
A Differential and Riemannian Geometry

In this section we give a short introduction to the concepts used in the paper and in the appendix
of the theories of differential and Riemannian geometry and Lie groups. The standard modern
introduction to differential geometry is Lee [2013]. This book also gives an introduction to Lie
groups. Introductory texts in Riemannian geometry are do Carmo [1992], Lee [2018]. Introductory
references for Lie groups are Rossmann [2006], Hall [2015]. Although not covered in this summary,
two more advanced texts that cover the classical theory of the cut locus through Jacobi fields are Gallot
et al. [2012], Petersen [2016].

A.1 Differential Geometry

LetM be an n-dimensional differentiable real manifold.M has an associated global object called
the tangent bundle TM := tp∈M{p} × TpM, that is, the disjoint union of all the tangent spaces
at every point ofM. The tangent bundle comes with a structure of a 2n-dimensional differentiable
manifold. A point in TM consists then of a pair (p, v) with p ∈M and v ∈ TpM. On each point,
we also have the cotangent space T ∗pM of linear applications from vectors onto the real numbers.
The disjoint union of all the cotangent spaces is another manifold T ∗M called the cotangent bundle.
When considering these bundles, tangent spaces TpM and cotangent spaces T ∗pM are sometimes
called fibres.

An affine connection∇ is a bilinear form that, given two vector fields X,Y , assigns a new one∇XY ,
and it is tensorial on the first component and Leibnitz on the second. An affine connection defines a
notion of parallel vector fields. We say that a vector field Z is parallel along a curve γ : [0, 1]→M
if ∇γ′Z = 0 where γ′ := dγ( d

dt ). For any curve, given an initial vector Z0, there exists a unique
parallel vector field Z along it such that Z(0) = Z0. We say that the vector Z(t) is the parallel
transport of Z(0) for t ∈ [0, ε).

A.2 Riemannian Geometry

A Riemannian manifold is a differentiable manifold together with a smooth metric gp : TpM×
TpM→ R which is symmetric and positive definite. A metric induces a distinguished connection
called the Levi-Civita connection. This is the unique connection that is torsion-free, ∇XY −
∇YX = [X,Y ] := XY −Y X , and it is compatible with the metric, DZ(g(X,Y )) = g(∇ZX,Y ) +
g(X,∇ZY ), where DZ denotes the directional derivative in the direction of Z. Whenever we
talk about a connection on a Riemannian manifold we will always be referring to the Levi-Civita
connection.

A Riemannian manifold has a notion of length of a differentiable curve c : [0, 1] → M, L(c) =∫ 1

0
‖γ′(t)‖ dt. When the manifold is connected, this allows to put the structure of a metric space

on the manifold, defining the distance between two points as the length of the shortest piece-wise
differentiable curve joining these two points.

Given a connection, we define a geodesic γ : [0, ε) → M as a self-parallel curve, ∇γ′γ′ = 0.
Geodesics are defined for any starting conditions (p, v) ∈ TM, γ(0) = p, γ′(0) = v on an interval
[0, ε). If a Riemannian manifold is connected and complete, the Hopf-Rinow theorem asserts that
geodesics not only exist locally, but globally, that is, they can be extended indefinitely taking ε =∞
giving γ : [0,∞)→M. Furthermore, Hopf-Rinow adds that, under the same conditions, there exists
a geodesic connecting any two given points. When the connection comes from a metric, geodesics
are the locally length-minimizing curves onM.

Given a connection, we define the exponential map as expp(v) := γp,v(1) where γp,v is the geodesic
with initial conditions (p, v). On a connected and complete Riemannian manifold, Hopf-Rinow says
that the exponential map is defined in the whole tangent bundle.

A metric induces an isomorphism between the tangent and cotangent bundle α : TM → T ∗M
defined as α(X) := g(X,−). α is sometimes called the musical isomorphism. The gradient of a
function is defined as the vector field associated to the differential form df through this isomorphism
∇f := α−1(df). In other words, it is the vector field such that df = g(∇f,−). As such, the
gradient depends on the choice of metric. A metric also allows to define the adjoint of a differential
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dφ : TpM → Tφ(p)M at a point p ∈ M as the application dφ∗ : Tφ(p)M → TpM such that for
every X ∈ TpM, Y ∈ Tφ(p)M we have that g(dφ(X), Y )φ(p) = g(X,dφ∗(Y ))p.

A.3 Lie groups

A Lie group G is a differentiable manifold equipped with a differentiable group structure. Lie groups
have a distinguished tangent space called the Lie algebra, which is the tangent space at the identity
g := TeG. Any closed subgroup of a Lie group is itself a Lie group. A (real) matrix manifold is a
closed subgroup of the general linear group GL(n) = {B ∈ Rn×n | detA 6= 0}. The Lie algebra of
the general linear group is gl(n) = Rn×n. In general, the general linear group of a vector space V is
the Lie group formed by the invertible automorphisms of V , GL(V ).

