
A q-means: Supplementary Meterial

A.1 Related Work

Before providing the mathematical analysis, we discuss previous work on quantum unsupervised
learning and clustering. Aimeur, Brassard and Gambs [2] gave two quantum algorithms for unsuper-
vised learning using the amplification techniques from [13]. Specifically, they proposed an algorithm
for clustering based on minimum spanning trees that runs in time Θ(N3/2) and a quantum algorithm
for k-median (a problem related to k-means) algorithm with complexity time O(N3/2/

√
k).

Lloyd, Mohseni and Rebentrost [27] proposed quantum k-means and nearest centroid algorithms
using an efficient subroutine for quantum distance estimation assuming as we do quantum access to
the data. Given a dataset of N vectors in a feature space of dimension d, the running time of each
iteration of the clustering algorithm (using a distance estimation procedure with error ε) isO(kN log d

ε )
to produce the quantum state corresponding to the clusters. Note that the time is linear in the number
of data points and it will be linear in the dimension of the vectors if the algorithm needs to output the
classical description of the clusters.

In the same work, they also proposed an adiabatic algorithm for the assignment step of the k-means
algorithm, that can potentially provide an exponential speedup in the number of data points as well,
in the case the adiabatic algorithm performs exponentially better than the classical algorithm. The
adiabatic algorithm is used in two places for this algorithm, the first to select the initial centroids, and
the second to assign data points to the closest cluster. However, while arguments are given for its
efficiency, it is left as an open problem to determine how well the adiabatic algorithm performs on
average, both in terms of the quality of solution and the running time.

Wiebe, Kapoor and Svore [36] apply the minimum finding algorithm [13] to obtain nearest-neighbor
methods for supervised and unsupervised learning. At a high level, they recovered a Grover-type
quadratic speedup with respect to the number of elements in the dataset in finding the k nearest
neighbors of a vector. Otterbach et al. [32] performed clustering by exploiting a well-known reduction
from clustering to the Maximum-Cut (MAXCUT) problem; the MAXCUT is then solved using
QAOA, a quantum algorithm for performing approximate combinatorial optimization [14].

Let us remark on a recent breakthrough by Tang et al. [17, 35, 34], who proposed three classical
machine learning algorithms obtained by dequantizing recommendation systems [23] and low rank
linear system solvers. Like the quantum algorithms, the running time of these classical algorithms
is O(poly(k)polylog(mn)), that is poly-logarithmic in the dimension of the dataset and polynomial
in the rank. However, the polynomial dependence on the rank of the matrices is significantly worse
than the quantum algorithms and in fact renders these classical algorithms highly impractical. For
example, the new classical algorithm for stochastic regression inspired by the HHL algorithm [19]
has a running time of Õ(κ6k16 ‖A‖6F /ε6), which is impractical even for a rank-10 matrix.

The extremely high dependence on the rank and the other parameters implies not only that the
quantum algorithms are substantially faster (their dependence on the rank is sublinear!), but also
that in practice there exist much faster classical algorithms for these problems. While the results
of Tang et al. are based on the FKV methods [16], in classical linear algebra, algorithms based
on the CUR decomposition that have a running time linear in the dimension and quadratic in the
rank are preferred to the FKV methods [16, 11, 1]. For example, for the recommendation systems
matrix of Amazon or Netflix, the dimension of the matrix is 106 × 107, while the rank is certainly
not lower than 100. The dependence on the dimension and rank of the quantum algorithm in [23] is
O(
√
k log(mn)) ≈ O(102), of the classical CUR-based algorithm is O(mk2) ≈ O(1011), while of

the Tang algorithm is O(k16log(mn)) ≈ O(1033).

It remains an open question to find classical algorithms for these machine learning problems that are
poly-logarithmic in the dimension and are competitive with respect to the quantum or the classical
algorithms for the same problems. This would involve using significantly different techniques than
the ones presently used for these algorithms.
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A.2 Well-clusterable dataset model: Details

We refer to the Definiton 1 of Section 1.4 concerning well-clusterable datasets and provide some
claims. Note that our q-means algorithm will provide good clustering whenever the classical δ-
k-means algorithm will, and not only for well-clusterable datasets. The reason for defining well-
clusterable datasets is to make a mathematically rigorous running time analysis possible.

