
Supplement

This supplementary document is divided into four sections.

• In section A we provide missing parts from the analysis of our first algorithm AIF-Learn,
including the derivation of the best response of the Learner in the AIF setting, as well as the
algorithm’s complete in-sample analysis.

• In section B we introduce the “FPAIF” notion of fairness which essentially asks for equaliz-
ing false positive rates across individuals. We develop an algorithm called FPAIF-Learn
for learning mappings subject to the FPAIF notion of fairness and provide its analysis and
generalization theorems. Our method will obviously generalize to learning subject to false
negative rate parity and so we avoid replicating the results for false negative rates.

• In section C we will present all the proofs. Most of the proofs of the FPAIF section –
especially the proofs for generalization theorems – will be similar to their counterparts in
the AIF section and we will avoid stating them.

• In section D we provide additional experimental results along with more details on imple-
mentation of the algorithm AIF-Learn.

A Learning subject to AIF: missing parts

A.1 BEST: The Learner’s Best Response

In this subsection we show how the Learner’s best response problem can be decoupled into (m+ 1)
minimization problems. Consider the described iterative algorithm where in each iteration the Auditor
uses the exponentiated gradient descent and the Learner uses its best response. We will formally
describe the best response problem of the Learner in this subsection and will summarize it in a
subroutine called BEST. At iteration t of the algorithm, the Learner is given λt ∈ Λ from the Auditor
and they want to solve the following minimization problem.

arg min
p∈∆(H)m, γ ∈ [0,1]

L (p, γ,λt)

≡ arg min
p∈∆(H)m, γ ∈ [0,1]

err
(
p; P̂, Q̂

)
+

n∑
i=1

{
λ+
i,t

(
E
(
xi,p; Q̂

)
− γ
)

+ λ−i,t

(
γ − E

(
xi,p; Q̂

))}
≡ arg min
p∈∆(H)m, γ ∈ [0,1]

1

n

n∑
i=1

E
(
xi,p; Q̂

)
+

n∑
i=1

{
λ+
i,t

(
E
(
xi,p; Q̂

)
− γ
)

+ λ−i,t

(
γ − E

(
xi;p; Q̂

))}
≡ arg min
p∈∆(H)m, γ ∈ [0,1]

n∑
i=1

{
λ−i,t − λ

+
i,t

}
γ +

n∑
i=1

(
1

n
+ λ+

i,t − λ
−
i,t

)
E
(
xi,p; Q̂

)
≡ arg min
p∈∆(H)m, γ ∈ [0,1]

n∑
i=1

{
λ−i,t − λ

+
i,t

}
γ +

1

m

m∑
j=1

{
n∑
i=1

(
1

n
+ λ+

i,t − λ
−
i,t

)
P

hj∼ pj
[hj(xi) 6= fj(xi)]

}

Therefore, the minimization problem of the Learner gets nicely decoupled into (m+ 1) minimization
problems. Let wi,t = λ+

i,t − λ
−
i,t for all i, and accordingly, let wt = [w1,t, . . . , wn,t]

> ∈ Rn. First,
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the optimal value for γ is chosen according to

γt = 1

[
n∑
i=1

wi,t > 0

]
(1)

And for learning problem j, the following minimization problem must be solved.

arg min
pj ∈∆(H)

n∑
i=1

(1/n+ wi,t) P
hj∼ pj

[hj(xi) 6= fj(xi)] ≡ arg min
hj ∈H

n∑
i=1

(1/n+ wi,t)1 [hj(xi) 6= fj(xi)]

where the equivalence holds since without loss of generality, the Learner can always choose to put
all the probability mass on a single classifier because of linearity. This minimization problem is
now exactly a weighted classification problem. Since we work with cost sensitive classification
(CSC) problems in this paper and assume access to CSC oracles, we further reduce the weighted
classification problem to a CSC problem that can be solved by a call to the cost sensitive classification
oracle forH (CSC(H)). For problem j ∈ [m], let

c1i,j = (wi,t + 1/n)(1− fj(xi)) , c0i,j = (wi,t + 1/n)fj(xi)

be the costs associated with individual i ∈ [n]. Observe that the above weighted classification
problem can be now casted as the following CSC problem.

hj = arg min
h∈H

n∑
i=1

c1i,j h(xi) + c0i,j (1− h(xi)) (2)

To sum up, at iteration t of the algorithm the Auditor first updates the dual variable λt (or correspond-
ingly the vector of weights wt) and then the Learner picks γt = 1 [

∑n
i=1 wi,t > 0] and solves m

cost sensitive classification problems casted in 2 by calling the cost sensitive classification oracle
CSC(H) for all 1 ≤ j ≤ m. We have the best response of the Learner written in Subroutine 1. This
subroutine will be called in each iteration of the final AIF learning algorithm.

Subroutine 1: BEST– best response of the Learner in the AIF setting

Input: dual weights w ∈ Rn, training examples S =
{
xi, (fj(xi))

m
j=1

}n
i=1

γ ← 1 [
∑n
i=1 wi > 0]

for j = 1, . . . ,m do
c1i ← (wi + 1/n)(1− fj(xi)) for i ∈ [n]
c0i ← (wi + 1/n)fj(xi) for i ∈ [n]
D = {xi, c1i , c0i }ni=1
hj ← CSC (H;D)

end
h← (h1, h2, . . . , hm)

Output:
(
h, γ

)

A.2 The in-sample analysis of AIF-Learn algorithm in full detail

We start the analysis of AIF-Learn by establishing the regret bound of the Auditor over T rounds.
The regret bound will help us pick the number of iterations T and the learning rate η so that the
Auditor has sufficiently small regret (bounded by ν). Notice the Learner uses its best response in
each round of the algorithm which implies that it has zero regret.

Lemma A.1 (Regret of the Auditor). Let 0 < δ < 1. Let {λt}Tt=1 be the sequence of exponentiated
gradient descent plays (with learning rate η) by the Auditor to the given {ht, γt}Tt=1 of the Learner
over T rounds of AIF-Learn. We have that for any set of observed individuals X , with probability at
least 1− δ over the observed problems F : for any λ ∈ Λ,

1

T

T∑
t=1

L(ht, γt,λ)− 1

T

T∑
t=1

L(ht, γt,λt) ≤ B

√
log (2nT/δ)

2m0
+
B log (2n+ 1)

ηT
+ ηB (1 + 2α)

2

2



The last two terms appearing in the above bound come from the usual regret analysis of the ex-
ponentiated gradient descent algorithm. However, the first term originates from high probability
Chernoff-type inequalities because as explained before, the algorithm is using, instead of the whole
problems F , only the batch Ft to estimate the vector of fairness violations at round t. Hence at round
t, the difference of fairness violation estimates, one with respect to Ft and another with respect to F ,
will appear in the regret of the Auditor which can be bounded by the Chernoff-Hoeffding’s inequality.
We will therefore have to assume that m0 is sufficiently large to make the above regret bound small
enough.

Assumption A.1. For a given confidence parameter δ, inputs α and ν of Algorithm AIF-Learn, we
suppose throughout this section that the number of fresh problems m0 used in each round of the
algorithm satisfies m0 ≥ O

(
log(nT/δ)
α2ν2

)
, or equivalently m = m0 · T ≥ O

(
T log(nT/δ)

α2ν2

)
.

Following Lemma A.1 and Assumption A.1, we characterize the average play
(
p̂, γ̂, λ̂

)
output by

AIF-Learn in the following theorem. This theorem, informally speaking, guarantees that neither
player would gain more than ν if they deviated from the average play strategies. This is what we
call a “ν-approximate equilibrium" of the game. The proof of the theorem follows from the regret
analysis of the Auditor and is fully presented in section C of this document.

Theorem A.2 (Average Play Characterization). Let 0 < δ < 1. Let
(
p̂, γ̂, λ̂

)
be the average

plays output by Algorithm AIF-Learn. We have that under Assumption A.1, for any set of observed
individuals X , with probability at least 1 − δ over the observed labelings F , the average plays(
p̂, γ̂, λ̂

)
forms a ν-approximate equilibrium of the game, i.e.,

L
(
p̂, γ̂, λ̂

)
≤ L

(
p, γ, λ̂

)
+ ν for all p ∈ ∆(H)m , γ ∈ [0, 1]

L
(
p̂, γ̂, λ̂

)
≥ L (p̂, γ̂,λ)− ν for all λ ∈ Λ

We are now ready to present the main theorem of this subsection which takes the guarantees provided
in Theorem A.2 and turns them into “accuracy" and “fairness" guarantees of the pair (p̂, γ̂) using the
specific form of the Lagrangian. The theorem will in fact show that the set of randomized classifiers
p̂ achieves optimal accuracy up to O (ν) and that it also satisfies (O (α) , 0)-AIF notion of fairness,
all with respect to the empirical distributions P̂ and Q̂.

Theorem A.3 (In-sample Accuracy and Fairness). Let 0 < δ < 1 and suppose Assumption A.1
holds. Let (p̂, γ̂) be the output of AIF-Learn and let (p, γ) be any feasible pair of variables for the
empirical fair learning problem. We have that for any set of observed individuals X , with probability
at least 1− δ over the observed labelings F ,

err
(
p̂; P̂, Q̂

)
≤ err

(
p; P̂, Q̂

)
+ 2ν

and that p̂ satisfies (3α, 0)-AIF with respect to the empirical distributions (P̂, Q̂). In other words,
for all i ∈ [n], ∣∣∣E (xi, p̂; Q̂

)
− γ̂
∣∣∣ ≤ 3α

B Learning subject to FPAIF

Definition B.1 (Individual False Positive/Negative Error Rates). For a given individual x ∈ X , a
mapping ψ ∈ ∆(H)F , and distribution Q over the space of problems, define the Individual false
positive/negative rate:

EFP (x, ψ;Q) =
1

P
f∼Q

[f(x) = 0]
E

f∼Q

[
P

h∼ψf
[h(x) = 1, f(x) = 0]

]

EFN (x, ψ;Q) =
1

P
f∼Q

[f(x) = 1]
E

f∼Q

[
P

h∼ψf
[h(x) = 0, f(x) = 1]

]
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Definition B.2 (FPAIF fairness notion). In our framework, we say a mapping ψ ∈ ∆(H)F satisfies
“(α, β)-FPAIF” (reads (α, β)-approximate False Positive Average Individual Fairness) with respect to
the distributions (P,Q) if there exists γ ≥ 0 such that

P
x∼P

(|EFP (x, ψ;Q)− γ| > α) ≤ β

In this section we consider the learning problem subject to the FPAIF notion of fairness. We will
be less wordy in this section as the ideas and the approach that we take are mostly similar to those
developed in AIF learning section. We start off by casting the fair learning problem as the constrained
optimization problem 3 where a mapping ψ is to be found such that all individual false positive rates
incurred by ψ are within 2α of each other. As before, we denote the optimal error of the optimization
problem 3 by OPT and will consider that as a benchmark to evaluate the accuracy of our algorithm’s
trained mapping.