On a Lie group, one has for every g, x ∈ G the diffeomorphisms given by left translations Lg(x) :=
gx, right translations Rg(x) := xg, and conjugation cg(x) = gxg−1. Using left translations, one can
identify any tangent space with the Lie algebra via the vector space isomorphism (dLg−1)g : TgG→
g. The differential of the conjugation at the identity is called the adjoint representation of G,
Ad: G→ GL(g). The differential of Ad at the identity is the adjoint representation of g, ad: g→
End(g). For matrix Lie groups, Adg(X) = gXg−1 and adX(Y ) = [X,Y ].

Given a vector X ∈ g, we can consider the one parameter subgroup with starting vector X , which is
the unique group homomorphism γX : R→ G such that γ′X(0) = X . The Lie exponential is then
defined for every X ∈ g as exp(X) := γX(1). For matrix Lie groups, the Lie exponential is given
by the exponential of matrices.

A Riemannian metric on a Lie group is said to be left (resp. right) invariant if it turns left (resp. right)
translations into isometries. A metric is said to be bi-invariant if it is both left and right invariant.
Every Lie group admits a left-invariant metric, given by choosing any inner product in g and pushing it
forward using Lg−1 . Only compact Lie groups, commutative Lie groups, and products of them admit
bi-invariant metrics. When a Lie group is equipped with a bi-invariant metric, the Lie exponential
coincides with the Riemannian exponential at the identity.

B Parametrizations on Manifolds

In this section we look at the problem of how does optimizing f ◦ φ affect the optimization problem,
depending on the properties of φ. As a disclaimer we would like to mention that, although this section
and next section are original, most of them would be considered routine in the field of differential
geometry.

Consider the optimization problem
min
x∈M

f(x) (1)

whereM is a Riemannian manifold. In this section we will look at parametrizations, which can be
regarded as a generalization of certain trivializations, when the domain is not necessary Rn but a
Riemannian manifold.

Suppose that we have access to a diffeomorphism between Riemannian manifolds

φ : N →M.

and denote the metric on N as g2. We say that φ is a parametrization ofM in terms of N .

We can then consider the problem
min
y∈N

f(φ(y)).

In order to apply a first-order method to this new problem we first have to compute the gradient of
this new function f ◦ φ. In order to do so, let us first define some notation.

Denote by dφ and dφ′ the differential and its dual

dφ : TN → TM
dφ′ : T ∗M→ T ∗N
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and denote by α and β the canonical isomorphisms between the tangent and the cotangent bundle
induced by the metrics

α : TM ∼=→ T ∗M
β : TN ∼=→ T ∗N .

Finally, denote by dφ∗ the fibre-wise adjoint with respect to the two metrics of dφ

dφ∗ : TM→ TN .
Proposition B.1. Using the notation above, the following relation holds

β ◦ dφ∗ = dφ′ ◦ α.

Proof. For Y ∈ TN , X ∈ TM, we have that

(dφ′ ◦ α)(X)(Y ) = α(dφ(Y ))(X) = β(dφ∗(X))(Y ) = (β ◦ dφ∗)(X)(Y ).

Using this proposition, we can compute the gradient with respect to the new parametrization.
Corollary B.2. Let φ : N →M be a smooth map between Riemannian manifolds and f be a function
onM. We have that

∇(f ◦ φ) = dφ∗(∇f).

Proof. This is direct using the previous proposition since

∇(f ◦ φ) := β−1(d(f ◦ φ)) = (β−1 ◦ dφ′)(df) = dφ∗(∇f).

This motivates the definition of the metric associated to a parametrization φ.
Definition B.3 (Metric associated to a parametrization). A parametrization between Riemannian
manifolds φ : N →M induces a metric onM as per

(φ∗g2)(X1, X2)p := g2(dφ∗(X1),dφ∗(X2))φ−1(p) ∀p ∈M.

This is a metric since dφ∗(X) = 0 if and only if X = 0 by the inverse function theorem, given that φ
is a diffeomorphism.

Another way of looking at this construction is through the lens of submersions.
Definition B.4 (Riemannian Submersion). A Riemannian submersion is a surjective map φ : N →
M such that its differential is surjective at every point and

dφ : (ker(dφ))⊥ → TM
is an isometry.

This is equivalent to saying that the adjoint dφ∗ should be an isometry. This is exactly the construction
that we are using, we take the metric that converts φ into a Riemannian submersion.

We now look at this new metric. We will prove that doing gradient descent using a retraction
along φ∗g2, is not a retraction with respect to g2, and hence, it constitutes an optimization method
fundamentally different to the original Riemannian gradient descent.

Using this metric, gradient descent onM with a step-size η > 0 is given by the map

yt+1 = (φ ◦ expN ,g2 ◦dφ
∗)(−η∇f(yt))

where expN ,g2 : TN → N is the Riemannian exponential map on (N , g2). Note that since ∇f =

α−1 ◦ df , this step does not depend on the initial metric onM, as we already observed in the proof
of Corollary B.2.