We now show that a well-clusterable dataset has a good rank-k approximation where k is the number
of clusters. This result will later be used for giving tight upper bounds on the running time of the
quantum algorithm for well-clusterable datasets. As we said, one can easily construct such datasets
by picking k well separated vectors to serve as cluster centers and then each point in the cluster is
sampled from a Gaussian distribution with small variance centered on the centroid of the cluster.

We denote as Vk the optimal rank k approximation of V , that is Vk =
∑k
i=0 σiuiv

T
i , where ui, vi are

the row and column singular vectors respectively and the sum is over the largest k singular values σi.
We denote as V≥τ the matrix

∑`
i=0 σiuiv

T
i where σ` is the smallest singular value which is greater

than τ .
Claim A.1. Let Vk be the optimal k-rank approximation for a well-clusterable data matrix V , then
‖V − Vk‖2F ≤ (λβ2 + (1− λ)4η) ‖V ‖2F .

Proof. Let W ∈ RN×d be the matrix with row wi = cl(vi), where cl(vi) is the centroid closest
to vi. The matrix W has rank at most k as it has exactly k distinct rows. As Vk is the optimal
rank-k approximation to V , we have ‖V − Vk‖2F ≤ ‖V −W‖

2
F . It therefore suffices to upper bound

‖V −W‖2F . Using the fact that V is well-clusterable, we have

‖V −W‖2F =
∑
ij

(vij − wij)2

=
∑
i

d(vi, cl(vi))
2 ≤ λNβ2 + (1− λ)N4η,

where we used Definition 1 to say that for a λN fraction of the points d(vi, cl(vi))
2 ≤ β2 and for

the remaining points d(vi, cl(vi))
2 ≤ 4η. Also, as all vi have norm at least 1 we have N ≤ ‖V ‖F ,

implying that ‖V − Vk‖2 ≤ ‖V −W‖2F ≤ (λβ2 + (1− λ)4η) ‖V ‖2F .

The running time of the quantum linear algebra routines for the data matrix V in Theorem A.8 depend
on the parameters µ(V ) and κ(V ). We establish bounds on both of these parameters using the fact
that V is well-clusterable
Claim A.2. Let V be a well-clusterable data matrix, then µ(V ) :=

‖V ‖F
‖V ‖ = O(

√
k).

Proof. We show that when we rescale V so that ‖V ‖ = 1, then we have ‖V ‖F = O(
√
k) for the

rescaled matrix. From the triangle inequality we have that ‖V ‖F ≤ ‖V − Vk‖F + ‖Vk‖F . Using the
fact that ‖Vk‖2F =

∑
i∈[k] σ

2
i ≤ k and Claim A.1, we have,

‖V ‖F ≤
√

(λβ2 + (1− λ)4η) ‖V ‖F +
√
k

Rearranging, we have that ‖V ‖F ≤
√
k

1−
√

(λβ2+(1−λ)4η)
= O(

√
k).

We next show that if we use a condition threshold κτ (V ) instead of the true condition number κ(V ),
that is we consider the matrix V≥τ =

∑
σi≥τ σiuiv

T
i by discarding the smaller singular values

σi < τ , the resulting matrix remains close to the original one, i.e. we have that ‖V − V≥τ‖F is
bounded.
Claim A.3. Let V be a matrix with a rank-k approximation given by ‖V − Vk‖F ≤ ε′ ‖V ‖F and let
τ = ετ√

k
‖V ‖F , then ‖V − V≥τ‖F ≤ (ε′ + ετ ) ‖V ‖F .
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Proof. Let l be the smallest index such that σl ≥ τ , so that we have ‖V − V≥τ‖F = ‖V − Vl‖F .
We split the argument into two cases depending on whether l is smaller or greater than k.

• If l ≥ k then ‖V − Vl‖F ≤ ‖V − Vk‖F ≤ ε′ ‖V ‖F .

• If l < k then, ‖V − Vl‖F ≤ ‖V − Vk‖F + ‖Vk − Vl‖F ≤ ε′ ‖V ‖F +
√∑k

i=l+1 σ
2
i .

As each σi < τ and the sum is over at most k indices, we have the upper bound (ε′ +
ετ ) ‖V ‖F .

