−1X>X]

]
p

.

Since X is unitarily invariant and S is a diagonal matrix independent from X, {S,X,X>} are
almost surely asymptotically free in the non-commutative probability space by Theorem 4.3.11 of
Hiai and Petz [2006]. Since the law of S converges to µS = ξδ1 + (1− ξ)δ0, the law of X converges
to µX , thus the law of SXX>S converges to the freely multiplicative convolution µS � µX . The
rest of the proof is the same as that in the proof of Theorem 2.4.

A.10 Proof of Theorem 2.6

Define

S =

 s1

. . .

sn

 , W =

 w1

. . .

wn

 ,

where the si-s are independent and si|πi ∼ Bernoulli(πi). S is independent of Z because πi is
independent of zi, by the assumption. W has l.s.d. Fw. According to Proposition A.1, the values of
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V E, PE are determined by tr[(X>X)−1], tr[Q1(S,X)] = tr[(X>SX)−1], and tr[Q2(S,X)]. Note
that under the elliptical model X = WZΣ1/2, we have

tr[(X>X)−1] = tr[(Σ1/2Z>W 2ZΣ1/2)−1],

tr[Q1(S,X)] = tr[(Σ1/2Z>WSWZΣ1/2)−1],

tr[Q2(S,X)] = tr[(Z>WSWZ)−1Z>W 2Z].

Note that the e.s.d. of Σ converges in distribution to some probability distribution FΣ, and the
e.s.d. of WSW converges in distribution to Fsw2 , the limiting distribution of siw

2
i , i = 1, . . . , n.

Again from the results of Zhang [2007] or Paul and Silverstein [2009], with probability 1, the e.s.d.
of Cn = 1

nΣ1/2Z>WSWZΣ1/2 converges to a probability distribution function FC , whose Stieltjes
transform mC(z), for z ∈ C+ is given by

mC(z) =

∫
1

t
∫

u
1+γeCu

dFsw2(u)− z
dFΣ(t),

where eC = eC(z) is the unique solution in C+ of the equation

eC =

∫
t

t
∫

u
1+γeCu

dFsw2(u)− z
dFΣ(t).

Similarly, the e.s.d. of Dn = 1
nΣ1/2Z>W 2ZΣ1/2 converges to a probability distribution FD, whose

Stieltjes transform mD(s), for z ∈ C+ is given by

mD(z) =

∫
1

t
∫

u
1+γeDu

dFw2(u)− z
dFΣ(t),

where eD = eD(z) is the unique solution in C+ of the equation

eD =

∫
t

t
∫

u
1+γeDu

dFw2(u)− z
dFΣ(t).

Since FC and FD have no point mass at the origin, we can set z = 0 Couillet and Hachem [2014].
Therefore

mC(0) =
1∫

u
1+γeC(0)udFsw2(u)

∫
1

t
dFΣ(t), eC(0) =

1∫
u

1+γeC(0)udFsw2(u)
.

Note also that

eC(0) =
γeC(0)∫ γeC(0)u

1+γeC(0)udFsw2(u)
=

γeC(0)

1− ηsw2(γeC(0))
,

thus ηsw2(γeC(0)) = 1− γ, and

mC(0) = eC(0)

∫
1

t
dFΣ(t) =

η−1
sw2(1− γ)

γ

∫
1

t
dFΣ(t). (A.21)
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Similarly,

mD(0) = eD(0)

∫
1

t
dFΣ(t) =

η−1
w2 (1− γ)

γ

∫
1

t
dFΣ(t).

Hence, again by the same argument as we have seen several times before, the traces have limits
that can be evaluated in terms of Stieltjes transforms, and we have

V E(β̂s, β̂) =
tr[Q1(S,X)]

tr[(X>X)−1]
=

tr[(Σ1/2Z>WSWZΣ1/2)−1]

tr[(Σ1/2Z>W 2ZΣ1/2)−1]

→ mC(0)

mD(0)
=
η−1
sw2(1− γ)

η−1
w2 (1− γ)

,

and the result for V E follows.
We then deal with PE. Note that

PE(β̂s, β̂) =
E
[
tr[(Z>WSWZ)−1Z>W 2Z]

]
p

.