More generally, recall the definition of a retraction.
Definition B.5 (Retraction). A differentiable map r : TN → N is called a retraction if for every
p ∈ N

rp(0) = p and (drp)0 = Id.

In other words, r is an order one approximation to the Riemannian exponential.
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As proved in Boumal et al. [2016], under Lipschitzness conditions, it is enough to follow retractions
rather than the exponential map in order to achieve convergence to a local minimum with Riemannian
gradient descent. As such, a natural question to ask is whether the function that defines the update
step defines a retraction.
Proposition B.6. Let (M, g1), (N , g2) be Riemannian manifolds. Let φ be a parametrization be-
tween them and let r : TN → N be a retraction. The map

φ∗r := φ ◦ r ◦ dφ∗ : TM→M
is a retraction if and only if φ is a local isometry.

Proof. It is clear that (φ∗r)p(0) = p. For the second condition, differentiating, we have that the map
is a retraction if and only if

dφ ◦ dφ∗ = IdTpM.

or equivalently dφ−1 = dφ∗. Now,

(dφ ◦ dφ∗ ◦ dφ ◦ dφ∗)p = IdTpM

so
(dφ∗ ◦ dφ)φ−1(p) = (dφ−1 ◦ dφ∗)φ−1(p) = IdTφ−1(p)N .

Finally, since dφ∗ is the adjoint operator with respect to the metrics g2 and g1, evaluating this last
expression on two points using the metric

g1(dφ(u),dφ(v)) = g2(u, v) ∀u, v ∈ Tφ−1(p)N ,
which is equivalent to φ being a local isometry.

This is not a surprising result, since a retraction is a map that preserves the gradient. The way we have
defined φ∗r is such that it preserves the gradient with respect to g2. If it also preserved the gradient
with respect to g1, that would mean that the gradients with respect to the two metrics are the same,
modulo a transformation through dφ∗, in other words, dφ should be a local isometry.

C Proof of Theorem 4.7

In this section we generalize to general matrix Lie groups the classic proof presented in Theorem
D.2. in Lezcano-Casado and Martínez-Rubio [2019].

In order to generalize this proof, we need the following theorem.
Theorem C.1 (Theorem 4 in Hille [1958]). Let A,B ∈ Cn×n. If there are no two eigenvalues in
A such that their difference is of the form 2nπi for n > 0 and, if eA = eB , we have that A and B
commute.

With this theorem in hand we can prove the following strengthened result.
Theorem C.2 (Properties of the Lie exponential). Let G be a closed subgroup of GL(n,C), the
Lie exponential is a diffeomorphism on the set U = {A ∈ g | |Im(λi(A))| < π} with λi(A) the
eigenvalues of A.

Proof. The fact that the differential of the exponential is surjective on this domain is classic (cf.,
Section 1, Proposition 7 in Rossmann [2006]). As such, we just have to prove that the exponential is
injective on this domain.

If A ∈ U is diagonalizable, A = CΣC−1 with Σ diagonal, and exp(A) = C exp(Σ)C−1 where
exp(Σ) is just the element-wise exponential of the diagonal elements.

By Hille [1958, Theorem 4], if two matrices A,B ∈ GL(n,C) such that eA = eB do not have two
eigenvalues that are 2nπi apart for n 6= 0, then A and B commute.

Any two matrices in U have this property, so

eAe−B = eA−B = I.
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As A,B ∈ U , Im(λi(A−B)) < 2π, and as the eigenvalues of eA−B are 1, and the eigenvalues of
the exponential of a matrix is the exponential of its eigenvalues, the eigenvalues of A−B are all zero.
Putting it in Jordan-normal form, we can assume that A−B is upper triangular so, as the eigenvalues
of A−B are zero, we can assume that A−B is also nilpotent.

Now, if we prove that the only upper triangular nilpotent matrix that is mapped to the identity matrix
under the exponential is the null matrix, we finish the proof, as this would imply that A = B.

The set of upper-triangular nilpotent matrices is the Lie algebra of the Lie group of upper triangular
matrices with ones on the diagonal. Recall the formula for the logarithm

log(B) =

∞∑
k=1

(−1)k+1 (B − I)k

k
.

Whenever B is upper triangular with ones on the diagonal, B − I is nilpotent, so the series converges.
As such, all these matrices have one and just one logarithm in U . In particular, the exponential is a
bijection on this set.

D Gradient of the Matrix Exponential

In this section we give a formula for the gradient of the pullback of a function by the matrix
exponential. The implementation of these formulas in practice and how can they be applied on
different manifolds is considered in Appendix E.

We will prove a stronger result, which also applies to other matrix functions like cos(X), sin(X) and,
with minor modifications, to functions like

√
X , X1/n, and log(X).8

Theorem D.1. Consider a real analytic function

φ : R→ R

x 7→
∞∑
n=0

an
n!
xn

with associated matrix function
φ : Rn×n → Rn×n

X 7→
∞∑
n=0

an
n!
Xn

We then have that, for the canonical inner product (A1, A2) = tr(Aᵀ
1A2),

(dφ)∗X = (dφ)Xᵀ X ∈ Rn×n.