The reason we defined the notion of well-clusterable dataset is to be able to provide some strong
guarantees for the clustering of most points in the dataset. Note that the clustering problem in the
worst case is NP-hard and we only expect to have good results for datasets that have some good
property. Intuitively, we should only expect k-means to work when the dataset can actually be clusterd
in k clusters. We show next that for a well-clusterable dataset V , there is a constant δ that can be
computed in terms of the parameters in Definition 1 such that the δ-k-means clusters correctly most
of the data points.

Claim A.4. Let V be a well-clusterable data matrix. Then, for at least λN data points vi, we have

min
j 6=`(i)

(d2(vi, cj)− d2(vi, c`(i))) ≥ ξ2 − 2
√
ηβ

which implies that a δ-k-means algorithm with any δ < ξ2− 2
√
ηβ will cluster these points correctly.

Proof. By Definition 1, we know that for a well-clusterable dataset V , we have that d(vi, cl(vi)) ≤ β
for at least λN data points and where cl(vi) is the centroid closest to vi. Further, the distance between
each pair of the k centroids satisfies the bounds 2

√
η ≥ d(ci, cj) ≥ ξ. By the triangle inequality, we

have d(vi, cj) ≥ d(cj , c`(i))− d(vi, c`(i)). Squaring both sides of the inequality and rearranging,

d2(vi, cj)− d2(vi, c`(i)) ≥ d2(cj , c`(i))− 2d(cj , c`(i))d(vi, c`(i)))

Substituting the bounds on the distances implied by the well-clusterability assumption, we obtain
d2(vi, cj)− d2(vi, c`(i)) ≥ ξ2 − 2

√
ηβ. This implies that as long as we pick δ < ξ2 − 2

√
ηβ, these

points are assigned to the correct cluster, since all other centroids are more than δ further away than
the correct centroid.

A.3 Quantum Subroutines

We will assume at some steps that these matrices and V and Ct are stored in suitable QRAM data
structures which are described in [23]. To prove our results, we are going to use the following tools:

Theorem A.5 (Amplitude estimation [7]). Given a quantum algorithm

A : |0〉 → √p |y, 1〉+
√

1− p |G, 0〉
where |G〉 is some garbage state, then for any positive integer P , the amplitude estimation algorithm
outputs p̃, with (0 ≤ p̃ ≤ 1), such that

|p̃− p| ≤ 2π

√
p(1− p)
P

+
( π
P

)2

,

with probability at least 8/π2. It uses exactly P iterations of the algorithm A. If p = 0 then p̃ = 0
with certainty, and if p = 1 and P is even, then p̃ = 1 with certainty.
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In addition to amplitude estimation, we will make use of a tool developed in [36] to boost the
probability of getting a good estimate for the distances required for the q-means algorithm. In high
level, we take multiple copies of the estimator from the amplitude estimation procedure, compute the
median, and reverse the circuit to get rid of the garbage. Here we provide a theorem with respect to
time and not query complexity.
Theorem A.6 (Median Evaluation [36]). Let U be a unitary operation that maps

U : |0⊗n〉 7→
√
a |x, 1〉+

√
1− a |G, 0〉

for some 1/2 < a ≤ 1 in time T . Then there exists a quantum algorithm that, for any ∆ > 0 and for
any 1/2 < a0 ≤ a, produces a state |Ψ〉 such that ‖ |Ψ〉 − |0⊗nL〉 |x〉 ‖ ≤

√
2∆ for some integer L,

in time

2T

⌈
ln(1/∆)

2
(
|a0| − 1

2

)2
⌉
.

We also need some state preparation procedures. These subroutines are needed for encoding vectors
in vi ∈ Rd into quantum states |vi〉. An efficient state preparation procedure is provided by the
QRAM data structures.
Theorem A.7 (QRAM data structure [23]). Let V ∈ RN×d, there is a data structure to store the
rows of V such that,

1. The time to insert, update or delete a single entry vij is O(log2(N)).

2. A quantum algorithm with access to the data structure can perform the following unitaries
in time T = O(log2N).

(a) |i〉 |0〉 → |i〉 |vi〉 for i ∈ [N ].
(b) |0〉 →

∑
i∈[N ] ‖vi‖ |i〉.

