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1 Proof of Lemma 1

Here we complete the proof of Theorem 1, by giving a proof to Lemma 1 below.

Proof [of Lemma 1] Our proof will consist of 3 short parts. First, we will assume that v is a
multivariate Gaussian random variable and show that in this case Σρ(v) and Σ(v) commute. Then
we will show that the order of the eigenvalues is maintained, and finally generalize from Gaussian to
SIRVs.

Σρ(v) and Σ commute: Assume first that v ∼ N (0,Σ). We whiten v to rewrite Σρ(v) as an
expectation over i.i.d Gaussian random variables. Denote by Σ = UλU> the eigendecomposition of
Σ. Then for a random vector ṽ ∼ N (0, I), we have:

Σρ(v) = Ev

{
vv>ψ

(
‖v‖22

)}
= Eṽ
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1
2 ṽṽ>λ
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(
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2Eṽ
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(
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λ
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Denote Σ̃ρ(v) = Eṽ

{
ṽṽ>ψ

(
ṽ>λṽ

)}
, if we show that this matrix is diagonal then clearly we will

have that Σρ(v) and Σ commute. To show that this is indeed the case, let us explicitly write down
Σ̃ρ(v)ij :

Σ̃ρ(v)ij =

∫ ∞
−∞

ṽj(

∫
ṽiψ(ṽ>λṽ)p(ṽ)

∏
k 6=j

dṽk)dṽj .

For i 6= j, we claim that the above equals 0. To see this, notice that the function:

h(ṽj) =

∫
ṽiψ(ṽ>λṽ)p(ṽ)

∏
k 6=j

dṽk,

is an even function of ṽj (i.e. h(ṽj) = h(−ṽj)). This is true because ψ(ṽ>λṽ) and the density p(ṽ)
are both even w.r.t ṽj . Hence the function ṽjh(ṽj) is odd, and integrating it over the reals we get 0:

Σ̃ρ(v)ij =

∫ ∞
−∞

ṽjh(ṽj)dṽj = 0.

The eigenvalues of Σρ(v) maintain the order of Σ’s eigenvalues: For the second part of the
lemma, we analyze the eigenvalues of Σρ(v), still under the assumption that v is Gaussian. Due to
the first part of the lemma, we see that the i-th eigenvalue of Σρ(v) is given by:

δi = Eṽ

{
λiv

2
i ψ(ṽ>λṽ)

}
.
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We will show that the eigenvalues of Σρ(v) and Σ have the same order (i.e. λi ≥ λj ⇒ δi ≥ δj). To
do that, let us fix two indices i, j, and assume λi ≥ λj . If equality holds then it is clear that δi = δj .
Otherwise, define the function f : R2

++ → R that replaces the fixed values of λi, λj in the expression
of δi with variables u1, u2 respectively:

f(u1, u2) = Eṽ

u1ṽ2i ψ(u1ṽ
2
i + u2ṽ

2
j +

∑
k 6=i,j

λkṽ
2
k)

.
Notice that f(λi, λj) = δi, f(λj , λi) = δj , and consider the line segments from f(λj , λj) to these
values. That is, for α ∈ [0, 1]:

γ1(α) = f(αλi + (1− α)λj , λj),

γ2(α) = f(λj , αλi + (1− α)λj).

Since γ1(0) = γ2(0), to finish this part of the proof it is enough to show that:

γ̇1(α) > 0, γ̇2(α) ≤ 0 ∀α ∈ (0, 1). (1)

We now turn to prove this.

Start by taking the derivatives of f(·, ·) w.r.t its first and second argument. We claim that the following
inequalities hold:

∂f(u1, u2)

∂u1
= Eṽ
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2
k) +

u1ṽ
4
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> 0, (2)

∂f(u1, u2)
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= Eṽ

u1ṽ2i ṽ2jψ′(u1ṽ2i + u2ṽ
2
j
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k 6=i,j

λkṽ
2
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Both inequalities stem directly from our Assumption 1. The second one is a direct consequence of
ρ’s concavity. For the first one, we will show that the term inside the expectation is positive for any
fixed values of u1, u2, ṽ, and furthermore it is 0 with probability 0. Hence the expected value must
be positive. Let us fix u1, u2, ṽ, and define:

t = u1ṽ
2
i + u2ṽ

2
j +

∑
k 6=i,j

λkṽ
2
k.

Plugging t into the term inside the expectation given in the inequality, we claim that the following
holds:

ṽ2i ψ(t) + u1ṽ
4
i ψ
′(t) ≥ −ṽ2i tψ′(t) + u1ṽ

4
i ψ
′(t) = ψ′(t)

(
u1ṽ

4
i − ṽ2i t

)
≥ 0.