Fair Learning Problem subject to (α, 0)-FPAIF

min
ψ ∈∆(H)F , γ ∈ [0,1]

err (ψ;P,Q)

s.t. ∀x ∈ X : |EFP (x, ψ;Q)− γ| ≤ α
(3)

Definition B.3. Consider the optimization problem 3. Given distributions P and Q and fairness
approximation parameter α, we denote the optimal solutions of 3 by ψ? (α;P,Q) = ψ? and
γ? (α;P,Q) = γ?, and the value of the objective function at these optimal points by OPT (α;P,Q).
In other words

OPT (α;P,Q) = err (ψ?;P,Q)

It is important to observe that the optimization problem 3 has a nonempty set of feasible points for
any α and any distributions P and Q. Take γ = 0 and ψf = h0 for all f ∈ F where h0 is the
all-zero constant classifier, and observe that the constraint is satisfied. Since the distributions P
and Q are generally not known, we instead solve the empirical version of 3. Consider a training
data set consisting of n individuals X = {xi}ni=1 drawn independently from P and m problems
F = {fj}mj=1 drawn independently from Q. We formulate the empirical fair learning problem in 4
where we find an optimal fair mapping of the problems F to ∆(H) given the individuals X .

Empirical Fair Learning Problem

min
p∈∆(H)m, γ ∈ [0,1]

err
(
p; P̂, Q̂

)
s.t. ∀i ∈ {1, . . . , n}:

∣∣∣EFP

(
xi,p; Q̂

)
− γ
∣∣∣ ≤ 2α

(4)

As also discussed in the AIF section of the paper, solving the empirical problem 4 will only give us
a – restricted – mapping p = ψ|F by which we mean we learn ψ only on the finite domain F ⊆ F .
It is not clear for now how we can extend the restricted mapping ψ|F ∈ ∆(H)m to a mapping
ψ ∈ ∆(H)F over the whole function space; however, we will see the specific form of our algorithm
(as in the AIF setting: learning a set of weights over training individuals) will allow us to come up
with such an extension.

We once again use the dual perspective of constrained optimization problems followed by no regret
dynamics to reduce 4 to a two-player zero-sum game between a Learner and an Auditor, and design
an iterative algorithm to get an approximate equilibrium of the game. To do so, we first rewrite the
constraints of 4 in rFP

(
p, γ; Q̂

)
≤ 0 form where

rFP

(
p, γ; Q̂

)
=

EFP

(
xi,p; Q̂

)
− γ − 2α

γ − EFP

(
xi,p; Q̂

)
− 2α

n
i=1

∈ R2n (5)
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stores the “fairness violations" of the pair (p, γ) in one single vector. Let the corresponding dual
variables be represented by λ =

[
λ+
i ,λ

−
i

]n
i=1
∈ Λ, where Λ = {λ ∈ R2n

+ | ||λ||1 ≤ B}. Using
Equation 5 and the introduced dual variables, we have that the Lagrangian of 4 is

L (p, γ,λ) = err
(
p; P̂, Q̂

)
+

n∑
i=1

λ+
i

(
EFP

(
xi,p; Q̂

)
− γ − 2α

)
+ λ−i

(
γ − EFP

(
xi,p; Q̂

)
− 2α

)
= err

(
p; P̂, Q̂

)
+ λTrFP

(
p, γ; Q̂

)
(6)

Therefore, we focus on solving the following minmax problem:

min
p∈∆(H)m, γ ∈ [0,1]

max
λ∈Λ

L (p, γ,λ) = max
λ∈Λ

min
p∈∆(H)m, γ ∈ [0,1]

L (p, γ,λ) (7)

Using no regret dynamics, an approximate equilibrium of this zero-sum game (i.e. a saddle point of L)
can be found in an iterative framework. In each iteration, we let the dual player run the exponentiated
gradient descent algorithm and the primal player run an approximate version of its best response
using the oracle CSC(H) that solves cost sensitive classification problems inH.

In the following subsection, we will first describe the best response of the Learner, and show how the
best response depends on the estimates ρ̂ = [ρ̂i]

n
i=1 ∈ Rn – where ρ̂i is the fraction of problems in F

that maps xi to 0 – in addition to the weightswt ∈ Rn maintained by the Auditor. We will then argue
that to avoid injecting correlation into the algorithm (so as to argue later on about generalization)
we will have to “perturb" the best response of the Learner by using some other set of estimates
ρ̃ = [ρ̃i]

n
i=1 which we assume is given to the algorithm and is independent of F . This is why the

Learner is using an approximate version of its best response.

Definition B.4. For an individual x ∈ X , let ρx and ρ̂x represent the probability that x is labelled 0

by a randomly sampled function f ∼ Q and f ∼ Q̂, respectively. In other words

ρx = P
f∼Q

[f(x) = 0] , ρ̂x = P
f∼Q̂

[f(x) = 0]

we will use ρi ≡ ρxi and ρ̂i ≡ ρ̂xi to denote the corresponding probabilities for xi in the training set.

Remark B.1. Observe that using the introduced notation, for a mapping ψ and x ∈ X ,

EFP (x, ψ;Q) =

(
1

ρx

)
E

f∼Q

[
P

h∼ψf
[h(x) = 1, f(x) = 0]

]

EFN (x, ψ;Q) =

(
1

1− ρx

)
E

f∼Q

[
P

h∼ψf
[h(x) = 0, f(x) = 1]

]
and that E (x, ψ;Q) can be written as a linear combination of EFP (x, ψ;Q) and EFN (x, ψ;Q):

E (x, ψ;Q) = ρx · EFP (x, ψ;Q) + (1− ρx) · EFN (x, ψ;Q)

B.1 aBESTFP: The Learner’s approximate Best Response

At iteration t of the algorithm, the Learner is given λt of the dual player and they want to solve the
following minimization problem.

min
p∈∆(H)m, γ ∈ [0,1]

L (p, γ,λt)

≡min
p, γ

err
(
p; P̂, Q̂

)
+

n∑
i=1

{
λ+
i,t

(
EFP

(
xi,p; Q̂

)
− γ
)

+ λ−i,t

(
γ − EFP

(
xi,p; Q̂

))}
≡min
p, γ

1

n

n∑
i=1

E
(
xi,p; Q̂

)
+

n∑
i=1

{
λ+
i,t

(
EFP

(
xi,p; Q̂

)
− γ
)

+ λ−i,t

(
γ − EFP

(
xi;p; Q̂

))}
Let ρ̂i be defined as in Definition B.4. We have that by Remark B.1

E
(
xi,p; Q̂

)
= ρ̂i · EFP

(
xi,p; Q̂

)
+ (1− ρ̂i) · EFN

(
xi,p; Q̂

)
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Let wi,t = λ+
i,t − λ

−
i,t for all i (Accordingly let wt = [w1,t, . . . , wn,t]

>). We have that the above
minimization problem is equivalent to

≡min
p, γ
−γ

n∑
i=1

wi,t +

n∑
i=1

{(
ρ̂i
n

+ wi,t

)
EFP

(
xi,p; Q̂

)
+

(
1− ρ̂i
n

)
EFN

(
xi,p; Q̂

)}
Now we can use the fact that

EFP

(
xi,p; Q̂

)
=

1

mρ̂i

m∑
j=1

P
hj∼ pj

[hj(xi) = 1, fj(xi) = 0]

EFN

(
xi,p; Q̂

)
=

1

m(1− ρ̂i)

m∑
j=1

P
hj∼ pj

[hj(xi) = 0, fj(xi) = 1]

to conclude that the best response of the Learner is equivalent to minimizing the following function
over the space of (p, γ) ∈ ∆(H)m × [0, 1].

− γ
n∑
i=1

wi,t

+
1

m

m∑
j=1

{
n∑
i=1

(
1

n
+
wi,t
ρ̂i

)
P

hj∼ pj
[hj(xi) = 1, fj(xi) = 0] +

(
1

n

)
P

hj∼ pj
[hj(xi) = 0, fj(xi) = 1]

}

Therefore, as in the AIF setting, the minimization problem of the Learner gets nicely decoupled into
(m+ 1) disjoint minimization problems. First, the optimal value for γ is chosen according to

γt = 1

[
n∑
i=1

wi,t > 0

]
(8)

and that for learning problem j, the following cost sensitive classification problem must be solved.

hj = arg min
h∈H

n∑
i=1

c1i,j h(xi) + c0i,j (1− h(xi)) (9)

where the costs are

c1i,j =

(
1

n
+
wi,t
ρ̂i

)
(1− fj(xi)) , c0i,j =

(
1

n

)
fj(xi)

One major distinction between the Learner’s best response in the FPAIF setting versus that of the AIF
setting is that the empirical quantities {ρ̂i}ni=1 (which is estimated using the data set F ) appear in
the costs of the CSC problems for the FPAIF setting. As a major consequence, the generalization
(with respect to Q) arguments we had in the AIF setting won’t work in this section because now the
labels {fj(xi)}i,j and the estimates {ρ̂i}ni=1 are correlated. We therefore assume in this section that
each individual xi ∈ X comes with an estimate ρ̃i of the rate ρi that is independent of the data set F .
More precisely, we assume our algorithm has access to estimates {ρ̃i}ni=1 such that for all i ∈ [n],

|ρ̃i − ρi| ≤

√
log (n)

2m0

wherem0 (will be specified exactly in our proposed algorithm) as in the AIF setting will be essentially
the number of fresh problems that the Auditor is using in each round of the Algorithm. In fact,
similar to what we did for the AIF setting, we will randomly partition F into T batch of size m0:
F = {Ft}Tt=1 and will let the Auditor use only Ft at round t ∈ [T ] of the algorithm to update the
vector of fairness violations rFP. Notice assuming access to the estimates {ρ̃i}ni=1 is not farfetched
because we can assume there was one more batch of m0 problems, say F0, and that the quantities
{ρ̃i}ni=1 were estimated using the batch F0 which is independent of F = {Ft}Tt=1. The upper bound
we required for the difference |ρ̃i − ρi| will just simply follow from a Chernoff-Hoeffding’s bound.