In our algorithm we will also use subroutines for quantum linear algebra. For a symmetric matrix
M ∈ Rd×d with spectral norm ‖M‖ = 1 stored in the QRAM, the running time of these algorithms
depends linearly on the condition number κ(M) of the matrix, that can be replaced by κτ (M), a
condition threshold where we keep only the singular values bigger than τ , and the parameter µ(M),
a matrix dependent parameter defined as

µ(M) = min
p∈P

(‖M‖F ,
√
s2p(M)s(1−2p)(MT )),

where P ⊂ [0, 1] is such that |P| = O(1) and sp(M) = maxi∈[n]

∑
j∈[d]M

p
ij . The different terms

in the minimum in the definition of µ(M) correspond to different choices for the data structure for
storing M , as detailed in [22]. Note that µ(M) ≤ ‖M‖F ≤

√
d as we have assumed that ‖M‖ = 1.

The running time also depends logarithmically on the relative error ε of the final outcome state.
[8, 18].
Theorem A.8 (Quantum linear algebra [8] ). Let M ∈ Rd×d such that ‖M‖2 = 1 and x ∈ Rd. Let
ε, δ > 0. If M is stored in QRAM data structures with parameter µ(M) and the time to prepare |x〉
is Tx, then there exist quantum algorithms that with probability at least 1− 1/poly(d) return

1. A state |z〉 such that ‖|z〉 − |Mx〉‖ ≤ ε in time Õ((κ(M)µ(M) + Txκ(M)) log(1/ε)).

2. A state |z〉 such that
∥∥|z〉 − |M−1x〉

∥∥ ≤ ε in time Õ((κ(M)µ(M) + Txκ(M)) log(1/ε)).

3. Norm estimate z ∈ (1± δ) ‖Mx‖, with relative error δ, in time Õ(Tx
κ(M)µ(M)

δ log(1/ε)).

The linear algebra procedures above can also be applied to any rectangular matrix V ∈ RN×d by

considering instead the symmetric matrix V =

(
0 V
V T 0

)
.
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The final component needed for the q-means algorithm is a linear time algorithm for vector state
tomography that will be used to recover classical information from the quantum states corresponding
to the new centroids in each step. Given a unitary U that produces a quantum state |x〉, by calling
O(d log d/ε2) times U , the tomography algorithm is able to reconstruct a vector x̃ that approximates
|x〉 such that ‖|x̃〉 − |x〉‖ ≤ ε.
Theorem A.9 (Vector state tomography [24]). Given access to unitary U such that U |0〉 = |x〉
and its controlled version in time T (U), there is a tomography algorithm with time complexity
O(T (U)d log d

ε2 ) that produces unit vector x̃ ∈ Rd such that ‖x̃− x‖2 ≤ ε with probability at least
(1− 1/poly(d)).

A.4 Detailed proofs of the quantum procedures

A.4.1 Proof of Theorem 2.1

The theorem will follow easily from the following lemma which computes the square distance or
inner product of two vectors.
Lemma A.10 (Distance / Inner Products Estimation). Assume for a data matrix V ∈ RN×d and a
centroid matrix C ∈ Rk×d that the following unitaries |i〉 |0〉 7→ |i〉 |vi〉 , and |j〉 |0〉 7→ |j〉 |cj〉 can
be performed in time T and the norms of the vectors are known. For any ∆ > 0 and ε1 > 0, there
exists a quantum algorithm that computes in time Õ

(
‖vi‖‖cj‖T log(1/∆)

ε1

)
,

|i〉 |j〉 |0〉 7→ |i〉 |j〉 |d2(vi, cj)〉 ,

where |d2(vi, cj)− d2(vi, cj)| 6 ε1 with probability at least 1− 2∆, or

|i〉 |j〉 |0〉 7→ |i〉 |j〉 |(vi, cj)〉

where |(vi, cj)− (vi, cj)| 6 ε1 with probability at least 1− 2∆.