Proof. We can compute the differential of φ as

(dφ)X(E) =

∞∑
n=0

(an
n!

n∑
i=0

XiEXn−i
)
.

By linearity, it is enough to compute the adjoint of functions of the form X 7→ XiEXn−i.

Observe that the adjoint of the left multiplication LA(X) = AX is exactly LAᵀ

〈LA(X), Y 〉 := tr((AX)ᵀY ) = tr(XᵀAᵀY ) = 〈X,LAᵀ(Y )〉.
In the case of right multiplication, we also get R∗A = RAᵀ .

Finally, we just have to apply this formula to the functions LXi(E) = XiE and RXn−i(E) =
EXn−i, and noting that X 7→ XiEXn−i = LXi(RXn−i(E)), and that for any two functions,
(f ◦ g)∗ = g∗ ◦ f∗, we get the result.

8See the remark after the proof of the theorem.
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After obtaining this more general result, we thought that this should be folklore in some areas of
functional analysis and numerical analysis. In fact, this result can be found without proof in Higham
[2008, p.66].
Remark. The generalization of this result to complex functions is direct, just computing the differ-
ential of the analytic function with conjugate coefficients in its Taylor series. In this case, one can
interpret this theorem by saying that “the adjoint of the differential is the differential of the conjugate
at the adjoint”, noting the two different meanings of the word adjoint in the sentence.

In the complex setting, one can formulate the theorem for a holomorphic function defined just on
an open subset U ⊆ C, and define the function on matrices on the set of matrices such that their
spectrum is contained in U , hence making sense also of functions like log(X).

The result still holds true for many other inner product in Cn×n (or Rn×n), in particular, for those
for which for every matrix X there exists a matrix Y such that L∗X = LY . If this is the case, we
write X∗ := Y and the theorem still holds true, as in this case, R∗X = RX∗ . Most of the scalar
products on matrix spaces that appear in differential geometry have this property. For example,
if we have a symmetric positive definite matrix G ∈ Rn×n and we define the following product
〈X,Y 〉 := tr(XᵀGY ), then X∗ = (GXG−1)ᵀ.

We can now state the case of exp(X) as a corollary of Theorem D.1 and Corollary B.2.
Corollary D.2 (Gradient of the matrix parametrization). Let f : GL(n)→ R be a smooth func-
tion, the gradient of f ◦ exp at a matrix A ∈ gl(n) ∼= Rn×n with respect to the canonical metric at a
matrix B ∈ GL(n), 〈A1, A2〉B = tr(Aᵀ

1A2) is given by

∇(f ◦ exp)(A) = (d exp)Aᵀ(∇f(eA)).

Using the chain rule, we can also compute the gradient with respect to the dynamic Lie trivialization
expB .
Corollary D.3. Let f : GL(n) → R be a smooth function, and let B ∈ GL(n). The gradient
of f ◦ expB at a matrix A ∈ TB GL(n) ∼= gl(n) ∼= Rn×n with respect to the canonical metric
〈A1, A2〉B = tr(Aᵀ

1A2) is given by

∇(f ◦ expB)(A) = (B−1)ᵀ(d exp)(B−1A)ᵀ(Bᵀ∇f(expB(A))).

Remark. These two corollaries still hold if we replace GL(n) by any real matrix Lie group with this
metric. The complex case is analogous.
Remark. In Lezcano-Casado and Martínez-Rubio [2019] the following slightly different formula for
the gradient of the exponential is derived for compact real matrix Lie groups:

∇(f ◦ exp)(A) = eA(d exp)−A(e−A∇f(exp(A))).

This formula agrees with the one presented here, as it turns out that multiplication by eA commutes
with (d exp)−A. This can be seen, for example, modifying the proof of formula for the derivative of
exponential map in Rossmann [2006, Chapter 1, Theorem 5] to obtain

(d exp)A(X) =

∞∑
k=0

(− adA)k

(k + 1)!
(eAX).

Finally, if G is a real compact matrix Lie group together with a bi-invariant metric, one has that for
everyA ∈ g, A∗ = −A, whereA∗ should be understood in the sense of L∗A = LA∗ . This can be seen,
for example, considering that a real compact matrix Lie group is either a subgroup of the orthogonal
group or a conjugate of one. Using this, we finally see that the formula presented in Lezcano-Casado
and Martínez-Rubio [2019] is equivalent to Corollary D.2.

E Examples of Matrix Manifolds and Specific Trivializations

This section has an expository purpose. It is intended as a compilation of useful results for the
implementation of different trivializations. We will go over the forms that the Lie exponential and
the Riemannian exponential—geodesics—take in different manifolds that are useful in the field of
machine learning.
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We will deliberately develop as least theory as possible, but we will still point out the relevant
literature sources as remarks, for those interested in the theoretical background. At the end, we will
also describe some retractions, which are useful for problems on which computing the geodesics or
the Lie exponential is too expensive.