6



Assumption B.1. For m0 specified later on, we assume in this section that our algorithm has access
to quantities {ρ̃i}ni=1, where we have that for all i ∈ [n]:

|ρ̃i − ρi| ≤

√
log (n)

2m0

Under Assumption B.1, we now modify the best response of the Learner and let it use the estimates
{ρ̃i}ni=1 instead of {ρ̂i}ni=1. This will consequently make the learner to accumulate regret over
the course of the algorithm and that this is why we will call it the approximate best response of
the Learner. We have the approximate best response of the Learner (called aBESTFP) written in
Subroutine 2.

Subroutine 2: aBESTFP – approximate best response of the Learner in the FPAIF setting

Input: dual weights w ∈ Rn, estimates ρ̃ ∈ Rn, training examples S =
{
xi, (fj(xi))

m
j=1

}n
i=1

γ ← 1 [
∑n
i=1 wi > 0]

for j = 1, . . . ,m do
c1i ← (wi/ρ̃i + 1/n)(1− fj(xi)) for i ∈ [n]
c0i ← (1/n)fj(xi) for i ∈ [n]
D ← {xi, c1i , c0i }ni=1
hj ← CSC (H;D)

end
h← (h1, h2, . . . , hm)

Output:
(
h, γ

)

B.2 Algorithm Implementation and In-sample Guarantees

We implement the introduced game theoretic framework in Algorithm 3 and call it FPAIF-Learn.
The overall style of the algorithm is similar to AIF-Learn except that FPAIF-Learn takes a set of
estimates ρ̃ ∈ Rn as input and that ρ̃ is used in the approximate best response of the Learner. Once
again we split F into T batches of size m0 uniformly at random and let the Auditor use only a fresh
batch of m0 problems in each round of the algorithm to update the dual variables λ, and accordingly
the weights w. The algorithm will terminate after T = O

(
log (n) /

(
ν2α2

))
iterations and output

the average plays of the Learner and the Auditor, along with a mapping

ψ̂ = ψ̂
(
X, ρ̃, Ŵ

)
∈ ∆(H)F

which is the object we wanted to learn. In fact, ψ̂ extends the learned restricted mapping p̂ = ψ̂|F
of the algorithm from the finite domain F to the whole space F . We have the pseudocode for the
mapping ψ̂ written in Mapping 4.

The analysis of Algorithm 3 will follow the same style and uses the same ideas as in the AIF learning
section. We will start off by establishing the regret bounds for the Learner and the Auditor in Lemma
B.1 and Lemma B.2, respectively, and will show just as before how these regret bounds can be
eventually turned into in-sample accuracy and fairness guarantees. One major difference is that when
working with false positive rates, the quantities ρx, ρ̂x, ρ̃x introduced before will show up in the
algorithm’s analysis. Define for the training individuals X = {xi}ni=1

ρmin = min
i∈[n]

ρi , ρ̂min = min
i∈[n]

ρ̂i , ρ̃min = min
i∈[n]

ρ̃i

We will in fact see ρ̃min and ρ̂min will appear in the regret bounds of the Learner and the Auditor.

Lemma B.1 (Regret of the Learner). Let {ht, γt}Tt=1 be the sequence of approximate best response
plays by the Learner to the given {λt}Tt=1 of the Auditor over T rounds of Algorithm 3. We have that
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Algorithm 3: FPAIF-Learn – learning subject to FPAIF
Input: fairness parameter α, approximation parameter ν, estimates ρ̃ = [ρ̃i]

n
i=1

training data set X = {xi}ni=1 and F = {fj}mj=1

Set
B ← 1+2ν

α , T ← 16B2(1+2α)2 log(2n+1)
ν2 , η ← ν

4(1+2α)2B
, m0 ← m

T , S ←
{
xi, (fj(xi))j

}
i

Partition F uniformly at random: F = {Ft}Tt=1 where |Ft| = m0.
θ1 ← 0 ∈ R2n

for t = 1, . . . , T do
λ•i,t ← B

exp(θ•i,t)

1+
∑
i′,•′ exp(θ•

′
i′,t)

for 1 ≤ i ≤ n and • ∈ {+,−}

wt ← [λ+
i,t − λ

−
i,t]

n
i=1 ∈ Rn

(ht, γt)← aBESTFP(wt; ρ̃, S)

θt+1 ← θt + η · rFP

(
ht|Ft , γt; Q̂t

)
end
γ̂ ← 1

T

∑T
t=1 γt , p̂← 1

T

∑T
t=1 ht , λ̂← 1

T

∑T
t=1 λt , Ŵ ← {wt}Tt=1

Output: average plays
(
p̂, γ̂, λ̂

)
, mapping ψ̂ = ψ̂

(
X, ρ̃, Ŵ

)
(see Mapping 4)

Mapping 4: ψ̂ (X, ρ̃, Ŵ ) – pseudocode for the mapping ψ̂ output by Algorithm 3
Input: f ∈ F
for t = 1, . . . , T do

c1i ← (wi,t/ρ̃i + 1/n)(1− f(xi)) for i ∈ [n]
c0i ← (1/n)f(xi) for i ∈ [n]
D ← {xi, c1i , c0i }ni=1
hf,wt ← CSC (H;D)

end
ψ̂f ← 1

T

∑T
t=1 hf,wt

Output: ψ̂f ∈ ∆(H)

for any set of observed individuals X , with probability at least 1− δ/2 over the observed problems
F , the (average) regret of the Learner is bounded as follows.

1

T

T∑
t=1

L
(
ht, γt,λt

)
− 1

T
min

p∈∆(H)m, γ ∈[0,1]

T∑
t=1

L (p, γ,λt) ≤
4B

ρ̃min

√
log (8nT/δ)

2m0

Lemma B.2 (Regret of the Auditor). Let 0 < δ < 1. Let {λt}Tt=1 be the sequence of exponentiated
gradient descent plays (with learning rate η) by the Auditor to the given {ht, γt}Tt=1 of the Learner
over T rounds of Algorithm 3. We have that for any set of observed individuals X , with probability
at least 1 − δ/2 over the observed problems F , the (average) regret of the Auditor is bounded as
follows: For any λ ∈ Λ,

1

T

T∑
t=1

L(ht, γt,λ)− 1

T

T∑
t=1

L(ht, γt,λt) ≤
2B

ρ̂min

√
log (8nT/δ)

2m0
+
B log (2n+ 1)

ηT
+ ηB (1 + 2α)

2

Observe that in order to control the regret of the Learner and the Auditor at level O(ν) we need to
assume that m0 is large enough such that the regret bound of the Learner and the first term appearing
in the regret bound of the Auditor are sufficiently small.
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Assumption B.2. For a given confidence parameter δ, inputs α and ν of Algorithm 3, we assume that
the number of fresh problems m0 used in each round of Algorithm 3 satisfies m0 ≥ O

(
log(nT/δ)
α2ν2ρ2min

)
,

or equivalently m = m0 · T ≥ O
(
T log(nT/δ)
α2ν2ρ2min

)
.

Note that Assumption B.2 immediately implies via a Chernoff bound that ρ̂min ≥ ρmin/2 and that
it also implies via Assumption B.1 that ρ̃min ≥ ρmin/2. In the following theorem we characterize
the average play of the Learner and the Auditor. The proof of this theorem follows from the regret
bounds developed in Lemma B.1 (Regret of the Learner) and Lemma B.2 (Regret of the Auditor) and
uses exactly the same techniques as in the proof of Theorem A.2.

Theorem B.3 (Average Play Characterization). Let 0 < δ < 1. Let
(
p̂, γ̂, λ̂

)
be the average plays

output by Algorithm 3. We have that under Assumption B.2, for any set of observed individuals X ,
with probability at least 1− δ over the observed labelings F , the average plays

(
p̂, γ̂, λ̂

)
forms a

ν-approximate equilibrium of the game, i.e.,

L
(
p̂, γ̂, λ̂

)
≤ L

(
p, γ, λ̂

)
+ ν for all p ∈ ∆(H)m , γ ∈ [0, 1]

L
(
p̂, γ̂, λ̂

)
≥ L (p̂, γ̂,λ)− ν for all λ ∈ Λ

We conclude this subsection with our main Theorem B.4 that provides in-sample accuracy and
fairness guarantees for the learned set of classifiers p̂ ∈ ∆(H)m of Algorithm 3. This theorem
follows immediately from Theorem B.3 and the proof is pretty much similar in style to the proof of
Theorem A.3.

Theorem B.4 (In-sample Accuracy and Fairness). Let 0 < δ < 1 and suppose Assumption B.2
holds. Let (p̂, γ̂) be the output of Algorithm 3 and let (p, γ) be any feasible pair of variables for
the empirical fair learning problem 4. We have that for any set of observed individuals X , with
probability at least 1− δ over the observed labelings F ,

err
(
p̂; P̂, Q̂

)
≤ err

(
p; P̂, Q̂

)
+ 2ν

and that p̂ satisfies (3α, 0)-FPAIF with respect to the empirical distributions (P̂, Q̂). In other words,
for all i ∈ [n], ∣∣∣EFP

(
xi, p̂; Q̂

)
− γ̂
∣∣∣ ≤ 3α

B.3 Generalization Theorems

We now consider the mapping ψ̂ learned by Algorithm 3 and study the generalization bounds both
for accuracy and fairness. As in the AIF learning setting, we state our generalization theorems in
three steps. We first consider in Theorem B.5 the empirical distribution of the problems Q̂ and see
how we can lift the guarantees from P̂ to the true underlying distribution of individuals P . We will
then take the same approach, but this time consider generalization only over the problem generating
distribution Q in Theorem B.6. We will eventually in Theorem B.7 provide accuracy and fairness
guarantees for the learned mapping ψ̂ with respect to the distributions (P,Q). We will use OPT
(defined formally in Definition B.3) as a benchmark to evaluate the accuracy of the mapping ψ̂. The
proofs for the theorems of this section are similar to those of the AIF section.