Proof. Let us start by describing a procedure to estimate the square `2 distance between the nor-
malised vectors |vi〉 and |cj〉. We start with the initial state

|φij〉 := |i〉 |j〉 1√
2

(|0〉+ |1〉) |0〉

Then, we query the state preparation oracle controlled on the third register to perform the mappings
|i〉 |j〉 |0〉 |0〉 7→ |i〉 |j〉 |0〉 |vi〉 and |i〉 |j〉 |1〉 |0〉 7→ |i〉 |j〉 |1〉 |cj〉. The state after this is given by,

1√
2

(|i〉 |j〉 |0〉 |vi〉+ |i〉 |j〉 |1〉 |cj〉)

Finally, we apply an Hadamard gate on the the third register to obtain,

|i〉 |j〉
(

1

2
|0〉 (|vi〉+ |cj〉) +

1

2
|1〉 (|vi〉 − |cj〉)

)
The probability of obtaining |1〉 when the third register is measured is,

pij =
1

4
(2− 2〈vi|cj〉) =

1

4
d2(|vi〉 , |cj〉) =

1− 〈vi|cj〉
2

which is proportional to the square distance between the two normalised vectors.

We can rewrite |1〉 (|vi〉 − |cj〉) as |yij , 1〉 (by swapping the registers), and hence we have the final
mapping

A : |i〉 |j〉 |0〉 7→ |i〉 |j〉 (√pij |yij , 1〉+
√

1− pij |Gij , 0〉) (10)
where the probability pij is proportional to the square distance between the normalised vectors and
Gij is a garbage state. Note that the running time of A is TA = Õ(T ).
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Now that we know how to apply the transformation described in Equation 9, we can use known
techniques to perform the centroid distance estimation as defined in Theorem 2.1 within additive error
ε with high probability. The method uses two tools, amplitude estimation, and the median evaluation
A.6 from [36].

First, using amplitude estimation (Theorem A.5) with the unitary A defined in Equation 9, we can
create a unitary operation that maps

U : |i〉 |j〉 |0〉 7→ |i〉 |j〉
(√

α |pij , G, 1〉+
√

(1− α) |G′, 0〉
)

where G,G′ are garbage registers, |pij − pij | ≤ ε and α ≥ 8/π2. The unitary U requires P iterations
of A with P = O(1/ε). Amplitude estimation thus takes time TU = Õ(T/ε). We can now apply
Theorem A.6 for the unitary U to obtain a quantum state |Ψij〉 such that,

‖ |Ψij〉 − |0〉⊗L |pij , G〉 ‖2 ≤
√

2∆

The running time of the procedure is O(TU ln(1/∆)) = Õ(Tε log(1/∆)).

Note that we can easily multiply the value pij by 4 in order to have the estimator of the square
distance of the normalised vectors or compute 1− 2pij for the normalized inner product. Last, the
garbage state does not cause any problem in calculating the minimum in the next step, after which
this step is uncomputed.

The running time of the procedure is thus O(TU ln(1/∆)) = O(Tε log(1/∆)).

The last step is to show how to estimate the square distance or the inner product of the unnormalised
vectors. Since we know the norms of the vectors, we can simply multiply the estimator of the
normalised inner product with the product of the two norms to get an estimate for the inner product
of the unnormalised vectors and a similar calculation works for the distance. Note that the absolute
error ε now becomes ε ‖vi‖ ‖cj‖ and hence if we want to have in the end an absolute error ε this will
incur a factor of ‖vi‖ ‖cj‖ in the running time. This concludes the proof of the lemma.

The proof of the theorem follows rather straightforwardly from this lemma. In fact one just needs to
apply the above distance estimation procedure from Lemma A.10 k times. Note also that the norms
of the centroids are always smaller than the maximum norm of a data point which gives us the factor
η.

A.4.2 Proofs of Steps 2 and 3

We provide the proof of Claim 2.3:

Proof. The k-means update rule for the centroids is given by ct+1
j = 1

|Ctj |
∑
i∈Cj vi. As the columns

of V T are the vectors vi, this can be rewritten as ct+1
j = V Tχtj .

Now we provide the proof of the Claim 2.4

Proof. We can rewrite ‖cj − cj‖ as
∥∥∥‖cj‖ |cj〉 − ‖cj‖ |cj〉∥∥∥. It follows from triangle inequality that

the above is inferior to: ∥∥∥‖cj‖ |cj〉 − ‖cj‖ |cj〉∥∥∥+ ‖‖cj‖ |cj〉 − ‖cj‖ |cj〉‖

We have the upper bound ‖cj‖ ≤
√
η. Using the bounds for the error we have from tomography

and norm estimation, we can upper bound the first term by
√
ηε3 and the second term by

√
ηε4. The

claim follows.