We first assume that Z has iid N (0, 1) entries. Denote T1 = WSW , T2 = W (I−S)W . Since S is a
diagonal matrix whose diagonal entries are 1 or 0, W is also a diagonal matrix, T1 and T2 are both
diagonal matrices and the set of their nonzero entries is complementary. So Z>T1Z and Z>T2Z
are independent from each other and T1 + T2 = W 2. We have

E
[
tr[(Z>WSWZ)−1Z>W 2Z]

]
= E

[
tr[(Z>T1Z)−1Z>(T1 + T2)Z]

]
= E

[
tr[Ip + (Z>T1Z)−1Z>T2Z]

]
= p+ tr[E

[
(Z>T1Z)−1

]
E
[
Z>T2Z

]
].

Note that

E
[
(Z>T2Z)ij

]
=

n∑
k=1

E [zkiT2,kkzkj ] =

n∑
k=1

T2,kkδij

thus

E
[
Z>T2Z

]
= E [tr(T2)] Ip,

E
[
tr[(Z>WSWZ)−1Z>W 2Z]

]
= p+ E [tr(T2)] tr[E

[
(Z>T1Z)−1

]
].

Note that 1
nZ
>WSWZ is equal to Cn with Σ replaced by the identity. Thus by (A.21),

1

p
tr[(

1

n
Z>WSWZ)−1]]

a.s.−−→
η−1
sw2(1− γ)

γ
,

tr[(Z>WSWZ)−1]]
a.s.−−→ η−1

sw2(1− γ),

thus

lim
n→∞

PE(β̂s, β̂) = 1 +
1

p
tr(T2)η−1

sw2(1− γ)

= 1 +
1

γ
E
[
w2(1− s)

]
η−1
sw2(1− γ)

24



Then we use a similar Lindeberg swapping argument as in Theorem 2.3 to show extend this to Z
with iid entries of zero mean, unit variance and finite fourth moment. This finishes the proof for
PE. For the last claim, for OE, note that

E
[
x>t (X>X)xt

]
= E

[
w2
]
E
[
z>t (Z>W 2Z)−1zt

]
= E

[
w2
]
E
[
tr[(Z>W 2Z)−1]

]
→ E

[
w2
]
η−1
w2 (1− γ),

and that

E
[
x>t (X>S>SX)xt

]
= E

[
w2
]
E
[
z>t (Z>WSWZ)−1zt

]
= E

[
w2
]
E
[
tr[(Z>WSWZ)−1]

]
→ E

[
w2
]
η−1
sw2(1− γ).

Thus

lim
n→∞

OE(β̂s, β̂) = lim
n→∞

1 + E
[
x>t (X>S>SX)−1xt

]
1 + E

[
x>t (X>X)−1xt

] =
1 + E

[
w2
]
η−1
sw2(1− γ)

1 + E [w2] η−1
w2 (1− γ)

,

This finishes the proof.

Proof of leverage sampling

It suffices to show that leverage score sampling that samples the i-th row with probability min( rphii, 1)

is equivalent to sample with probability min

[
r
p

(
1− 1

1+w2η−1

w2 (1−γ)

)
, 1

]
. Given that the latter prob-

ability is independent from zi, the statement of the corollary will then follow directly from Theorem
2.6.

To see this equivalence, first note that

hii = x>i (
∑
j 6=i

xjx
>
j + xix

>
i )−1xi = x>i (

∑
j 6=i

xjx
>
j )−1xi −

(x>i (
∑
j 6=i xjx

>
j )−1xi)

2

1 + x>i (
∑
j 6=i xjx

>
j )−1xi

=
x>i (

∑
j 6=i xjx

>
j )−1xi

1 + x>i (
∑
j 6=i xjx

>
j )−1xi

and

1

1− hii
= 1 + x>i (

∑
j 6=i

xjx
>
j )−1xi = 1 + w2

i z
>
i Σ1/2(

∑
j 6=i

xjx
>
j )−1Σ1/2zi

= 1 + w2
i z
>
i (
∑
j 6=i

w2
j zjz

>
j )−1zi.

Denote R =
∑n
j=1 w

2
j zjz

>
j , R(i) =

∑
j 6=i w

2
j zjz

>
j , so that 1

1−hii
= 1 + w2

i z
>
i R
−1
(i) zi.