The inequality here stems from Assumption 1, which states ψ(t) ≥ −tψ′(t). Now simply notice that:

u1ṽ
4
i − ṽ2i t = ṽ2i (u2ṽ

2
j +

∑
k 6=i,j

λkṽ
2
k) ≥ 0.

The last inequality is true because all u, λ values are strictly positive, and ṽ items are squared.
Furthermore, equality in these inequalities happens only when ṽj = 0 for all j 6= i.

Finally, to show Equation (1) we can use the inequalities we proved and write:

γ̇1(α) =
∂f(u1, u2)

∂u1
(αλi + (1− α)λj , λj) ·

dαλi + (1− α)λj
dα

=
∂f(u1, u2)

∂u1
(αλi + (1− α)λj , λj) (λi − λj) > 0, (3)

γ̇2(α) =
∂f(u1, u2)

∂u2
(λj , αλi + (1− α)λj) ·

dαλi + (1− α)λj
dα

=
∂f(u1, u2)

∂u2
(λj , αλi + (1− α)λj) (λi − λj) ≤ 0.
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Extension to SIRVs: Next, to treat the case where v is SIRV, we simply need to multiply a Gaussian
random variable by an independent positive scalar random variable ν. Multiplying v by a fixed value
r of ν, and conditioning all the expectations above over this fixed value ν = r does not change the
derivation. That is, the matrix Σρ(ṽ) = Eṽ

{
r2ṽṽ>ψ

(
rṽ>λṽr

)}
is still diagonal, and the order of

the eigenvalues remains intact. Now taking the expectation over ν, we again get a diagonal matrix
that respects the order of λ.

2 Derivation of Minimization-Majorization Algorithm

To justify the minimization majorization (MM) algorithm used in the paper, we provide a short
derivation. Let ρ(

√
t) be our robust loss function, that satisfies Assumption 1. To perform MM on

the objective, we need to consider a fixed Γ0 and provide a function g(w; w̃) that majorizes our loss.
That is, the following two conditions need to hold for our choice of g:

g(w; w̃) ≥ 1

m

m∑
i=1

ρ

(√
z>i Γ(w)zi

)
+ log |Γ(w)−1| ∀w : Γ(w) ∈ G

g(w̃; w̃) =
1

m

m∑
i=1

ρ

(√
z>i Γ(w̃)zi

)
+ log |Γ(w̃)−1|.

According to Assumption 1, since ρ(
√
t) is concave in t, we have for each zi:

ρ

(√
z>i Γ(w)zi

)
≤ ρ

(√
z>i Γ(w̃)zi

)
+ ψ

(
z>i Γ(w̃)zi

)
·
(
z>i Γ(w)zi − z>i Γ(w̃)zi

)
. (4)

Clearly the right hand side majorizes ρ(·). Adding a log-determinant term and rearranging, we get a
function that majorizes our objective:

g(w; w̃) =
1

m

m∑
i=1

ψ
(
z>i Γ(w̃)zi

)
· z>i Γ(w)zi + log |Γ(w)−1|+

ρ

(√
z>i Γ(w̃)zi

)
− ψ

(
z>i Γ(w̃)zi

)
· z>i Γ(w̃)zi.

Now at each iteration of the MM algorithm, we will minimize g(w; w̃), where w̃ is the current
estimate of the parameters. Dropping the terms that do not depend on w, we get:

min
w

g(w; w̃) = min
w

1

m

m∑
i=1

(
ψ
(
z>i Γ(w̃)zi

) 1
2 · zi

)>
Γ(w)

(
ψ
(
z>i Γ(w̃)zi

) 1
2 · zi

)
+ log |Γ(w)−1|.

This is exactly the minimization of a Gaussian MRF with scaled samples, as given in the algorithm
that appears in the paper.

To clarify why one can benefit from using this type of specialized algorithm, instead of using vanilla
gradient descent, Figure 2 has a runtime comparison between the methods for the stocks dataset used
in the paper.
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Figure 1: Runtimes of Gradient Descent and MM with Newton CD on stocks data with a robust loss.
The y-axis is the ratio between the objective at time t and the lowest overall observed objective.

3 Additional Experiments on River Discharge Dataset

The following figure compares the Gaussian and Laplace losses when learning the full inverse
covariance matrix, and when forcing all entries to 0 other than 1 or 3 nearest neighbors of each site.
As may be expected, parsimonious structures give better results on small samples and fall behind as
the sample gets large. Either way, a robust loss is still useful on top of the chosen structure.
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Figure 2: Additional experiments with river discharge data
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