With the resulting state of after matrix multiplication, by measuring the last register, we can sample
from the states |χtj〉 for j ∈ [k], with probability proportional to the size of the cluster. We assume
here that all k clusters are non-vanishing, in other words they have size Ω(N/k). Given the ability to
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create the states |χtj〉 and given that the matrix V is stored in QRAM, we can now perform quantum
matrix multiplication by V T to recover an approximation of the state |V Tχj〉 = |ct+1

j 〉 with error ε2,
as stated in Theorem A.8. Note that the error ε2 only appears inside a logarithm. The same Theorem
allows us to get an estimate of the norm

∥∥V Tχtj∥∥ =
∥∥ct+1
j

∥∥ with relative error ε3. For this, we also
need an estimate of the size of each cluster, namely the norms ‖χj‖. We already have this, since the
measurements of the last register give us this estimate, and since the number of measurements made
is large compared to k (they depend on d), the error from this source is negligible compared to other
errors.

A.4.3 Proof of Theorem 3.2

We provide the proof of Theorem 3.2, the main results for q-means applied to well-clusterable
datasets.

Proof. We will use some claims stated and proved in the Supplementary Material, Section A.2. Let
V ∈ RN×d be a well-clusterable dataset as in Definition 1. In this case, we know by Claim A.3
that κ(V ) = 1

σmin
can be replaced by a thresholded condition number κτ (V ) = 1

τ . In practice, this
is done by discarding the singular values smaller than a certain threshold during quantum matrix
multiplication. By Claim A.2 we know that ‖V ‖F = O(

√
k). Therefore we need to pick ετ for a

threshold τ = ετ√
k
‖V ‖F such that κτ (V ) = O( 1

ετ
).

Thresholding the singular values in the matrix multiplication step introduces an additional additive
error in εcentroid. By Claim A.3 and Claim 2.4 , we have that the error εcentroid in approximating the
true centroids becomes

√
η(ε3 + ε4 + ε′+ ετ ) where ε′ =

√
λβ2 + (1− λ)4η is a dataset dependent

parameter computed in Claim A.1. We can set ετ = ε3 = ε4 = ε′/3 to obtain εcentroid = 2
√
ηε′.

The definition of the δ-k-means update rule requires that εcentroid ≤ δ/2. Further, Claim A.4 shows
that if the error δ in the assignment step satsifies δ ≤ ξ2 − 2

√
ηβ, then the δ-k-means algorithm finds

the corrects clusters. By Definition 1 of a well-clusterable dataset, we can find a suitable constant δ
satisfying both these constraints, namely satisfying

4
√
η
√
λβ2 + (1− λ)4η < δ < ξ2 − 2

√
ηβ.

Substituting the values µ(V ) = O(
√
k) from Claim A.2, κ(V ) = O( 1

ετ
) and ετ = ε3 = ε4 = ε′/3 =

O(
√
η/δ) in the running time for the general q-means algorithm, we obtain that the running time for

the q-means algorithm on a well-clusterable dataset is Õ
(
k2dη

2.5

δ3 + k2.5 η
2

δ3

)
per iteration.

A.5 Initialization: q-means++

We now show that the quantum analogue of the initialization procedure of k-means++ can be imple-
mented efficiently using the square distance subroutine estimation for the q-means algorithm given in
Theorem 2.1. Starting with a random index j we compute the state 1√

N

∑N−1
i=0 |i〉 |j〉 |d2(vi, vj)〉 in

time Õ( ηε1 ), where vj is the initial centroid, using our quantum procedure for distance estimation.
By applying some arithmetic preprocessing and a controlled rotation we can transfer the distance
information as an amplitude to obtain the following state:

1√
N

N−1∑
i=0

|i〉 |j〉 |d2(vi, vj)〉
(
d(vi, vj)

2
√
η
|0〉+ β |1〉

)
Each square distance has been normalized by 2

√
η ≥ maxi,j(d(vi, vj)) to be a valid amplitude.

Note that postselecting on |0〉 and measuring the register |i〉 samples exactly from the probability
distribution in the k-means++ algorithm as the probability of measuring (i, 0) on second and fourth
registers is d2(vi,vj)

4ηN .
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We can perform amplitude amplification to boost the probability of measuring |0〉. For this we
need to repeat O(1/

√
P (0)) times the previous steps, with P (0) being the probability of measuring

|0〉. Since P (0) = 1
N

(∑ d(vi,vj)
2
√
η

)2

, it is simple to show that 1√
P (0)

≤ 2
√
η√

E(d2(vi,vj))
, where

E(d2(vi, vj)) is the mean squared distance. Note that for next steps we can use a tensor product
of squared distance from previous centroids to compute the minimum distance among them, using
Lemma 2.2. In the end we repeat k − 1 times this circuit, for a total time of Õ(k2 2η1.5

ε1
√

E(d2(vi,vj))
).