Since zi and R(i) are independent for each i = 1, . . . , n, while zi has iid entries of zero mean
and unit variance and bounded moments of sufficienctly high order, then by the concentration of
quadratic forms lemma A.11 cited below, we have

1

n
z>i R

−1
(i) zi −

1

n
tr(R−1

(i) )
a.s.−−→ 0.
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Lemma A.11 (Concentration of quadratic forms, consequence of Lemma B.26 in Bai and Silver-
stein [2010]). Let x ∈ Rp be a random vector with iid entries and E [x] = 0, for which E

[
(
√
pxi)

2
]

=

σ2 and supi E
[
(
√
pxi)

4+η
]
< C for some η > 0 and C < ∞. Moreover, let Ap be a sequence of

random p× p symmetric matrices independent of x, with uniformly bounded eigenvalues. Then the
quadratic forms x>Apx concentrate around their means at the following rate

P (|x>Apx− p−1σ2 trAp|2+η/2 > C) ≤ Cp−(1+η/4).

To use lemma A.11, we only need to guarantee that the smallest eigenvalue of R(i) is uniformly
bounded below. For this, it is enough that the smallest eigenvalue of R is uniformly bounded
below. Since wi are bounded away from zero, this property follows from the corresponding one for
the sample covariance matrix of zi, which is just the well-known Bai-Yin law [Bai and Silverstein,
2010].

Continuing with our argument, by the standard rank-one-perturbation argument [Bai and Sil-
verstein, 2010], we have limn→∞

1
n tr[R−1

(i) ]− 1
n tr[R−1] = 0, since R(i) is a rank-one perturbation of

R. Recall that Z has iid entries satisfying E [Zij ] = 0,E
[
Z2
ij

]
= 1. Moreover, it is easy to see that

by the 4 + η-th moment assumption we have for each δ > 0 that

1

δ2np

∑
i,j

E
[
Z2
ijI[|Zij |>δ

√
n]
]
→ 0, as n→∞.

Also, the e.s.d. of W 2 converges weakly to the distribution of w2. By the results of Zhang [2007]
or Paul and Silverstein [2009], with probability 1, the e.s.d. of Bn = n−1Z>W 2Z converges in
distribution to a probability distribution FB whose Stieltjes transform satisfies

mB(z) =
1∫

s
1+γeBs

dFw2(s)− z
,

where for z ∈ C+, eB = eB(z) is the unique solution in C+ to the equation

eB =
1∫

s
1+γeBs

dFw2(s)− z
.

Also, by the same reasoning as in the proof of the Haar matrix case, the l.s.d. is supported on
an interval bounded away from zero. This means that we can find the almost sure limits of the
traces in terms of the Stieltjes transform of the l.s.d. at zero, or equivalently in terms of the inverse
eta-transform:

1

p
tr(

1

n
R−1) =

n

p
tr[(Z>wZw)−1]→

η−1
w2 (1− γ)

γ
,

and therefore tr(R−1)
a.s.−−→ η−1

w2 (1− γ). Thus, from the expression of hii given at the beginning, we
also have

|hii − 1 +
1

1 + w2
i η
−1
w2 (1− γ)

| a.s.−−→ 0.
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Thus as n goes to infinity, leverage-based sampling is equivalent to sampling xi with probability

πi = min

(
r

p
(1− 1

1 + w2
i η
−1
w2 (1− γ)

), 1

)
, (A.22)

in the sense that |min( rphii, 1) − πi|
a.s.−−→ 0. Therefore, it is not hard to see that the performance

metrics we study have the same limits for leverage sampling and for sampling with respect to πi.
We argue for this in more detail below. Let S∗ be the sampling matrix based on the leverage scores,
with diagonal entries s∗i ∼ Bernoulli(min(r/nhii, 1)). This is the original sampling mechanism to
which the theorem refers. Now, we have shown that ‖S−S∗‖op → 0 almost surely. Because of this,
one can check that tr[Q1(S,X)]− tr[Q1(S∗, X)]→ 0 almost surely. This follows by a simple matrix
calculation expressing A−1−B−1 = −A−1(B−A)B−1, and bounding the trace using Lemma A.7.

A.11 Greedy leverage sampling

As a direct corollary of Theorem 2.6, we have the results for greedy leverage sampling.

