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1 Visualizing the embedding

In Fig. 1, we provide an illustration of the mapping from CNN to eFCN. Denoting as k, s, p the filter
size, stride and padding of the convolution, we have the following:

din = 4

(k, s, p) = (3, 1, 0)

dout =
din + 2p− k

s
+ 1 = 2

The eFCN layer is of size (cin × din × din, cout × dout × dout) = (4, 16) since cin = cout = 1 here.
In Fig. 2, we show the typical structure of the eFCN weight matrices observed in practice.

2 Results with AlexNet on CIFAR-100

In this section, we show that the ideas we presented in the main text hold for various classes of data,
architecture and optimizer. Namely, we show that our results hold when switching from SGD to
Adam on CIFAR10, and for AlexNet [3] on the CIFAR-100 dataset. Each subsection contains figures
which are counterparts of the ones of the main text : performance and training dynamics of the eFCNs
in Fig. 3, deviation from CNN subspace in Fig. 4, role of off-local blocks in learning in Fig. 5.
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Figure 1: eFCN wight matrix (bottom) obtained when acting on an input of size of size (4,4) (top
left) with a filter of size (3,3) (top right). The colors of the eFCN weight matrix show where they
stem from in the filter (the off-local blocks, in yellow, are set to zero at initialization).
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Figure 2: Top: Heatmap of a block of weights corresponding to the first input channel and the
first output channel of the first layer of the eFCN just after its initialization from the converged
VanillaCNN. The colorscale indicates the natural logarithm of the absolute value of the weights.
The highly sparse and self-repeating structure of the weight matrix is due to the locality and weight
sharing constraints. Bottom: Same after training the eFCN for 100 epochs. The off-local blocks
appear in blue : their weights are several orders of magnitude smaller in absolute value than those of
the local blocks, in yellow. Note that due to the padding many weights stay at zero even after relaxing
the constraints. When unflattened, the first row of this heatmap gives rise to the images shown in
Fig. 5.
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Figure 3: This figure sums up in a compact way the generalization dynamics of the eFCNs. The
red curve represents the test accuracy of the model versus its training time in epochs. Above each
point tw of the training, we depict as crosses the test accuracy history of the eFCN stemmed at relax
time tw, with colors indicating the training time of the eFCN after embedding. For comparison,
the best test accuracy reached by a standard FCN of same size is depicted as a brown horizontal
dashed line. Left: VanillaCNN on CIFAR-10, with Adam optimizer. Right: Alexnet on CIFAR-100,
with SGD optimizer. We note that results are qualitatively similar : the eFCNs always improve after
initialization, outperform the standard FCN, and we again observe that for some relax times the
eFCNs even exceeds the best test accuracy reached by the CNN.
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Figure 4: Left panel: relax time tw of the eFCN vs. δ, the measure of deviation from the CNN
subspace through the locality constraint, at the final point of eFCN training. Middle panel: δ vs.
the initial loss value. Right panel: δ vs. final test accuracy of eFCN models. For reference, the
blue point in the middle and right panels indicate the deviation measure for a standard FCN, where
δ ∼ 97%.
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3 Interpolating between CNNs and eFCNs

Another way to understand the dynamics of the eFCNs is to examine the paths that connect them to
the CNN they stemmed from in the FCN weight space. Interpolating in the weight space has received
some attention in recent literature, in papers such as [1, 2], where it has been shown that contrary to
previous beliefs the bottom of the landscapes of deep neural networks resembles a flat, connected
level set since one can always find a path of low energy connecting minima.

Here we use two interpolation methods in weight space. The first method, labeled "linear", consists
in sampling n equally spaced points along the linear path connecting the weights. Of course, the
interpolated points generally have higher training loss than the endpoints.

The second method, labeled "string", consists in starting from the linear interpolation path, and letting
the interpolated points fall down the landscape following gradient descent, while ensuring that they
stay close enough together by adding an elastic term in the loss :

Lelastic =
1

2
k

n−1∑
i=1

(xi+1 − xi)
2 (1)

By adjusting the stiffness constant k we can control how straight the string is: at high k we recover
the linear interpolation, whereas at low k the points decouple and reach the bottom of the landscape,
but are far apart and don’t give us an actual path. Note that this method is a simpler form of the one
used in [1], where we don’t use the "nudging" trick.

For comparison, we also show the performance obtained when interpolating directly in output space
(as done in ensembling methods).

Results are shown in figure 6, with the x-axis representing the interpolation parameter α ∈ [0, 1]. We
see that for both the linear and string interpolations, the training loss profile displays a barrier, except
at late tw where the the eFCN has not escaped far from the CNN subspace. Although the string
method fails to find a path without a barrier, this is not sufficient to conclude that no paths exist.

However, the behavior of test accuracy is much more surprising. In all cases, despite the increase
in training loss, the interpolated paths reach higher test accuracies than the endpoints, even at early
tw when the eFCN and the CNN are quite far from each other. This confirms that there is a basin of
high generalization around the CNN subspace, and that optimum performance can actually be found
somewhere in between the solution found by the CNN and the solution found by the eFCN. This
offers yet another procedure to improve the performance in practice. However, in all cases we note
that the gain in accuracy is lower than the gain obtained by interpolating in output space.
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Figure 5: Left: Visualization of an eFCN “filter” from the the first layer just after embedding (left
column), after training after 11 epochs (middle column), and training after 78 epochs (right column);
where the eFCN is initialized at relax times tw = 0 (top row), tw = 13 (middle row), and tw = 115
(bottom row). The colors indicate the natural logarithm of the absolute value of the weights. Right:
Contributions to the test accuracy of the local blocks (off-local blocks masked out) and off-local
blocks (local blocks masked out).

(a) tw = 0 (b) tw = 5

(c) tw = 18 (d) tw = 61

Figure 6: Interpolation between the solution reached by the CNN after 100 epochs (interpolation
parameter α = 0) and the solution found by the eFCN after 100 epochs (interpolation parameter
α = 1), for four different relax times tw indicated below the subfigures. In each subfigure, the left
panel shows train loss, and the right panel shows test accuracy. The orange line corresponds to linear
interpolation, the blue line corresponds to string method interpolation, and the green line corresponds
to interpolation in output space.
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