The running time for the q-means++ initialization is smaller than that for the q-means algorithm,
showing than q-means++ initialization doesn’t cancel any benefit of the q-means algorithm. Thus, we
can use the q-means++ algorithm to provide a speedup compared to the classical k-means++.

A.6 Robust Amplitude Estimation for multiple tomography

Let us make a remark about the ability to use Theorem A.9 to perform tomography in our case.
The updated centroids will be recovered in step 4 using the vector state tomography algorithm in
Theorem A.9 on the composition of the unitary that prepares |ψt〉 and the unitary that multiplies the
first register of |ψt〉 by the matrix V T . The input of the tomography algorithm requires a unitary
U such that U |0〉 = |x〉 for a fixed quantum state |x〉. However, the labels `(vi) are not fixed due
to errors in distance estimation, hence the composed unitary U as defined above therefore does not
produce a fixed pure state |x〉.
We therefore need a procedure that finds labels `(vi) that are a fixed function of vi and the centroids
cj for j ∈ [k]. One solution is to change the update rule of the δ-k-means algorithm to the following:
Let `(vi) = j if d(vi, cj) < d(vi, cj′)− 2δ for j′ 6= j where we discard the points to which no label
can be assigned. This assignment rule ensures that if the second register is measured and found to be
in state |j〉, then the first register contains a uniform superposition of points from cluster j that are
δ far from the cluster boundary (and possibly a few points that are δ close to the cluster boundary).
Note that this simulates exactly the δ-k-means update rule while discarding some of the data points
close to the cluster boundary. The k-means centroids are robust under such perturbations, so we
expect this assignment rule to produce good results in practice.

A better solution is to use consistent phase estimation instead of the usual phase estimation for the
distance estimation step , which can be found in [33, 4]. The distance estimates are generated by the
phase estimation algorithm applied to a certain unitary in the amplitude estimation step. The usual
phase estimation algorithm does not produce a fixed answer and instead for each eigenvalue λ outputs
with high probability one of two possible estimates λ such that |λ − λ| ≤ ε. Instead, here as in
some other applications we need the consistent phase estimation algorithm that with high probability
outputs a fixed estimate (that depends on the internal randomness used by the algorithm) such that
|λ− λ| ≤ ε.
We also describe another simple method of getting such consistent phase estimation, which is to
combine phase estimation estimates that are obtained for two different precision values. Let us assume
that the eigenvalues for the unitary U are e2πiθi for θi ∈ [0, 1]. First, we perform phase estimation
with precision 1

N1
where N1 = 2l is a power of 2. We repeat this procedure O(logN/θ2) times

and output the median estimate. If the value being estimated is λ+α
2l

for λ ∈ Z and α ∈ [0, 1] and
|α−1/2| ≥ θ′ for an explicit constant θ′ (depending on θ) then with probability at least 1−1/poly(N)
the median estimate will be unique and will equal to 1/2l times the closest integer to (λ+α). In order
to also produce a consistent estimate for the eigenvalues for the cases where the above procedure
fails, we perform a second phase estimation with precision 2/3N1. We repeat this procedure as above
for O(logN/θ2) iterations and taking the median estimate. The second procedure fails to produce
a consistent estimate only for eigenvalues λ+α

2l
for λ ∈ Z and α ∈ [0, 1] and |α − 1/3| ≤ θ′ or

|α− 2/3| ≤ θ′ for a suitable constant θ′. Since the cases where the two procedures fail are mutually
exclusive, one of them succeeds with probability 1 − 1/poly(N). The estimate produced by the
phase estimation procedure is therefore deterministic with very high probability. In order to complete
this proof sketch, we would have to give explicit values of the constants θ and θ′ and the success
probability, using the known distribution of outcomes for phase estimation.