We will put as examples some Lie groups, the sphere and the hyperbolic space, the Stiefel manifold,
and the space of symmetric positive definite matrices.
Remark. On some of the manifolds considered below, the metric is not the canonical one given by
〈A1, A2〉B = tr(Aᵀ

1A2), but often a left-translation of this one of the form

〈A1, A2〉B = tr((B−1A1)ᵀB−1A2) ∀A1, A2 ∈ TBM.

For these metrics, when we compute the gradient, we cannot use Corollary D.2 directly. On the other
hand, after a similar reasoning, we get that the differential with respect to these metrics is given by
the formula

∇(f ◦ exp)(A) = B(d exp)Aᵀ(B−1∇f(eA)).

We can also deduce this formula just noting that, for these metrics, left translations are isometries by
construction.

E.1 Compact matrix Lie groups

On a Lie group, we can identify all the tangent spaces using left multiplication. In particular, we have
tangent spaces at an arbitrary point can be identified with tangent space at the identity g := TeG—the
Lie algebra of G. The identification is given by

TBG = {BA |A ∈ g} B ∈ G.
As such, if we know the structure of g we can parametrize any tangent space of G.

For compact Lie groups, the Lie exponential and the Riemannian exponential agree9 and take the
form

expG,B(Ã) = expB(Ã) = B exp(B−1Ã) = B exp(A) A ∈ g. (2)

where exp is the exponential of matrices and we still used the identification Ã = BA. For these
groups, the Riemannian exponential is surjective.

These Lie groups were already presented in Lezcano-Casado and Martínez-Rubio [2019] in the
context of optimization for neural networks. In that paper, this trivialization was only considered in
the static case, namely exp: g→ G.

The gradient of Equation (2) is given by Proposition 6.1.

Finally, for compact matrix Lie groups, in order to use this formula to implement the dynamic
trivialization method, we are just missing the expression for the Lie algebra g ⊆ Rn×n of the Lie
group in which we are interested. We give a list of some of these below.

Special orthogonal group
SO(n) = {B ∈ Rn×n |BᵀB = I,detB = 1} so(n) = Skew(n) = {A ∈ Rn×n |Aᵀ = −A},

Unitary group
U(n) = {B ∈ Cn×n |B∗B = I} u(n) = {A ∈ Cn×n |A∗ = −A},

Special unitary group
SU(n) = {B ∈ Cn×n |B∗B = I,detB = 1} su(n) = {A ∈ Cn×n |A∗ = −A, trA = 0}.

Complex torus
T(n,C) = {B ∈ Diag(n,C) | |Bii| = 1} t(n,C) = {A ∈ Diag(n,C) |Aii ∈ iR ⊆ C},

Remark. We say that T(n,C) is a torus because it is a product of n circles. This can easily be seen
simply defining the circle as S1 = {z ∈ C | |z| = 1}, so that T(n,C) ∼= S1 × · · · × S1. In this case,
the correspondence between the Lie algebra and the Lie group is given by the Euler formula.

9Here we are assuming that we consider the group G together with a bi-invariant metric. For compact
matrix Lie groups this metric is exactly 〈A1, A2〉B = tr(Aᵀ

1A2). For more on this, we refer the reader
to Lezcano-Casado and Martínez-Rubio [2019, Appendix C.1.].
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Real torus The real torus T(2n,R) consists of the 2n× 2n block-diagonal matrices with blocks of
the form (

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
θ ∈ [−π, π].

Note that is exactly the matrix representation of the complex number eθi. In this case, its Lie algebra
is given by the block-diagonal matrices with blocks given by(

0 −a
a 0

)
a ∈ R.

Remark. In the case of the real and complex torus, the exponential is a Riemannian covering map,
this meaning that, in particular, it is always a local isometry, and it does not create local minima
or saddle points. For this reason, to optimize on these two manifolds, we would not need to use
dynamic trivializations, given that a static trivialization would work just fine as a direct corollary
of Theorem 4.3.

E.2 The groups GL+(n) and SL(n)

We then look at two more Lie groups on which we can compute the Riemannian exponential.
These groups are of primal importance for problems that require invertible matrices or the study of
volume-flows, like normalizing flows.

These groups are also an important example of groups on which the Riemannian exponential and the
Lie exponential do not agree, and thus, in this case, we have two different trivialization schemes.

Furthermore, the Lie exponential is not surjective on these groups, so these are also examples of a
retraction that could not be used as a static trivialization, but it can be used as a dynamic one.

Positive general linear group

GL+(n) = {B ∈ Rn×n | detB > 0} gl(n) = Rn×n.

This is the connected component containing the identity matrix of the general linear group

GL(n) = {B ∈ Rn×n | detB 6= 0}.