Corollary A.12 (Greedy leverage sampling). Under the conditions of Theorem 2.6, suppose that
for p < r < n, we take the r rows of X with the highest leverage scores and do linear regression
on the resulting subsample of X,Y . Let w̃2 = w21[w2>F−1

w2 (1−ξ)] denote the distribution of Fw2

truncated at 1− ξ. Then

lim
n→∞

V E(β̂s, β̂) =
η−1
w̃2 (1− γ)

η−1
w2 (1− γ)

,

lim
n→∞

V E(β̂s, β̂) = 1 +
1

γ
E
[
w21[w2<F−1

w2 (1−ξ)]

]
η−1
w̃2 (1− γ/ξ),

lim
n→∞

OE(β̂s, β̂) =
1 + E

[
w2
]
η−1
w̃2 (1− γ)

1 + E [w2] η−1
w2 (1− γ)

,

where ηw2 and ηw̃2 are the η-transforms of Fw2 and Fw̃2 , respectively, and the expectations are taken
with respect to those limiting distributions.

A.12 Table of tradeoff between computation and statistical accuracy

We give a summary of the algorithmic complexity and statistical accuracy (variance efficiency) of
each method in Table 1.

A.13 Simulation for leverage-based sampling

We consider a simple example where w follows a discrete distribution, with P [wi = ±d1] = P [wi = ±d2]
= 1/4. Z is a standard Gaussian random matrix and Σ is the identity matrix. We plot simulation
results as well as our theory for leverage score sampling, greedy leverage scores, uniform sampling
and Hadamard projection. In the right panel, we also plot the histogram of the leverage scores of
X. Our theory agrees very well with the simulations.

We also observe that the greedy leverage sampling outperforms random leverage sampling,
especially for relatively small r. Moreover, leverage sampling and greedy leverage scores have
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Table 1: Tradeoff between computation and statistical accuracy.

Data matrix X
Sketching
matrix S

VE
Computational

complexity

Parallelization of
sketching across

n
Incoherent,

near-iid
Uniform
sampling

n− p
r − p

O(rp2)
Embarassingly

parallel

Arbitrary Hadamard O(np log n+ rp2) Nontrivial

Arbitrary iid entries 1 + n−p
r−p O(rnp+ rp2)

Embarassingly
parallel

much better performances than uniform sampling. This is because the leverage scores are highly
nonuniform in this example.

In Figure 2, we also compare the theoretical performance of leverage score sampling and
Hadamard projection in the same elliptical model, with several aspect ratios γ and d1, d2. We
skip the comparison with Gaussian/iid projection because the performance of Hadamard projec-
tion is uniformly better, as has been shown before. The difference between d1 and d2 is a measure
of the non-uniformity of the data.

When the data is relatively uniform (left panel), leverage sampling and Hadamard projection
have similar VE. When in addition r is small, leverage score sampling tends to perform better than
Hadamard projection. However, when the dataset is nonuniform (right panel), leverage sampling
and Hadamard projection can have very different performance. When γ is small, leverage sampling
works much better; but when γ is large, Hadamard is uniformly better. Thus, when the dataset is
nonuniform and the targeted dimension is rather small, leverage score sampling is the recommended
method, provided that one can estimate the leverage scores efficiently. In conclusion, this example
shows that the relative performance of sketching methods on elliptical data is quite complex, and
perhaps one should mostly expect rules of thumb, instead of definitive answers.

Following is the details of the calculation.
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1
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1

+
1

2

1
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2
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2
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1

2
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1
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1z

+
1

2
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1
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2z
,
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γ
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1η
−1
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ξ

γ
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2η
−1
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It is easy to see that
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Fw2
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1

2d2
1d

2
2
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2 +
d2
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2
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+

√
(d2
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d2
1 + d2

2

2(1− γ)
) +

4d2
1d

2
2γ

1− γ
),
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Figure 1: Leverage sampling, greedy leverage sampling and uniform sampling for elliptical model.
We generate the data matrix X from the elliptical model defined in (1), and we take d1 = 1, d2 =
3, n = 20000, p = 1000 while Z is generated with iid N (0, 1) entries and Σ is the identity. We
let r range from 4000 to 20000. At each dimension r we repeat the experiments 50 times and
take the average. For leverage sampling, we sample each row of X independently with probability
min(r/p · hii, 1). For greedy leverage scores, we take the r rows of X with the largest leverage
scores. For uniform sampling, we uniformly sample r rows of X. We see a good match between
theory and simulations.

If we use the r rows of X with the largest leverage scores, the truncated distribution w̃ in
Theorem A.12 can be written as

Fw̃2(t) =

{
δd22 , 0 < r

n ≤
1
2

(1− n
2r )δd21 + n

2r δd22 ,
1
2 <

r
n ≤ 1.