Theorem B.5 (Generalization over P). Let 0 < δ < 1. Let
(
ψ̂, γ̂

)
be the outputs of Algorithm 3,

and suppose

n ≥ Õ

(
mdH + log

(
1/ν2δ

)
α2β2

)
where dH is the VC dimension ofH. We have that with probability at least 1− 6δ over the observed
data set (X,F ), the mapping ψ̂ is (5α, β)-FPAIF with respect to the distributions

(
P, Q̂

)
, i.e.,

P
x∼P

(∣∣∣EFP

(
x, ψ̂; Q̂

)
− γ̂
∣∣∣ > 5α

)
≤ β
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and that,
err
(
ψ̂;P, Q̂

)
≤ OPT

(
α;P, Q̂

)
+O (ν) +O (αβ)

Theorem B.6 (Generalization over Q). Let 0 < δ < 1. Let
(
ψ̂, γ̂

)
be the outputs of Algorithm 3

and suppose

m ≥ Õ
(

log (n) log (n/δ)

ρ2
minν

4α4

)
We have that for any set of observed individuals X , with probability at least 1− 6δ over the observed
problems F , the learned mapping ψ̂ is (4α, 0)-FPAIF with respect to the distributions

(
P̂,Q

)
, i.e.,

P
x∼P̂

(∣∣∣EFP

(
x, ψ̂;Q

)
− γ̂
∣∣∣ > 4α

)
= 0

and that,
err
(
ψ̂; P̂,Q

)
≤ OPT

(
α; P̂,Q

)
+O (ν)

Theorem B.7 (Simultaneous Generalization over P and Q). Let 0 < δ < 1. Let
(
ψ̂, γ̂

)
be the

outputs of Algorithm 3 and suppose

n ≥ Õ

(
mdH + log

(
1/ν2δ

)
α2β2

)
, m ≥ Õ

(
log (n) log (n/δ)

ρ2
inf ν

4α4

)
where dH is the VC dimension of H and ρinf = infx∈X ρx. We have that with probability at least
1− 10 δ over the observed individuals X and the problems F , the learned mapping ψ̂ is (6α, 2β)-
FPAIF with respect to the distributions (P,Q), i.e.,

P
x∼P

(∣∣∣EFP

(
x, ψ̂;Q

)
− γ̂
∣∣∣ > 6α

)
≤ 2β

and that,
err
(
ψ̂;P,Q

)
≤ OPT (α;P,Q) +O (ν) +O (αβ)

C Proofs of the paper

C.1 Preliminary Tools

Theorem C.1 (Additive Chernoff-Hoeffding Bound). Let X = {Xi}ni=1 be a sequence of i.i.d.
random variables with a ≤ Xi ≤ b and E [Xi] = µ for all i. We have that for all s > 0,

PX
[∣∣∣∣∑iXi

n
− µ

∣∣∣∣ ≥ s] ≤ 2 exp

(
−2ns2

(b− a)2

)
Lemma C.2 (Sauer’s Lemma (see e.g. Kearns and Vazirani (1994))). Let H be a class of binary
functions defined on X where the VC dimension ofH, dH, is finite. Let X = {xi}ni=1 be a data set of
size n drwan from X and letH(X) = {(h(x1), . . . , h(xn)) : h ∈ H} be the set of induced labelings
ofH on X . We have that |H(X)| ≤ O

(
ndH

)
.

Theorem C.3 (Exponentiated Gradient Descent Regret (see corollary 2.14 of Shalev-Shwartz (2012))).
Let Λ′ =

{
λ′ ∈ Rd+ : ||λ′||1 = B

}
. Suppose the exponentiated gradient descent algorithm with

learning rate η is run on the sequence of linear functions
{
ft(λ

′) = (λ′)>rt
}T
t=1

where λ′ ∈ Λ′

and ||rt||∞ ≤ L for all t. Let λ′t denote the exponentiated gradient descent play at round t. We have
that the regret of the algorithm over T rounds is:

RegretT (Λ′) = max
λ′∈Λ′

T∑
t=1

(λ′)> rt −
T∑
t=1

(λ′t)
> rt ≤

B log (d)

η
+ ηBL2T

and that for η = O
(

1/
√
T
)

, we have that RegretT (Λ′) = O
(√

T
)

.
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C.2 Missing proofs: Learning subject to AIF

C.2.1 Algorithm analysis and in-sample guarantees

Proof of Lemma A.1. Fix the set of observed individuals X ∈ Xn. Recall that Λ = {λ ∈ R2n
+ :

||λ||1 ≤ B} is the set of strategies for the Auditor. Now let Λ′ = {λ′ ∈ R2n+1
+ : ||λ′||1 = B}.

Any λ ∈ Λ is associated with a λ′ ∈ Λ′ which is equal to λ on the first 2n coordinates and has
the remaining mass on the last one. Let r̂t = r(ht|Ft , γt; Q̂t) be the vector of fairness violations
– estimated over only the m0 problems Ft of round t – that the Auditor is using in Algorithm
AIF-Learn, and let r̂′t ∈ R2n+1 be equal to r̂t on the first 2n coordinates and zero in the last
one. We have that for any λ ∈ Λ and its associated λ′ ∈ Λ′, and in particular for λt and λ′t of
Algorithm AIF-Learn, and all t ∈ [T ],

λ> r̂t = (λ′)> r̂′t , λ>t r̂t = (λ′t)
> r̂′t (10)

Now by Theorem C.3, and using the observation that ||r̂′t||∞ = ||r̂t||∞ ≤ 1 + 2α, we have that for
any λ′ ∈ Λ′,

T∑
t=1

(λ′)> r̂′t ≤
T∑
t=1

(λ′t)
> r̂′t +

B log (2n+ 1)

η
+ η (1 + 2α)

2
BT

Consequently by Equation 10, we have that for any λ ∈ Λ,

T∑
t=1

λ> r̂t ≤
T∑
t=1

λ>t r̂t +
B log (2n+ 1)

η
+ η (1 + 2α)

2
BT

Now let rt = r
(
ht, γt; Q̂

)
be the vector of fairness violations estimated over all problems F and

notice that the regret bound must be with respect to rt and not r̂t. With that goal in mind, we have
that for any λ ∈ Λ,

T∑
t=1

λ> rt ≤
T∑
t=1

λ>t rt +

T∑
t=1

(λt − λ)
>

(r̂t − rt) +
B log (2n+ 1)

η
+ η (1 + 2α)

2
BT

We will use Chernoff-Hoeffding’s inequality to bound the difference (r̂t − rt) in `∞ norm. Let
ψ̂t = ψ̂ (X,wt) where wt is the vector of weights used in round t of the algorithm and observe that
we can rewrite r̂t and rt in terms of ψ̂t:

r̂t =

E (xi, ψ̂t; Q̂t)− γt − 2α

γt − E
(
xi, ψ̂t; Q̂t

)
− 2α

n
i=1

, rt =

E (xi, ψ̂t; Q̂)− γt − 2α

γt − E
(
xi, ψ̂t; Q̂

)
− 2α

n
i=1

Hence, bounding the difference (r̂t − rt) in `∞ norm involves bounding the terms∣∣∣E (xi, ψ̂t; Q̂t)− E (xi, ψ̂t; Q̂)∣∣∣
for all i. Notice we can now view the batch of problems Ft as independent draws from the distribution
Q̂. Therefore, it follows from the Chernoff-Hoeffding’s Theorem C.1 that with probability at least
1− δ over the set of problems F , for any λ ∈ Λ,

T∑
t=1

(λt − λ)
>

(r̂t − rt) ≤
T∑
t=1

||λt − λ||1 · ||r̂t − rt||∞ ≤ B
T∑
t=1

||r̂t − rt||∞ ≤ BT

√
log (2nT/δ)

2m0

which implies with probability at least 1− δ over the problems F , for any λ ∈ Λ,

1

T

T∑
t=1

L
(
ht, γt,λ

)
− 1

T

T∑
t=1

L
(
ht, γt,λt

)
≤ B

√
log (2nT/δ)

2m0
+
B log (2n+ 1)

ηT
+ η (1 + 2α)

2
B

completing the proof.
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Proof of Theorem A.2. Let

Rλ := B

√
log (2nT/δ)

2m0
+
B log (2n+ 1)

ηT
+ η (1 + 2α)

2
B

be the average regret of the Auditor. We have that for any p ∈ ∆(H)m and γ ∈ [0, 1],

L
(
p, γ, λ̂

)
=

1

T

T∑
t=1

L (p, γ,λt) (by linearity of L)

≥ 1

T

T∑
t=1

L
(
ht, γt,λt

)
((ht, γt) is Learner’s Best Response)

≥ 1

T

T∑
t=1

L
(
ht, γt, λ̂

)
−Rλ (w.p. 1− δ over F by Lemma A.1)

= L
(
p̂, γ̂, λ̂

)
−Rλ

And that for any λ ∈ Λ we have:

L (p̂, γ̂,λ) =
1

T

T∑
t=1

L
(
ht, γt,λ

)
(by linearity of L)

≤ 1

T

T∑
t=1

L
(
ht, γt,λt

)
+Rλ (w.p. 1− δ over F by Lemma A.1)

≤ 1

T

T∑
t=1

L (p̂, γ̂,λt) +Rλ ((ht, γt) is Learner’s Best Response)

= L
(
p̂, γ̂, λ̂

)
+Rλ

Now we have to pick T and η of Algorithm AIF-Learn such that Rλ ≤ ν where ν is the approxima-
tion parameter input to the algorithm. First let B = 1+2ν

α and observe that if m0 ≥ 2B2 log(2nT/δ)
ν2 =

2(1+2ν)2 log(2nT/δ)
ν2α2 (see Assumption A.1 on m0) we have that

Rλ ≤
ν

2
+
B log (2n+ 1)

ηT
+ η (1 + 2α)

2
B

Next, let T = 16B2(1+2α)2 log(2n+1)
ν2 , and η = ν

4(1+2α)2B
which makes the last two terms appearing

in the RHS of the inequality to sum to ν/2, and accordingly Rλ ≤ ν. Therefore, we have shown that
for any X , with probability at least 1− δ over the observed labelings F ,