Special linear group

SL(n) = {B ∈ Rn×n | detB = 1} sl(n) = {A ∈ Rn×n | trA = 0}.
Remark. The orthogonal projection from Rn×n onto sl(n) is given by

πsl(n) : Rn×n → sl(n)

A 7→ A− 1
n tr(A)I

We can use this formula to parametrize sl(n), in the same way that we use A 7→ 1
2 (A − Aᵀ) to

parametrize so(n) ∼= Skew(n).

On these groups have two different trivializations based on the exponential of matrices.

On the one hand, we still have the dynamic Lie trivialization expB presented in Appendix E.1.

On the other hand, if G is GL(n) or SL(n) for n > 2 equipped with the metric 〈Ã1, Ã2〉B =

tr((B−1Ã1)ᵀB−1Ã2), we have that the Riemannian trivialization for these groups is given by 10

expG,B(BA) = B exp(Aᵀ) exp(A−Aᵀ) for A ∈ g.

Note that BA ∈ TBG, as one would expect.
Remark. This result was first stated in Wang et al. [1969], and a proof of it can be found in Helgason
[1979, Chapter 6, Exercise A.9]. For the proof for GL(n), see Andruchow et al. [2014, Theorem
2.14].

10This result applies not only to SL(n), but to any semisimple Lie group equipped with the left-invariant
metric associated to the Killing form.
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We can then compute the gradient of this parametrization as we know how to compute the gradient of
the exponential map with respect to this metric, as detailed at the beginning of Appendix E.
Remark. It happens that the Lie exponential is not surjective on SL(n) so, in this case, it would not
be possible to set K =∞ in the dynamic trivialization algorithm, that is, it would be necessary to
change the basis of the trivialization. The Lie trivialization is not surjective on GL+(n,R) either, but
it is surjective on GL(n,C), with gl(n,C) ∼= Cn×n.

These are examples for which using dynamic trivializations allow us to use certain parametrizations
that we would not be able to use in the context of static trivializations.

The Riemannian exponential on SL(n) and GL(n,R) is surjective with this metric.
Remark. On these two manifolds, we can also use their polar decomposition as a trivialization to
optimize over them, see Hall [2015, Proposition 2.19].

E.3 Naturally reductive homogeneous spaces

In this section we touch on a few of the most used manifolds in optimization, namely the Stiefel
manifold, the sphere, the hyperbolic space, and the symmetric positive definite matrices.

In this section we will restrict ourselves to expose the formulae for the exponential on these manifolds
for certain metric. Most of these manifolds fall under the theory of symmetric manifolds, or the more
general theory of naturally reductive homogeneous spaces. For a derivation of the fomulae in this
section in the more general context of naturally reductive homogeneous spaces, we refer the reader to
the self-contained exposition in Gallier and Quaintance [2019, Chapter 22].

E.3.1 Stiefel manifold

The Stiefel manifold is the manifold of n × k matrices with k ≤ n with orthonormal columns.
Equivalently, it is the set of orthonormal k-frames on Rn. In symbols we can see the Stiefel manifold
as a submanifold of Rn×k as follows:

St(n, k) := {B ∈ Rn×k |BᵀB = Ik} TB St(n, k) = {Ã ∈ Rn×k |BᵀÃ ∈ so(k)}
Note that St(n, n) ∼= O(n). In this case, compare the formula of the tangent space with that given
for TB SO(n) Lie groups in Appendix E.1, in particular that of so(n).

If we consider any completion of the frame B into a basis of Rn, that is, a matrix B⊥ ∈ Rn×n−k
such that (B B⊥) ∈ O(n), we have the more computationally amenable description of the tangent
spaces of St(n, k)

TB St(n, k) = {BA+B⊥A⊥ ∈ Rn×k |A ∈ so(k), A⊥ ∈ Rn−k×k}.
Note that if n = k, TB St(n, n) = {BA | A ∈ so(n)} and we still recover the same definition
from Appendix E.1.

The canonical metric 11 on the Stiefel manifold is given for B ∈ St(n, k), Ã1, Ã2 ∈ TB St(n, k) by

〈Ã1, Ã2〉B = tr(Ãᵀ
1(In − 1

2BB
ᵀ)Ã2)

With the notation as above, consider the QR decomposition QR = (In −BBᵀ)Ã with Q ∈ St(n, k),
R ∈ Rk×k, then the Riemannian exponential is given

expSt(n,k),B(Ã) = (B Q) exp

(
A −R
R 0

)(
Ik
0

)
.

Remark. The computational cost of computing geodesics on St(n, k) is then dominated by the
computation of a thin-QR factorization of a n× k matrix and the computation of a exponential of a
skew-symmetric 2k × 2k matrix.

