
Table 2: Hyperparameters used in the experiments

Controller Memory

Layers dh do di Layers dk dv Dl H
Algorithmic tasks 1 100 100 100 3 100 100 100 1
bAbI task 1 256 256 256 3 100 100 100 3
Maze expl. 1 200 200 - 3 100 100 100 3

A Training Details

We used tanh activation function and three layer feed-forward neural net for our memory. For the
BFPF qlψ , we performed an initial experiment evaluating feed-forward and LSTM architectures with
different inputs and a simple single-layer MLP with input vwt worked well. The number of parallel
heads H was 1, 3 and 3 for the algorithmic, bAbI and maze exploration experiments, respectively.

For dictionary inference task, we used four special input characters in addition to the main vocabulary
for the end of a sequence, a support example separator, the end of a support set and an input place
holder for target. For double copy task, input sequences of length 50 were constructed by randomly
sampling (with replacement) from 10 unique characters. For the sort task, input sequences were
length of 20 and consisted of 8-bit binary vectors along with their scalar weights. The model were
trained to predict the first 16 vectors sorted. This follows the setup of NTM [8].

For bAbI question answering, we appended each question to the end of its related story and inserted
additional placeholders for answer tokens. The models read the story first and then the question
word-by-word, and once reaching the answer placeholders produce a prediction. The standard data
splits were used in the experiment. We perform an early-stopping based on the standard development
set and evaluate on the test set.

The batch sizes were set to 32 and 128 for the algorithmic and bAbI experiments, respectively. All
models were optimized using Adam optimizer. The hyperparameters for Adam optimizer were set
to default values (alpha=0.001 and beta=0.9) for all learning problems except the RL one. For the
RL task, we used the same hyperparameters as [23]. Table 2 lists our model hyperparameters. In
Figure 7, we have shown an instance of 9× 9 maze.

B Detailed Results on bAbI Task

Table 3 and 4 show the best results of the compared models and the detailed runs of our best
performing model.

13



Table 3: Best results on bAbI question answering.

Sentence-level Word-level

Task EntNet TPR-RNN DNC SDNC MNM-g MNM-p
1: one supporting fact 0.1 0 0 0 0 0
2: two supporting facts 2.8 0.4 0.4 0.6 0.2 0.1
3: three supporting facts 10.6 3.4 1.8 0.7 1.8 0.9
4: two argument rel. 0 0.2 0 0 0 0
5: three argument rel. 0.4 1.0 0.8 0.3 0.4 0.3
6: yes/no questions 0.3 0.1 0 0 0 0
7: counting 0.8 1.0 0.6 0.2 0.2 0.3
8: lists/sets 0.1 0.5 0.3 0.2 0.2 0
9: simple negation 0 0.3 0.2 0 0 0
10: indefinite kd. 0 0.4 0.2 0.2 0.1 0
11: basic coref. 0 1.3 0 0 0 0
12: conjunction 0 0.2 0 0.1 0 0
13: compound coref. 0 2.1 0 0.1 0 0
14: time reasoning 3.6 0.2 0.4 0.1 0.5 0.1
15: basic deduction 0 0 0 0 0 0
16: basic induction 52.1 0.4 55.1 54.1 51.2 0.7
17: positional reasoning 11.7 0.6 12.0 0.3 0 0
18: size reasoning 2.1 0 0.8 0.1 0 0.2
19: path finding 63.0 4.2 3.9 1.2 0.7 0.9
20: agent’s motivation 0 0 0 0 0 0
Mean Error: 7.38 0.81 3.8 2.9 2.76 0.175
Failed Tasks (> 5% error): 4 0 2 1 1 0

14



Table 4: Results from 12 runs of MNM-p model.