L
(
p̂, γ̂, λ̂

)
≤ L

(
p, γ, λ̂

)
+ ν for all p ∈ ∆(H)m , γ ∈ [0, 1]

L
(
p̂, γ̂, λ̂

)
≥ L (p̂, γ̂,λ)− ν for all λ ∈ Λ

Proof of Theorem A.3. Let (p, γ) be any feasible point of the empirical fair learning problem (note
as discussed in the paper there is at least one) and define λ? ∈ Λ to be

λ? :=

0 if rk?
(
p̂, γ̂; Q̂

)
≤ 0

Bek? if rk?
(
p̂, γ̂; Q̂

)
> 0

where k? = arg max1≤k≤2n rk

(
p̂, γ̂; Q̂

)
. Observe that with probability 1− δ over F ,

L
(
p̂, γ̂, λ̂

)
≤ L

(
p, γ, λ̂

)
+ ν (by Theorem A.2)

= err
(
p; P̂, Q̂

)
+ λ̂

>
r
(
p, γ; Q̂

)
+ ν

≤ err
(
p; P̂, Q̂

)
+ ν

12



and that,

L
(
p̂, γ̂, λ̂

)
≥ L (p̂, γ̂,λ?)− ν (by Theorem A.2)

= err
(
p̂; P̂, Q̂

)
+ (λ?)>r

(
p̂, γ̂; Q̂

)
− ν

≥ err
(
p̂; P̂, Q̂

)
− ν

Combining the above upper and lower bounds on L
(
p̂, γ̂, λ̂

)
implies

err
(
p̂; P̂, Q̂

)
≤ err

(
p; P̂, Q̂

)
+ 2ν

Now let’s prove the bound on fairness violation. Once again using the above upper and lower bounds,
we have that

(λ?)>r
(
p̂, γ̂; Q̂

)
≤ err

(
p; P̂, Q̂

)
− err

(
p̂; P̂, Q̂

)
+ 2ν ≤ 1 + 2ν

By definition of λ?,

max
1≤k≤2n

rk

(
p̂, γ̂; Q̂

)
≤ 1 + 2ν

B

which implies for all 1 ≤ i ≤ n,∣∣∣E (xi, p̂; Q̂
)
− γ̂
∣∣∣ ≤ 2α+

1 + 2ν

B

And the proof is completed by the choice of B = (1 + 2ν) /α in Algorithm AIF-Learn.

C.2.2 Proof of theorem: Generalization over P

When arguing about generalization over P , we will have to come up with a uniform convergence
result for all – randomized – classifiers. It is usually the case in learning theory – for example
when considering the concentration of the classifiers’ errors – that a uniform convergence for pure
classifiers will immediately imply the uniform convergence for randomized classifiers by simply
pulling out the expectation over classifiers. However, in our setting and in particular for our notation
of fairness, this approach “may" not be possible. We will therefore consider directly arguing about
uniform convergence of randomized classifiers. Although there are possibly infinitely many of those
randomized classifiers, we actually need to consider only the Õ

(
1/α2

)
-sparse classifiers by which

we mean the distributions over H with support of size at most Õ
(
1/α2

)
. This 1/α2 factor will

accordingly show up in our final sample complexity bound for n.

In Lemma C.4 we prove a uniform convergence of r-sparse randomized classifiers (defined formally
below) and later in the proof of our theorem, we invoke this lemma for r = Õ

(
1/α2

)
to prove our

result.

Definition C.1 (Sparse Randomized Classifiers). We say a randomized classifier p ∈ ∆ (H) is r-
sparse if the support of p is of size at most r. We denote the set of all r-sparse randomized classifiers
of the hypothesis classH by ∆r(H), and the elements of ∆r(H) by p(r).

Lemma C.4 (Uniform Convergence of AIF Fairness Notion in ∆r(H)m). Let 0 < δ < 1 and r ∈ N
and let T be the number of iterations in Algorithm AIF-Learn. Suppose

n ≥ Õ
(
rmdH + log (T/δ)

β2

)
We have that for any set of problems F , with probability at least 1− δ over the individuals X: for all
p(r) ∈ ∆r(H)m and all γ ∈

{
0, 1

T ,
2
T , . . . , 1

}
,∣∣∣∣ P

x∼P

(∣∣∣E (x,p(r); Q̂
)
− γ
∣∣∣ > α

)
− P
x∼P̂

(∣∣∣E (x,p(r); Q̂
)
− γ
∣∣∣ > α

)∣∣∣∣ ≤ β
13



Proof of Lemma C.4. The proof of this Lemma will use standard techniques for proving uniform
convergence in learning theory such as the “two-sample trick" and Sauer’s Lemma C.2. To simplify
notation, let’s call, for any p(r) ∈ ∆r(H)m and any γ ∈ ST :=

{
0, 1

T ,
2
T , . . . , 1

}
,

P
x∼P

(∣∣∣E (x,p(r); Q̂
)
− γ
∣∣∣ > α

)
:= g

(
p(r), γ;P

)
(11)

Define event A (X) as follows:

A (X) =
{
∃p(r) ∈ ∆r(H)m, γ ∈ ST :

∣∣∣g (p(r), γ;P
)
− g

(
p(r), γ; P̂X

)∣∣∣ > β
}

where P̂X ≡ P̂ represents the uniform distribution over X . Our ultimate goal is to show that given
the sample complexity for n stated in the lemma, PX [A (X)] is small. Suppose besides the original
data set X , we also have an “imaginary" data set of individuals X ′ = {x′i}ni=1 ∈ Xn sampled i.i.d.
from the distribution P . Define event B (X,X ′) as follows:

B (X,X ′) =

{
∃p(r) ∈ ∆r(H)m, γ ∈ ST :

∣∣∣g (p(r), γ; P̂X′
)
− g

(
p(r), γ; P̂X

)∣∣∣ > β

2

}
Claim: PX [A (X)] ≤ 2P(X,X′) [B (X,X ′)]. Proof: It suffices to show that

P(X,X′) [B(X,X ′) |A(X)] ≥ 1/2

because
P(X,X′) [B (X,X ′)] ≥ P(X,X′) [B(X,X ′) |A(X)] PX [A (X)]

Let the event A(X) hold and suppose the pair p(r)
? and γ? satisfy∣∣∣g (p(r)

? , γ?;P
)
− g

(
p

(r)
? , γ?; P̂X

)∣∣∣ > β

We have that by the triangle inequality and a Chernoff-Hoeffding’s bound:

P(X,X′) [B(X,X ′) |A(X)]

≥ P(X,X′)

[∣∣∣g (p(r)
? , γ?; P̂X′

)
− g

(
p

(r)
? , γ?; P̂X

)∣∣∣ > β

2

]
≥ P(X,X′)

[∣∣∣g (p(r)
? , γ?;P

)
− g

(
p

(r)
? , γ?; P̂X

)∣∣∣− ∣∣∣g (p(r)
? , γ?;P

)
− g

(
p

(r)
? , γ?; P̂X′

)∣∣∣ > β

2

]
≥ PX′

[∣∣∣g (p(r)
? , γ?;P

)
− g

(
p

(r)
? , γ?; P̂X′

)∣∣∣ < β

2

]
≥ 1− 2e−n

β2

2

≥ 1/2

Following the claim, it now suffices to show that P(X,X′) [B(X,X ′)] is small. Consider the following
thought experiment: Let T and T ′ be two empty sets. For each i ∈ [n] toss a fair coin independently
and

• if it lands on Heads, put xi in T and x′i in T ′.

• if it lands on Tails, put x′i in T and xi in T ′.

We will later denote the randomness induced by these coin flips by “coin" in our probability state-
ments. It follows immediately by our construction that the distribution of (T, T ′) is the same as the
distribution of (X,X ′), and therefore

P(X,X′) [B(X,X ′)] = P(T,T ′) [B(T, T ′)] = P(X,X′,coin) [B(T, T ′)] (12)

where

B(T, T ′) =

{
∃p(r) ∈ ∆r(H)m, γ ∈ ST :

∣∣∣g (p(r), γ; P̂T ′
)
− g

(
p(r), γ; P̂T

)∣∣∣ > β

2

}
But we have that

P(X,X′,coin) [B(T, T ′)] = E(X,X′) [Pcoin [B(T, T ′)]] (13)
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where we use the fact that the coin flips are independent of the random variables (X,X ′) and thus,
conditioning on (X,X ′) won’t change the distribution of “coin". Following Equations 12 and 13,
it now suffices to show that for – any (X,X ′) – Pcoin [B(T, T ′)] is small. Fix the data sets (X,X ′).
Fix p(r) ∈ ∆r(H)m and γ ∈ ST and let

I =
{
i ∈ [n] : g

(
p(r), γ;xi

)
6= g

(
p(r), γ;x′i

)}
where recall that by Equation 11:

g
(
p(r), γ;xi

)
= 1

[∣∣∣E (xi,p(r); Q̂
)
− γ
∣∣∣ > α

]
Let |I| = n′ ≤ n. Now observe that

Pcoin

[∣∣∣g (p(r), γ; P̂T ′
)
− g

(
p(r), γ; P̂T

)∣∣∣ > β

2

]
= Pcoin

[
|heads(I)− tails(I)| > nβ

2

]
where heads(I) and tails(I) denote the number of heads and tails of the coin on indices I . But a
triangle inequality followed by two Chernoff-Hoeffding bounds imply

Pcoin

[
|heads(I)− tails(I)| > nβ

2

]
≤ Pcoin

[∣∣∣∣heads(I)

n′
− 1

2

∣∣∣∣ > nβ

4n′

]
+ Pcoin

[∣∣∣∣12 − tails(I)

n′

∣∣∣∣ > nβ

4n′

]
≤ 4e−2n′(nβ/4n′)2

≤ 4e−nβ
2/8

Therefore, we have proved that for any p(r) ∈ ∆r(H)m and any γ ∈ ST ,

Pcoin

[∣∣∣g (p(r), γ; P̂T ′
)
− g

(
p(r), γ; P̂T

)∣∣∣ > β

2

]
≤ 4e−nβ

2/8

Now it’s time to apply the Sauer’s Lemma C.2 to get a uniform convergence for all p(r) ∈ ∆r(H)m

and all γ ∈ ST . Notice once the data sets (X,X ′) are fixed, there are at most O
(