11We say that this is the canonical metric because it is the one inherited from the quotient structure—as a
homogeneous space—of St(n, k) as St(n, k) ∼= SO(n)/ SO(n−k). If we put the Euclidean metric 1

2
tr(XᵀY )

on SO(n), this metric is bi-invariant under the action of SO(n− k) and descends into the canonical metric on
the quotient manifold SO(n)/SO(n− k) described here. For the exact computations see Edelman et al. [1998].
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If 2k > n, a more efficient algorithm is possible. We just have to compute the geodesics on SO(n) as
per Appendix E.1 and then drop then project the result onto St(n, k) dropping the last n− k columns.
This process requires the computation of just one exponential of an n× n matrix. This process is
equivalent to the formula described above.
Remark. In Edelman et al. [1998, Section 2.2.2] the authors give a formula for the geodesics of
St(n, k) seen as a submanifold of Rn×k, that is, with the metric 〈Ã1, Ã2〉 = tr(Ãᵀ

1Ã2). In Section
2.4.1 they also discuss an essential difference between the Euclidean metric and the canonical metric
on the Stiefel manifold.

E.3.2 The sphere and the hyperbolic plane

The case of the sphere Sn = {x ∈ Rn+1 | ‖x‖ = 1} is probably one of the most classical ones. We
will always consider the round sphere, this is, the sphere as a subset of Rn+1 together with the metric
inherited from Rn+1.

Its tangent space at a point x ∈ Sn is simply given by the set of vectors orthogonal to it

TxS
n = {v ∈ Rn | 〈x, v〉 = 0}.

and the geodesics are given by

expSn,x(v) = cos(‖v‖)x+ sin(‖v‖) v

‖v‖ .

To describe the n-dimensional hyperbolic space, first consider the diagonal matrix In,1 with n positive
ones and a negative one on its diagonal. We will use the following notation

〈x, y〉H := 〈x, In,1y〉 =

n∑
i=1

xiyi − xn+1yn+1 ∀x, y ∈ Rn+1

and denote by ‖x‖H =
√
〈x, x〉H whenever 〈x, x〉H ≥ 0.

With this notation, the n-dimensional hyperbolic space Hn can be seen as the submanifold of Rn+1

defined by
Hn = {x ∈ Rn+1 | 〈x, x〉H = −1, xn+1 > 0}

with tangent space at x ∈ Hn given by

TxHn = {v ∈ Rn+1 | 〈x, v〉H = 0}.

The geodesics are then given by

expHn,x(v) = cosh(‖v‖H)x+ sinh(‖v‖H)
v

‖v‖H
.

Remark. The formula for the sphere is just a particular case of the one given for St(n+ 1, 1) ∼= Sn.

The reason why the formulas of the geodesics on the sphere and the hyperbolic plane are so similar has
a geometric meaning. This can be seen in a more general case, considering the oriented Grassmannian
manifold and the hyperbolic Grassmannian. The sphere and the hyperbolic plane are special cases of
these manifolds. These manifolds are symmetric spaces and they are dual to each other. For more
on the duality between symmetric spaces of compact and non-compact type, we refer the reader
to Helgason [1979, Chapter 5, Example 1] or O’Neill [1983, Chapter 11].
Remark. In the same spirit as we can compute the geodesics on St(n, k) by taking a geodesic in
SO(n) and projecting it down to St(n, k), we can also compute the geodesics of the real projective
plane RPn by computing the geodesic on Sn and projecting it down to RPn. The metric induced on
RPn is called the standard round metric on RPn. If we perform the same process between S2n+1 and
CPn and, in this case, we would get the Fubini-Study metric. These constructions are particular cases
of the more general theory of Riemannian submersions. In particular, see O’Neill [1983, Chapter 7,
Definition 44] for an introduction by one of the fathers of the theory, and Besse [2008, Chapter 9] for
a more advanced review of the subject.
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E.3.3 The symmetric positive definite matrices

The symmetric positive definite matrices Sym+(n) do not form a Lie group, as they are not closed
under matrix multiplication, but they are a symmetric space.

When seen as a subset of Rn×n, we can endow it with a left-invariant metric defined as 〈Ã1, Ã2〉B =
tr(B−1A1B

−1A2). The tangent space at a point B ∈ Sym+(n) is given by

TB Sym+(n) = {B1/2AB1/2 |A ∈ sym(n)}
where sym(n) is the tangent space at the identity, given by the symmetric matrices

sym(n) = {A ∈ Rn×n |Aᵀ = A}.
Note that for a symmetric positive definite matrix the square root is well defined, as symmetric
positive definite matrices are diagonalizable, and the square root is just the matrix whose eigenvalues
are the (positive) square root of the eigenvalues of the initial matrix.

Following the notation for Lie groups, if we denote Ã = B1/2AB1/2, we have that

expSym+(n),B(Ã) = B1/2 exp(B−1/2ÃB−1/2)B1/2 = B1/2 exp(A)B1/2.

Remark. In this case, this manifold also constitutes an example of a symmetric space since
Sym+(n) ∼= GL+(n)/O(n). The metric considered here is the natural one with respect to this
structure. An introduction to the computational aspects of this manifold can be found in Bonnabel
and Sepulchre [2009].