Task run-1 run-2 run-3 run-4 run-5 run-6 run-7 run-8 run-9 run-10 run-11 run-12 Mean Best
1: one supporting fact 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
2: two supporting facts 0.2 0 0.7 0.1 0.1 0.3 0.4 0 0.2 0.1 0.3 0 0.2 ± 0.2 0
3: three supporting facts 2 2.1 2.2 1.7 0.9 1.1 1.9 1.5 2 2.1 2.4 1.7 1.8 ± 0.43 0.9
4: two argument rel. 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
5: three argument rel. 0.5 0.8 1.1 0.4 0.3 0.7 0.2 0.8 0.8 0.4 0.4 0.7 0.59 ± 0.25 0.2
6: yes/no questions 0 0.2 0 0 0 0 0 0 0 0.1 0.1 0 0.03 ± 0.06 0
7: counting 0 0 0 0 0.3 0.2 0.3 0.3 0.1 0.4 0 0 0.13 ± 0.15 0
8: lists/sets 0 0 0 0.1 0 0.1 0 0 0.1 0.1 0 0 0.03 ± 0.05 0
9: simple negation 0.1 0 0 0 0 0 0 0 0 0 0 0 0.01 ± 0.03 0
10: indefinite kd. 0 0.1 0.1 0.1 0 0 0 0 0.1 0 0 0.1 0.04 ± 0.05 0
11: basic coref. 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
12: conjunction 0 0 0 0.1 0 0 0 0 0 0 0 0 0.01 ± 0.03 0
13: compound coref. 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
14: time reasoning 0.1 0.8 3.2 1.3 0.1 0.3 1.9 1 3.7 2.2 3.1 0.2 1.49 ± 1.25 0.1
15: basic deduction 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
16: basic induction 0.5 0.7 49.2 0.6 0.7 1 0.9 0.3 0.4 0.3 0.4 0.5 4.63 ± 13.44 0.3
17: positional reasoning 0.5 0.3 1.9 0 0 0 0 0 0 1.5 1.3 0 0.46 ± 0.67 0
18: size reasoning 0.1 0.2 0.1 0.6 0.2 0.1 0.3 0.1 0.2 0 0.5 0.6 0.25 ± 0.2 0
19: path finding 1.4 3.1 0.7 4.2 0.9 0.2 0.6 0.1 0.1 1.4 2.1 0 1.23 ± 1.26 0
20: agent’s motivation 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0

15



Figure 7: An example maze of 9 × 9 size. The current goal and agent locations are indicated in
yellow and green, respectively.

C Relation to Sparse Distributed Memory

Sparse distributed memory [18] can be seen as a two-layer neural network in which the first layer
outputs an address to read from or write to and the second layer encodes the memory content.
Concretely, given fixed address matrix A ∈ {−1, 1}Dl×dv and content matrix Ct ∈ Zdv×Dl , sparse
distributed memory first calculates an activation vector at ∈ according to

at = σ(Akt), (7)

where kt is an input and σ(m) is an element-wise function that outputs 1 if 1
2 (Dl −m) ≤ δ and

0 otherwise, with δ a threshold. At read time, a memory output v̂t is obtained by multiplying the
activation vector by the content matrix: v̂t = Ctat. At write time, the memory is updated to store a
content vector vt according to:

Ct = Ct−1 + vta
T
t . (8)

We can derive related computations for a memory function parameterized as a two-layer feed-forward
neural network (L = 2). The computation at the first layer is at = σ(M1

t kt), which becomes
identical to that of the SDM if we use the address matrix A for M1

t and the binary activation function
for σ. At read time, the computation at the second layer is v̂t =M2

t at, where M2
t is analogous to the

content matrix Ct.

For our memory update, the derivative of the mean squared error with respect to the second-layer
parameter matrix is:

∂Lup
t

∂M2
t

=
2

dv
(v̂t − vt)aTt . (9)

Then we can rewrite the update for the last layer as

M2
t =M2

t−1 + vta
T
t − v̂taTt , (10)

where we have dropped the normalization constant 2
dv

and set the update rate βt to one for convenience.
Comparing Eq. 10 with Eq. 8, the gradient-based update incorporates the SDM update rule as a
component and performs a slightly smarter computation, since it makes no update whenever the
desired value is already stored (i.e., v̂t = vt).

D Visualization of Learned Memory Operation

16



17



18



19



20



21



22



23



24



25