(2n)
dH rm

)
number of randomized classifiers p(r) ∈ ∆r(H)m induced on the set {X,X ′}. Here 2n comes from
the fact that X and X ′ have a combined number of 2n points. dH is the VC dimension, and r and m
show up in the bound because each p(r)

j in p(r) is r-sparse and that there are a total m randomized

classifiers p(r)
j in p(r). We also have that |ST | = T + 1. Consequently by a union bound over all

induced p(r) and all γ ∈ ST :

Pcoin [B(T, T ′)] = Pcoin

[
∃p(r) ∈ ∆r(H)m, γ ∈ ST :

∣∣∣g (p(r), γ; P̂T ′
)
− g

(
p(r), γ; P̂T

)∣∣∣ > β

2

]
≤
∑
p(r),γ

Pcoin

[∣∣∣g (p(r), γ; P̂T ′
)
− g

(
p(r), γ; P̂T

)∣∣∣ > β

2

]
≤ O

(
(2n)

dH rm
)
· (T + 1) · 4e−nβ

2/8

where the second sum is actually over all the induced r-sparse randomized classifiers on the set
{X,X ′} and all γ ∈ ST . This shows so long as

n ≥ Õ
(
rmdH + log (T/δ)

β2

)
we have that for any (X,X ′), Pcoin [B(T, T ′)] ≤ δ/2. Therefore

PX [A(X)] ≤ 2P(X,X′) [B (X,X ′)] = 2E(X,X′) [Pcoin [B(T, T ′)]] ≤ δ

completing the proof.

15



Proof of Theorem 3.2 (Generalization over P). We will use Lemma C.4 in the proof of this theorem.
We are interested in the fairness violation and accuracy of the mapping ψ̂ = ψ̂ (X,F ) returned by
Algorithm AIF-Learn with respect to the distributions P and Q̂. Fix the set of problems F and
observe that when we work with the empirical distribution of the problems Q̂, we have that

E
(
x, ψ̂; Q̂

)
= E

(
x, p̂; Q̂

)
, err

(
ψ̂;P, Q̂

)
= err

(
p̂;P, Q̂

)
where p̂ is the set of m randomized classifiers output by Algorithm AIF-Learn. Let’s first prove the
generalization for fairness. Define event A (X):

A (X) =

{
P

x∼P

(∣∣∣E (x, p̂; Q̂
)
− γ̂
∣∣∣ > 5α

)
− P
x∼P̂

(∣∣∣E (x, p̂; Q̂
)
− γ̂
∣∣∣ > 3α

)
> β

}
We will eventually show that under the stated sample complexity for n in the theorem, PX [A (X)] is
small. Consider the distributions p̂ = (p̂1, p̂2, . . . , p̂m) overH. Let

r =
log (12nm/δ)

2α2

For each j ∈ [m], consider drawing r independent samples from the distribution p̂j overH and define
p̂

(r)
j to be the uniform distribution over the drawn samples. We will abuse notation and use p̂(r)

j to
denote both the drawn samples and the uniform distribution over them. Now define

p̂(r) =
(
p̂

(r)
1 , p̂

(r)
2 , . . . , p̂(r)

m

)
∈ ∆r(H)m

which is the “r-sparsified" version p̂. One important observation that follows from the Chernoff-
Hoeffding’s theorem is that for – any – X ′ = {x′i}ni=1 ∈ Xn, with probability at least 1− δ/6 over
the draws of p̂(r), we have that for all i ∈ [n]:∣∣∣E (x′i, p̂; Q̂

)
− E

(
x′i, p̂

(r); Q̂
)∣∣∣ ≤ α (14)

In other words, for any set of individuals X ′ ∈ Xn, we have that:

Pp̂(r)

[
P

x∼P̂′

(∣∣∣E (x, p̂; Q̂
)
− E

(
x, p̂(r); Q̂

)∣∣∣ > α
)
6= 0

]
≤ δ/6 (15)

where P̂ ′ denotes the uniform distribution over X ′. Now define events B,C,D as follows:

B
(
X, p̂(r)

)
=

{∣∣∣∣ P
x∼P

(∣∣∣E (x, p̂(r); Q̂
)
− γ̂
∣∣∣ > 4α

)
− P
x∼P̂

(∣∣∣E (x, p̂(r); Q̂
)
− γ̂
∣∣∣ > 4α

)∣∣∣∣ > β

2

}
C
(
X, p̂(r)

)
=

{
P

x∼P

(∣∣∣E (x, p̂; Q̂
)
− E

(
x, p̂(r); Q̂

)∣∣∣ > α
)
>
β

2

}
D
(
X, p̂(r)

)
=

{
P

x∼P̂

(∣∣∣E (x, p̂; Q̂
)
− E

(
x, p̂(r); Q̂

)∣∣∣ > α
)
6= 0

}
It follows by the triangle inequality that

PX [A (X)] = PX,p̂(r) [A (X)]

≤ PX,p̂(r)

[
B
(
X, p̂(r)

)]
︸ ︷︷ ︸

term 1

+PX,p̂(r)

[
C
(
X, p̂(r)

)]
︸ ︷︷ ︸

term 2

+PX,p̂(r)

[
D
(
X, p̂(r)

)]
︸ ︷︷ ︸

term 3

So to prove that PX [A (X)] is small, it suffices to show that all the three terms appearing in the RHS
of the above inequality are small. We will in fact show each term ≤ δ/3:

term 1: Notice to bound this term we need to prove a uniform convergence for all r-sparse set of
randomized classifiers p(r) ∈ ∆r(H)m and all γ of the form c/T for some nonnegative integer
c ≤ T (because the γ̂ output by our algorithm has this form). But we already proved this uniform
convergence in Lemma C.4. In fact if we define the event:

B1(X) =
{
∃p(r) ∈ ∆r(H)m, γ ∈ {0, 1

T
,

2

T
, . . . , 1} :∣∣∣∣ P

x∼P

(∣∣∣E (x,p(r); Q̂
)
− γ
∣∣∣ > 4α

)
− P
x∼P̂

(∣∣∣E (x,p(r); Q̂
)
− γ
∣∣∣ > 4α

)∣∣∣∣ > β

2

}
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by Lemma C.4, so long as,

n ≥ Õ
(
rmdH + log (T/δ)

β2

)
≡ Õ

(
mdH + log

(
1/ν2δ

)
α2β2

)
(T = O

(
log (n) /ν2α2

)
)

we have that PX [B1(X)] ≤ δ/3. And this implies

PX,p̂(r)

[
B
(
X, p̂(r)

)]
≤ PX [B1 (X)] ≤ δ/3

term 2: Observe that

PX,p̂(r)

[
C
(
X, p̂(r)

)]
= EX

[
Pp̂(r)

[
C
(
X, p̂(r)

)]]
Notice when we condition on X , the conditional distribution of both p̂ and p̂(r) will actually change
because they both depend on X , but it is the case that for any X , p̂(r) (given X) will be still
independent draws from p̂ (given X) and this is what we will actually need. We will show for any X:

Pp̂(r)

[
C
(
X, p̂(r)

)]
≤ δ/3

Fix X . Let X ′ = {x′i}ni=1 be a new data set of individuals drawn independently from the distribution
P and let P̂ ′ denote the uniform distribution over X ′. Define events:

C1

(
X ′, p̂(r)

)
={∣∣∣∣ P

x∼P

(∣∣∣E (x, p̂; Q̂
)
− E

(
x, p̂(r); Q̂

)∣∣∣ > α
)
− P
x∼P̂′

(∣∣∣E (x, p̂; Q̂
)
− E

(
x, p̂(r); Q̂

)∣∣∣ > α
)∣∣∣∣ > β

2

}
C2

(
X ′, p̂(r)

)
=

{
P

x∼P̂′

(∣∣∣E (x, p̂; Q̂
)
− E

(
x, p̂(r); Q̂

)∣∣∣ > α
)
6= 0

}
It follows by a triangle inequality that:

Pp̂(r)

[
C
(
X, p̂(r)

)]
= PX′,p̂(r)

[
C
(
X, p̂(r)

)]
≤ PX′,p̂(r)

[
C1

(
X ′, p̂(r)

)]
+ PX′,p̂(r)

[
C2

(
X ′, p̂(r)

)]
= Ep̂(r)

[
PX′

[
C1

(
X ′, p̂(r)

)]]
+ EX′

[
Pp̂(r)

[
C2

(
X ′, p̂(r)

)]]
Given p̂(r), we have that by a Chernoff-Hoeffding’s inequality that as long as the sample complexity
for n is met:

PX′
[
C1

(
X ′, p̂(r)

)]
≤ δ/6

On the other hand, given X ′, it follows by Equation 15 that,

Pp̂(r)

[
C2

(
X ′, p̂(r)

)]
≤ δ/6

Consequently:
PX,p̂(r)

[
C
(
X, p̂(r)

)]
≤ δ/3

term 3: Observe that Equation 15 implies:

PX,p̂(r)

[
D
(
X, p̂(r)

)]
= EX

[
Pp̂(r)

[
D
(
X, p̂(r)

)]]
≤ δ/3

We finally proved PX [A (X)] ≤ δ. Or in other words, we have proved that for any F , with probability
at least 1− δ over the individuals X ,

P
x∼P

(∣∣∣E (x, p̂; Q̂
)
− γ̂
∣∣∣ > 5α

)
− P
x∼P̂

(∣∣∣E (x, p̂; Q̂
)
− γ̂
∣∣∣ > 3α

)
≤ β

On the other hand, the in-sample guarantees provided in Theorem A.3 implies for any X , with
probability 1− δ over the observed problems F , the pair (p̂, γ̂) of Algorithm AIF-Learn satisfies

P
x∼P̂

(∣∣∣E (x, p̂; Q̂
)
− γ̂
∣∣∣ > 3α

)
= 0
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Hence, as long as

n ≥ Õ

(
mdH + log

(
1/ν2δ

)
α2β2

)
(16)

we have that with probability at least 1− 2δ over the observed data set (X,F ),

P
x∼P

(∣∣∣E (x, p̂; Q̂
)
− γ̂
∣∣∣ > 5α

)
≤ β

which shows p̂, or equivalently the mapping ψ̂, is (5α, β)-AIF with respect to the distributions P and
Q̂. Now let’s look at the generalization (with respect to P) error of the set of classifiers p̂. Let

ψ? = ψ?
(
α;P, Q̂

)
, γ? = γ?