For what follows, we assume that indeed the state in Equation 2 is almost a deterministic state,
meaning that when we repeat the procedure we get the same state with very high probability.
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We set the error on the matrix multiplication to be ε2 � ε24
d log d as we need to call the unitary that

builds ct+1
j for O(d log d

ε24
) times. We will see that this does not increase the runtime of the algorithm,

as the dependence of the runtime for matrix multiplication is logarithmic in the error.

A.7 Experiment: MNIST dataset details

Table 1: A sample of results collected from the MNIST experiment with PCA preprocessing, same as
in Figure 1. Different metrics are presented for the train set and the test set. ACC: accuracy. HOM:
homogeneity. COMP: completeness. V-M: v-measure. AMI: adjusted mutual information. ARI:
adjusted rand index. RMSEC: Root Mean Square Error of Centroids.

ALGORITHM DATASET ACC HOM COMP V-M AMI ARI RMSEC

K-MEANS
TRAIN 0.582 0.488 0.523 0.505 0.389 0.488 0
TEST 0.592 0.500 0.535 0.517 0.404 0.499 -

δ-k-MEANS, δ = 0.2
TRAIN 0.580 0.488 0.523 0.505 0.387 0.488 0.009
TEST 0.591 0.499 0.535 0.516 0.404 0.498 -

δ-k-MEANS, δ = 0.3
TRAIN 0.577 0.481 0.517 0.498 0.379 0.481 0.019
TEST 0.589 0.494 0.530 0.511 0.396 0.493 -

δ-k-MEANS, δ = 0.4
TRAIN 0.573 0.464 0.526 0.493 0.377 0.464 0.020
TEST 0.585 0.492 0.527 0.509 0.394 0.491 -

δ-k-MEANS, δ = 0.5
TRAIN 0.573 0.459 0.522 0.488 0.371 0.459 0.034
TEST 0.584 0.487 0.523 0.505 0.389 0.487 -

In Section 4, we have presented some result concerning a simulation of the δ-k-means on the MNIST
datsets. Here we detail the results. On top of the accuracy measure (ACC), we also evaluated the
performance of q-means against many other metrics, reported in Table 1. More detailed information
about these metrics can be found in [26, 15]. We introduce a specific measure of error, the Root Mean
Square Error of Centroids (RMSEC), which a direct comparison between the centroids predicted
by the k-means algorithm and the ones predicted by the δ-k-means. Note that this metric can only
be applied to the training set. For all these measures, except RMSEC, a bigger value is better. Our
simulations show that δ-k-means, and thus the q-means, even for values of δ between 0.2 − 0.5
achieves similar performance to k-means, and in most cases the difference is of small magnitude.

A.8 Additional Experiment: Gaussian clusters dataset

We describe numerical simulations of the δ-k-means algorithm on a synthetic dataset made of
several clusters formed by random gaussian distributions. These clusters are naturally well suited for
clustering by construction, close to what we defined to be a well-clusterable dataset in Definition
1 of Section 1.4. Doing so, we can start by comparing k-means and δ-k-means algorithms on high
accuracy results, even though this may not be the case on real-world datasets.

Without loss of generality, we preprocessed the data so that the minimum norm in the dataset is 1, in
which case η = 4. This is why we defined η as a maximum instead of the ratio of the maximum over
the minimum which is really the interesting quantity. Note that the running time basically depends
on the ratio η/δ. We present a simulation where 20.000 points in a feature space of dimension 10
form 4 Gaussian clusters with standard deviation 2.5, that we can see in Figure 2. The condition
number of dataset is calculated to be 5.06. We ran k-means and δ-k-means for 7 different values of δ
to understand when the δ-k-means becomes less accurate.

In Figure 3 we can see that until η/δ = 3 (for δ = 1.2), the δ-k-means algorithm converges on this
dataset. We can now make some remarks about the impact of δ on the efficiency. It seems natural that
for small values of δ both algorithms are equivalent. For higher values of δ, we observed a late start in
the evolution of the accuracy, witnessing random assignments for points on the clusters’ boundaries.
However, the accuracy still reaches 100% in a few more steps.
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Figure 2: Representation of 4 Gaussian clusters of 10 dimensions in a 3D space spanned by the first
three PCA dimensions.

Figure 3: Accuracy evolution during k-means and δ-k-means on well-clusterable Gaussians for 5
values of δ. All versions converged to a 100% accuracy in few steps.
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