Therefore

ηw̃2(z) =

{
1

1+d22z
, 0 < r

n ≤
1
2

(1− n
2r ) 1

1+d21z
+ n

2r
1

1+d22z
, 1

2 <
r
n ≤ 1,

thus

η−1
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ξ
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γ

d22(ξ−γ)
, 0 < r

n ≤
1
2

1
2d21d

2
2
[−b+

√
b2 +

4d21d
2
2γ

ξ−γ ], 1
2 <

r
n ≤ 1.
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Figure 2: Comparing leverage sampling and Hadamard projection.

Here

b = d2
1 + d2

2 −
(2ξ − 1)d2

2 + d2
1

2(ξ − γ)
.

A.14 Simulation for nonuniform data

In Figure 3, each row of X is generated from a t distribution with 1 degree of freedom. Specifically,
let Σ be p×p covariance matrix with Σij = 2×2−|i−j|. Then each row of X is generated as N (0,Σ)
divided by a chi-squared random variable with 1 degree of freedom. We show the mean, as well
as the 5% and 95% quantiles of VE over 1000 repetitions. We do not use standard deviation to
illustrate the variability, because the variance can be rather large.

We also plot the histogram of the leverage scores on the right. There are several extremely large
leverage scores, which means that the design matrix is ill-conditioned. For readability’s sake, we do
not plot the results for uniform sampling and leverage sampling. Instead, we show them in Tables
2 and 3. We observe the following:

• Usually, the numerical mean of VE falls on the respective theoretical line. Moreover, the 95%
confidence intervals always cover the theoretical lines. This means that our results are correct
on average.

• However, the VE can be anomalously large in some rare cases, driving the mean to be rather
large. But even among the 1000 repetitions, the anomalous values only fewer than ten times.
This explains why the standard deviations are large but the 90% confidence intervals are
relatively short.
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Figure 3: t distribution.

• The reason for the abnormal phenomena is due to some rows of X with large norms, which
dominate the influence of X on Y . When sketching the matrix, we shrink the influence of
these dominating rows, either by mixing with other unimportant rows or by dropping them
altogether. Therefore the sketched estimators lose too much accuracy.

• Even in this less favorable situation, the Hadamard transform is still the most desirable
sketching method. It has small average VE, relatively small variability (i.e., short confidence
intervals), and short running time.

A.15 OE for two empirical datasets

See Figure 4 for the out-of-sample error on the two empirical datasets: Million Song Dataset (MSD)
and the Flight Dataset.

A.16 Comparison with previous bounds

We also compare our results with the upper bounds given in Raskutti and Mahoney [2016]. For
sub-Gaussian projections, they showed that if r ≥ c log n, then with probability greater than 0.7,
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Table 2: Uniform sampling, log V E

mean 5% 95% 50%

0 20.25823968 3.09919506 10.90630978 9.689192869
1 17.26805584 2.044572843 9.33262643 7.881064556
2 10.78396456 1.768101235 7.978181897 6.650869548
3 11.63550561 3.043487316 7.369292418 5.715237875
4 9.203440888 0.794976879 6.595984621 5.029794939
5 8.980845283 1.326756793 5.774310548 4.38426635
6 7.380001677 1.381715379 5.809281226 3.871467657
7 5.175269082 -0.182261694 5.605915977 3.399170722
8 6.359148538 0.113763057 4.175648541 2.948032272
9 9.15176239 1.078751974 4.24045247 2.574611614
10 3.947147126 0.814135635 3.999019444 2.265773149
11 3.44225402 0.122953471 3.484524911 1.932062314
12 2.527325826 0.800658751 2.987471342 1.6527189
13 1.824634546 0.322903628 2.587082545 1.331773852
14 1.491822848 0.325396696 2.165972084 1.07823758
15 1.04419024 0.130949401 1.589996964 0.81014184
16 0.934085598 0.088131217 1.387329021 0.596745268
17 0.873952782 -0.052823305 1.034961439 0.375621926
18 0.447688303 -0.130411888 0.61016263 0.17981115
19 6.978320808 -0.189431268 0.226659269 -4.75E-08