(
α;P, Q̂

)
, err

(
ψ?;P, Q̂

)
= OPT

(
α;P, Q̂

)
be the optimal solutions of the fair learning problem. Let also ψ?|F = p? ∈ ∆(H)m. Since we are
working with the empirical distribution of problems Q̂,

err
(
p?;P, Q̂

)
= err

(
ψ?;P, Q̂

)
= OPT

(
α;P, Q̂

)
We would like to compare the accuracy of p̂ with respect to the distributions P and Q̂, i.e.
err
(
p̂;P, Q̂

)
, to OPT

(
α;P, Q̂

)
as a benchmark. We will establish this comparison in three

steps:

1. a bound on the difference between err
(
p̂;P, Q̂

)
and its in-sample version err

(
p̂; P̂, Q̂

)
.

Note a uniform convergence can be achieved for all p ∈ ∆(H)m by standard generalization
techniques (like Sauer’s Lemma and the two-sample trick, as discussed in the proof of
Lemma C.4), without even needing to consider the uniform convergence for r-sparse
randomized classifiers. Because when investigating the concentration of the overall error
rate which is in the form of nested expectations, the linearity of expectation helps us to
directly turn a uniform convergence for all sets of pure classifiers h ∈ Hm into a uniform
convergence for all randomized classifiers p ∈ ∆ (H)

m without blowing up the sample
complexity by a factor of 1/α2. We can therefore guarantee that for all F , with probability
at least 1− δ over X , as long as 16 is satisfied:∣∣∣err

(
p̂;P, Q̂

)
− err

(
p̂; P̂, Q̂

)∣∣∣ ≤ O (αβ) (17)

2. a bound on the difference between err
(
p?;P, Q̂

)
and its in-sample version err

(
p?; P̂, Q̂

)
.

This is very simple and it follows immediately from the Chernoff-Hoeffding’s theorem that
for all F , with probability at least 1− δ over X , as long as 16 is satisfied:∣∣∣OPT

(
α;P, Q̂

)
− err

(
p?; P̂, Q̂

)∣∣∣ ≤ O (αβ)

3. the pair (p?, γ?) is feasible in the empirical learning problem. As a consequence, Theorem
A.3 implies for any X , with probability 1− δ over F :

err
(
p̂; P̂, Q̂

)
≤ err

(
p?; P̂, Q̂

)
+ 2ν

Finally, putting together all three pieces explained above, we have that with probability at least 1− 3δ
over the observed data set (X,F ),

err
(
p̂;P, Q̂

)
≤ OPT

(
α;P, Q̂

)
+O (ν) +O (αβ)

completing the proof.
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C.2.3 Proof of Theorem: Generalization over Q

Proof of Theorem 3.3 (Generalization over Q). Fix the set of observed individuals X = {xi}ni=1

and recall P̂ denotes the uniform distribution over X . Let

ψ̂ = ψ̂
(
X, Ŵ

)
where Ŵ = {wt}Tt=1

be the mapping returned by Algorithm AIF-Learn. We would like to lift the accuracy and fairness
guarantees of ψ̂ from the empirical distribution Q̂ up to the true underlying distribution Q. First
observe that by the definition of ψ̂, for any x ∈ X and any distribution Q:

E
(
x, ψ̂;Q

)
=

1

T

T∑
t=1

E
(
x, ψ̂t;Q

)
(18)

where ψ̂t = ψ̂ (X,wt) is a mapping defined only the weights wt of round t over the individuals X .
ψ̂t in fact takes a function f , solves one CSC problem on X weighted by wt and then returns the
learned classifier. For any t ∈ [T ], we are interested in bounding the difference∣∣∣E (x, ψ̂t;Q)− E (x, ψ̂t; Q̂)∣∣∣
Notice following the dynamics of our algorithm, wt (and accordingly ψ̂t) has dependence on the
previous batches of problems {Ft′}t−1

t′=1 and therefore we cannot directly invoke the Chernoff-
Hoeffding’s theorem to bound the above difference. We instead use the estimates E(x, ψ̂t; Q̂t) where
Q̂t = U(Ft) as an intermediary step to bound the difference. Observe that a simple triangle inequality
implies∣∣∣E (x, ψ̂t;Q)− E (x, ψ̂t; Q̂)∣∣∣ ≤ ∣∣∣E (x, ψ̂t;Q)− E (x, ψ̂t; Q̂t)∣∣∣+∣∣∣E (x, ψ̂t; Q̂t)− E (x, ψ̂t; Q̂)∣∣∣
Now we can invoke the Chernoff-Hoeffding’s Theorem C.1 to bound each term appearing above
separately. In fact the batch of problems Ft can be seen as independent draws from both distributions
Q and Q̂. It therefore follows that with probability 1− δ over the draws of the batch Ft,∣∣∣E (x, ψ̂t;Q)− E (x, ψ̂t; Q̂)∣∣∣ ≤ 2

√
log (4/δ)

2m0

We can now use Equation 18 to translate this bound to a bound for ψ̂. We have that for any x ∈ X ,
with probability at least 1− δ over all problems F ,∣∣∣E (x, ψ̂;Q

)
− E

(
x, ψ̂; Q̂

)∣∣∣ ≤ 2

√
log (4T/δ)

2m0
(19)

And therefore, with probability at least 1− δ over all problems F , for all i ∈ [n],∣∣∣E (xi, ψ̂;Q
)
− E

(
xi, ψ̂; Q̂

)∣∣∣ ≤ 2

√
log (4nT/δ)

2m0
≤ να (20)

where the second inequality follows from Assumption A.1 onm0. Now by a simple triangle inequality

P
x∼P̂

(∣∣∣E (x, ψ̂;Q
)
− γ̂
∣∣∣ > 4α

)
≤ P
x∼P̂

(∣∣∣E (x, ψ̂;Q
)
− E(x, ψ̂; Q̂)

∣∣∣ > α
)

+ P
x∼P̂

(∣∣∣E(x, ψ̂; Q̂)− γ̂
∣∣∣ > 3α

)
The first term appearing in the RHS of the above inequality is zero with probability 1 − δ over F
following inequality 20. The second term is zero with probability 1− δ over F as well following the
in-sample guarantees provided in Theorem A.3. Therefore, we conclude that for any set of observed
individuals X , with probability at least 1− 2δ over the observed labelings F , as long as Assumption
A.1:

m = T ·m0 ≥ O
(
T log (nT/δ)

ν2α2

)
= Õ

(
log (n) log (n/δ)

ν4α4

)
(21)
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holds, the mapping ψ̂ satisfies (4α, 0)-AIF with respect to the distributions
(
P̂,Q

)
:

P
x∼P̂

(∣∣∣E (x, ψ̂;Q
)
− γ̂
∣∣∣ > 4α

)
= 0

Now let’s look at the generalization (with respect to Q) error of ψ̂. Let

ψ? = ψ?
(
α; P̂,Q

)
, γ? = γ?

(
α; P̂,Q

)
, err

(
ψ?; P̂,Q

)
= OPT

(
α; P̂,Q

)
be the optimal solutions of the fair learning problem on distributions P̂ and Q. We would like
to compare the accuracy of ψ̂ with respect to the distributions P̂ and Q, i.e. err

(
ψ̂; P̂,Q

)
, to

OPT
(
α; P̂,Q

)
as a benchmark. We follow the same approach we used in the previous proof to

achieve an upper bound for the difference between ψ̂’s error and the optimal error. It follows directly
from inequality 20 that with probability 1− δ over the problems F , as long as the sample complexity
21 is satisfied,∣∣∣err

(
ψ̂; P̂,Q

)
− err

(
ψ̂; P̂, Q̂

)∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

E
(
xi, ψ̂;Q

)
− 1

n

n∑
i=1

E
(
xi, ψ̂; Q̂

)∣∣∣∣∣ ≤ να (22)

and that by a simple application of the Chernoff-Hoeffding’s inequality, as long as the sample
complexity 21 is satisfied, with probability 1− δ over F we have that∣∣∣err

(
ψ?; P̂,Q

)
− err

(
ψ?; P̂, Q̂

)∣∣∣ ≤ O (να) (23)

On the other hand, with probability 1−δ over F , the pair (ψ?|F , γ?) – where ψ?|F is the mapping ψ?
restricted to the problems F – is feasible in the empirical learning problem. Because, with probability
1− δ as long as the sample complexity 21 is satisfied:∣∣∣E (xi, ψ?|F ; Q̂

)
− γ?

∣∣∣ ≤ ∣∣∣E (xi, ψ?|F ; Q̂
)
− E (xi, ψ

?;Q)
∣∣∣+ |E (xi, ψ

?;Q)− γ?| ≤ α+ α = 2α

Therefore, by Theorem A.3, we have that with probability 1− δ over F ,

err
(
ψ̂; P̂, Q̂

)
= err

(
p̂; P̂, Q̂

)
≤ err

(
ψ?|F ; P̂, Q̂

)
+ 2ν = err

(
ψ?; P̂, Q̂

)
+ 2ν (24)

Putting together inequalities 22, 23, and 24, we conclude that for any X , with probability at least
1− 4δ over the problems F ,

err
(
ψ̂; P̂,Q

)
≤ OPT

(
α; P̂,Q

)
+O (ν)

C.2.4 Proof of theorem: Simultaneous Generalization over P and Q

We have proved so far:

• Generalization over P:
(
P̂, Q̂

)
lifted−→

(
P, Q̂

)
.