E.4 Some retractions

For now we have just mentioned examples regarding either the Lie exponential or the Riemannian
exponential, but the dynamic trivialization framework allows us to use any function that is a retraction.
In order to make use of arbitrary retractions, we just have to be able to compute the gradient of the
function when precomposed with them. We will do so for a few important examples in this section.

In the case of the two retractions mentioned in Section 6.3, the Cayley map and projectors, their
derivatives are already implemented in the major deep-learning packages, like Pytorch or Tensorflow.
The first one just requires an inverse (or, more efficiently and stable, the solution of a system
of the form AX = B) and the second one just requires the derivatives with respect to the SVD
decomposition.

The retraction induced by a projector can be easily implemented for most manifolds. For example, for
the sphere takes just the form x 7→ x

‖x‖ , whose derivative can also be computed just using autodiff.

For the symmetric positive definite matrices, we have the retraction from the symmetric matrices
into the positive semidefinite matrices given by A 7→ A2. This one is similar to the frequently used
from the upper triangular matrices given by the Cholesky decomposition L 7→ LLᵀ. The former
has the advantage that we have access to A which is the square root of its image. This can be
helpful, as sometimes the square root of the matrix is needed for some computations, as we have seen
in Appendix E.3.3. The retraction given by the Cholesky decomposition has the advantage that, if the
diagonal of the upper-triangular matrix L is strictly positive, then LLᵀ will be positive definite. For
this reason this retraction is often used to parametrize variance kernels in Bayesian statistics.

Another retraction for Sym+(n) is given by the exponential of matrices exp: sym(n)→ Sym+(n)
which is a diffeomorphism. As such, it provides a rather good, although expensive, option to
parametrize this manifold.

For a much more in-depth treatment of retractions, we refer the reader to Absil et al. [2009].

F Detailed Experiment Set-Up and Hyperparameters

We tried to reproduce as faithfully as possible the set-up from previous experiments, to achieve a
fair comparison. The batch size for all the experiments is 128. We fixed the seed to be 5544 of both
Numpy and Pytorch for reproducibility in the final runs.
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The exact architecture to process for a sequence of inputs xt ∈ Rd with a hidden size p is given by
the formula

ht+1 = σ(exp(A)ht + Txt+1)

with A ∈ Skew(p) and T ∈ Rp×d. σ is the modrelu non-linearity introduced in Arjovsky et al.
[2016].

The initialization Henaff refers to initializing the diagonal blocks of the skew-symmetric matrices
with elements sampled from the uniform distribution U(−π, π) as detailed in Henaff et al. [2016].
The Cayley initialization refers to sampling the diagonal from a distribution u ∼ U(0, π/2) and then

computing s = −
√

1−cos(u)
1+cos(u) as detailed in Helfrich et al. [2018].

As we mentioned in the experiments section, we did not include the copying experiment that was
usually used in previous papers, given that, as it was demonstrated in Lezcano-Casado and Martínez-
Rubio [2019], the exponential trivialization converges to the exact solution even when based at the
identity. The same happens when used with the dynamic trivialization, so we do not think that this
experiment adds anything to the results.

Table 3: Hyperparameters for DTRIV1.

Dataset Size Optimizer Learning Rate Orthogonal optimizer Orthogonal Learning Rate

MNIST
170

RMSPROP

10−3

RMSPROP

10−4

360 10−3 10−4

512 5 · 10−4 7 · 10−5

P-MNIST
170 7 · 10−4 2 · 10−4

360 7 · 10−4 7 · 10−5

512 5 · 10−4 5 · 10−5

TIMIT
224

ADAM
10−3

RMSPROP
10−4

322 10−3 10−4

425 10−3 10−4

Table 4: Hyperparameters for DTRIV100.

Dataset Size Optimizer Learning Rate Orthogonal optimizer Orthogonal Learning Rate

MNIST
170

RMSPROP

5 · 10−4

RMSPROP

10−4

360 3 · 10−4 5 · 10−5

512 5 · 10−4 10−4

P-MNIST
170 7 · 10−4 10−4

360 5 · 10−4 7 · 10−5

512 5 · 10−4 5 · 10−5

TIMIT
224

ADAM
10−3

RMSPROP
2 · 10−4

322 10−3 2 · 10−4

425 10−3 10−4
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Table 5: Hyperparameters for DTRIV∞.

Dataset Size Optimizer Learning Rate Orthogonal optimizer Orthogonal Learning Rate

MNIST
170

RMSPROP

7 · 10−4

RMSPROP

10−4

360 5 · 10−4 10−4

512 10−4 7 · 10−5

P-MNIST
170 7 · 10−4 2 · 10−4

360 7 · 10−4 5 · 10−5

512 3 · 10−4 7 · 10−5

TIMIT
224

ADAM
10−3

RMSPROP
2 · 10−4

322 10−3 2 · 10−4

425 10−3 2 · 10−4
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