Figure 4: OE for MSD and flight dataset.
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Table 3: Leverage sampling, log V E

mean 5% 95% 50%

0 7.626778204 -0.159794491 0.821111174 0.204571271
1 3.216688922 -0.223342993 0.456512164 0.059604721
2 1.015004939 -0.207986859 0.424644872 0.029099432
3 6.287155109 -0.161735746 0.333680227 0.012818312
4 0.882013996 -0.238995897 0.397351467 0.010611862
5 0.133943751 -0.195882891 0.322395411 0.002172268
6 0.487048617 -0.160963212 0.256059749 0.002658917
7 0.204928838 -0.205892837 0.302131442 0.001159857
8 1.354935903 -0.212644915 0.376751395 0.001978275
9 0.691138831 -0.174171007 0.290014414 0.001378926
10 3.129679099 -0.250449933 0.432175622 6.24E-05
11 0.40467726 -0.280542607 0.403070117 0.000882543
12 3.800307066 -0.206858102 0.452128865 -0.000171639
13 0.403587432 -0.18407553 0.251072808 -7.39E-05
14 0.758228813 -0.296238449 0.452796686 0.000292609
15 0.180781152 -0.208918435 0.395642624 5.19E-05
16 0.075991698 -0.115281186 0.202626369 8.07E-05
17 0.159661829 -0.191824839 0.243641727 6.21E-05
18 1.00887942 -0.218371065 0.369474928 3.30E-05
19 1.994998633 -0.145457064 0.347448221 7.52E-08

it holds that

PE ≤ 44(1 +
n

r
), RE ≤ 1 + 44

p

r
.

For Hadamard projection, they showed that if r ≥ cp log n(log p+ log log n), then with probability
greater than 0.8, it holds that

PE ≤ 1 + 40 log(np)(1 +
p

r
), RE ≤ 40 log(np)(1 +

n

r
).

In Figure 5, we plot both our theoretical lines and the above upper bounds, as well as the simulation
results. It is shown that our theory is much more accurate than these upper bounds.

A.17 Computation time

In this section we perform a more rigorous empirical comparison of the running time of sketching.
We know that the running time of OLS has order of magnitude O(np2), while the running time of
Hadamard projections is c1np

2 + c2np log(n) for some constants ci. While the cubic term clearly
dominates for large n, p, our goal is to understand the performance for finite samples n, p on typical
commodity hardware. For this reason, we perform careful timing experiments to determine the
approximate values of the constants on a MacBook Pro (2.5 GHz CPU, Intel Core i7).

We obtain the following results. The time for full OLS and Hadamard sketching is approximately

tfull = 4× 10−11np2, tHadamard = 2× 10−8pn log n+ 4× 10−11rp2
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Figure 5: Comparison with prior bounds. In this simulation, we let n = 2000, the aspect ratio
γ = 0.05, with r/n ranging from 0.15 to 1. The first column displays the results for PE and RE for
Gaussian projection, while the second column shows results for randomized Hadamard projection.
The y-axis is on the log scale. The data matrix X is generated from Gaussian distribution and
fixed at the beginning, while the coefficient β is generated from uniform distribution and also fixed.
At each dimension r we repeat the simulation 50 times and all the relative efficiencies are averaged
over 50 simulations. In each simulation, we generate the noise ε as well as the sketching matrix
S. The orange dotted lines are drawn according to Section A.16, while the blue dashed lines are
drawn according to our Theorem 2.1 and Theorem 2.4.
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See Figure 6 for a comparison of the running times for various combinations of n, p. For instance,
we show the results for n = 7 · 104, and p = 1.4 · 104 with the sampling ratio ranging from 0.2 to 1.
We see that we save time if we take r/n ≤ 0.6.

We can also perform a more quantitative analysis. If we want to reduce the time by a factor of
0 < c < 1, then we need

2× 10−8pn log n+ 4× 10−11rp2

4× 10−11np2
≤ c

or also r ≤ cn− 500n logn
p , when 0 < c− 500 logn

p < 1. Then the out-of-sample prediction efficiency
is lower bounded by

OE(β̂s, β̂) =
r(n− p)
n(r − p)

≥n− p
n

(
1 +

p

n(c− 500 logn
p )− p

)
= (1− γ)

(
1 +

γ

c− 500 logn
p − γ

)
.

This shows how much we lose if we decrease the time by a factor of c.
Similarly, if we want to control the V E, say to ensure that V E(β̂s, β̂) ≤ 1 + δ, then we need

r ≥ n− p
1 + δ

+ p,

then the we must spend at least a fraction of the full OLS time given below

r

n
+

500 log n

p
≥ 1− γ

1 + δ
+ γ +

500 log n

p
.
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