• Generalization over Q:
(
P̂, Q̂

)
lifted−→

(
P̂,Q

)
Before we prove our next theorem which considers simultaneous generalization over both distributions
P and Q, we first prove the following Lemma C.5. Notice when proving the final generalization
theorem, we take the following natural two steps in lifting the guarantees:(

P̂, Q̂
)
→
(
P, Q̂

)
→ (P,Q)

The first step of the above scheme is exactly what we have proved in the Theorem for generalization
over P . However, we cannot directly invoke the other generalization Theorem to prove the second
step since we had the empirical distribution of individuals – i.e. P̂ – in that theorem. In the following
Lemma, we basically prove the second step where the distribution over individuals is P .
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Lemma C.5. Suppose

n ≥ Õ

(
mdH + log

(
1/ν2δ

)
α2β2

)
, m ≥ Õ

(
log (n) log (n/δ)

ν4α4

)

and let ψ̂ = ψ̂
(
X, Ŵ

)
be the output of Algorithm AIF-Learn. We have that for any X , with

probability at least 1− 2δ over the problems F ,

P
x∼P

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)
≤ β

and that ∣∣∣err
(
ψ̂;P,Q

)
− err

(
ψ̂;P, Q̂

)∣∣∣ ≤ O (αβ) +O (να)

Proof. Let’s prove the first part of the Lemma. Let X ′ = {x′i}ni=1 ⊆ Xn be – any – set of n
individuals. Observe that inequality 19 implies with probability 1− δ over the problems F , for all
i ∈ [n]: ∣∣∣E (x′i, ψ̂;Q

)
− E

(
x′i, ψ̂; Q̂

)∣∣∣ ≤ 2

√
log (4nT/δ)

2m0
≤ να

In other words, if P̂ ′ represents the uniform distribution over X ′, we have that for any X ′ ⊆ Xn,
with probability at least 1− δ over F ,

P
x∼P̂′

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)

= 0 (25)

This doesn’t give us what we want because this inequality works for any distribution with support of
size at most n while we want a guarantee for any x ∼ P and that P might have infinite sized support.
For random variables F , consider the event A (F ):

A (F ) =
{

P
x∼P

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)
> β

}
We eventually want to show that PF [A (F )] is small. Following the guarantee of 25 we consider
an auxiliary data set of individuals X ′ to argue that PF [A (F )] is in fact small. To formalize our
argument, let X ′ = {x′i}ni=1 ∼ Pn be a new set of n individuals drawn independently from the
distribution P and let P̂ ′ denote the uniform distribution over X ′. Define new events B (F,X ′) and
C (F,X ′) which depend on both F and X ′:

B (F,X ′) ={∣∣∣∣ P
x∼P

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)
− P
x∼P̂′

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)∣∣∣∣ > β

}
C (F,X ′) =

{
P

x∼P̂′

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)
6= 0

}
We have that

PF [A (F )] = PF,X′ [A (F )]

≤ PF,X′ [B (F,X ′)] + PF,X′ [C (F,X ′)] (follows from a triangle inequality)

= EF [PX′ [B (F,X ′)]] + EX′ [PF [C (F,X ′)]]

But inequality 25 implies for any X ′, PF [C (F,X ′)] ≤ δ. And that by a simple application of the
Chernoff-Hoeffding’s inequality, as long as the sample complexity for n stated in the Lemma is met,
we have that for any F , PX′ [B (F,X ′)] ≤ δ. We have therefore shown that

PF [A (F )] ≤ 2δ

proving the first part of the Lemma. The second part of the Lemma can be proved similarly with the
same idea of considering an auxiliary data set X ′ ∼ Pn. Skipping the details and the formal proof,
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we can in fact show that with probability 1− 2δ over F ,∣∣∣err
(
ψ̂;P,Q

)
− err

(
ψ̂;P, Q̂

)∣∣∣
≤ E
x∼P

∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣
≤
∣∣∣∣ E
x∼P

∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣− E
x∼P̂′

∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣∣∣∣∣
+ E
x∼P̂′

∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣
≤ O (αβ) +O (να)

Proof of Theorem 3.4 (Simultaneous Generalization over P and Q). First, observe that by a traingle
inequality

P
x∼P

(∣∣∣E (x, ψ̂;Q
)
− γ̂
∣∣∣ > 6α

)
≤ P
x∼P

(∣∣∣E (x, ψ̂;Q
)
− E

(
x, ψ̂; Q̂

)∣∣∣ > α
)

+ P
x∼P

(∣∣∣E (x, ψ̂; Q̂
)
− γ̂
∣∣∣ > 5α

)
We will argue that as long as,

n ≥ Õ

(
mdH + log

(
1/ν2δ

)
α2β2

)
, m ≥ Õ

(
log (n) log (n/δ)

ν4α4

)
we can further bound the above inequality by 2β. Lemma C.5 implies for any X , the first term
appearing in the RHS of the above inequality is bounded by β with probability 1 − 2δ over the
problems F . The second term is bounded by β as well by the generalization over P theorem with
probability 1− 3δ over the observed individuals and problems (X,F ) (in the theorem we actually
state w.p. 1− 6δ because 3δ comes from the accuracy guarantee). Putting these two pieces together,
we have that with probability at least 1− 5δ over (X,F ),

P
x∼P

(∣∣∣E (x, ψ̂;Q
)
− γ̂
∣∣∣ > 6α

)
≤ 2β

which implies ψ̂ is (6α, 2β)-AIF with respect to the distributions (P,Q). Now let’s look at the
generalization error of ψ̂. Let

ψ? = ψ? (α;P,Q) , γ? = γ? (α;P,Q) , err (ψ?;P,Q) = OPT (α;P,Q)

We will again use the triangle inequality to write:∣∣∣err
(
ψ̂;P,Q

)
− err

(
ψ̂; P̂, Q̂

)∣∣∣ ≤ ∣∣∣err
(
ψ̂;P,Q

)
− err

(
ψ̂;P, Q̂

)∣∣∣
+
∣∣∣err

(
ψ̂;P, Q̂

)
− err

(
ψ̂; P̂, Q̂

)∣∣∣
It follows from Lemma C.5 that the first term appearing in the RHS is bounded by O (αβ) +O (να)
with probability 1− 2δ over the problems F , and that the second term (see 17) is bounded by O (αβ)
as well with probability 1− δ over the individuals X . Therefore, with probability 1− 3δ over the
individuals X and problems F ,∣∣∣err

(
ψ̂;P,Q

)
− err

(
ψ̂; P̂, Q̂

)∣∣∣ ≤ O (αβ) +O (να)

It follows similarly that with probability 1− 2δ over X and F ,∣∣∣err (ψ?;P,Q)− err
(
ψ?; P̂, Q̂

)∣∣∣ ≤ O (να) +O (αβ)

We can also show that with probability 1−δ over F , the pair (ψ?|F , γ?) – where ψ?|F is the mapping
ψ? restricted to the domain F – is feasible in the empirical fair learning problem, which again implies
by Theorem A.3 that with probability 1− δ over F

err
(
ψ̂; P̂, Q̂

)
= err

(
p̂; P̂, Q̂

)
≤ err

(
ψ?|F ; P̂, Q̂

)
+ 2ν = err

(
ψ?; P̂, Q̂

)
+ 2ν

Putting all inequalities together, we have that with probability 1− 7δ over (X,F ),

err
(
ψ̂;P,Q

)
≤ OPT (α;P,Q) +O (ν) +O (αβ)
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C.3 Missing Proofs: Learning subject to FPAIF

C.3.1 Algorithm analysis and in-sample guarantees

Proof of Lemma B.1. Recall the Learner is accumulating regret only because they are using the given
quantities {ρ̃i}ni=1 instead of {ρ̂i}ni=1 that depend on the observed data F . In other words, at round
t ∈ [T ] of the algorithm instead of best responding to

L
(
h, γ,λt

)
= −γ

n∑
i=1

wi,t

+
1

m

m∑
j=1

{
n∑
i=1

(
1

n
+
wi,t
ρ̂i

)
1 [hj(xi) = 1, fj(xi) = 0] +

(
1

n

)
1 [hj(xi) = 0, fj(xi) = 1]

}
The Learner is in fact minimizing

L̃
(
h, γ,λt

)
= −γ

n∑
i=1

wi,t

+
1

m

m∑
j=1

{
n∑
i=1

(
1

n
+
wi,t
ρ̃i

)
1 [hj(xi) = 1, fj(xi) = 0] +

(
1

n

)
1 [hj(xi) = 0, fj(xi) = 1]

}

Observe that for any pair of
(
h, γ

)
,

∣∣∣L(h, γ,λt)− L̃(h, γ,λt)∣∣∣ ≤ 1

m

m∑
j=1

n∑
i=1

∣∣∣∣wi,tρ̃i − wi,t
ρ̂i

∣∣∣∣1 [hj(xi) = 1, fj(xi) = 0]

≤
n∑
i=1

∣∣∣∣wi,tρ̃i − wi,t
ρ̂i

∣∣∣∣ 1

m

m∑
j=1

1 [fj(xi) = 0]

=

n∑
i=1

ρ̂i

∣∣∣∣wi,tρ̃i − wi,t
ρ̂i

∣∣∣∣
≤

n∑
i=1

|ρ̂i − ρ̃i| · |wi,t|
ρ̃i

A simple application of Chernoff-Hoeffding’s inequality (Theorem C.1) implies with probability
1− δ over the observed labelings F , uniformly for all i,

|ρ̂i − ρi| ≤

√
log (2n/δ)

2m0

On the other hand by Assumption B.1, we have that for all i ∈ [n],

|ρ̃i − ρi| ≤

√
log (n)

2m0

Therefore for a given t, with probability 1− δ over F ,∣∣∣L(h, γ,λt)− L̃(h, γ,λt)∣∣∣ ≤ 2

ρ̃min

√
log (2n/δ)

2m0

n∑
i=1

|wi,t|

=
2

ρ̃min

√
log (2n/δ)

2m0

n∑
i=1

∣∣λ+
i,t − λ

−
i,t

∣∣
≤ 2B

ρ̃min

√
log (2n/δ)

2m0
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Now, let
(
h
?

t , γ
?
t

)
= arg min

h,γ
L
(
h, γ,λt

)
be the best response of the Learner to L and recall

the actual play of the Learner is in fact
(
ht, γt

)
= arg min

h,γ
L̃
(
h, γ,λt

)
. Observe that the above

inequality implies for any t, with probability 1− δ over F ,

L
(
ht, γt,λt

)
≤ L̃

(
ht, γt,λt

)
+

2B

ρ̃min

√
log (4n/δ)

2m0

≤ L̃
(
h
?

t , γ
?
t ,λt

)
+

2B

ρ̃min

√
log (4n/δ)

2m0

≤ L
(
h
?

t , γ
?
t ,λt

)
+

4B

ρ̃min

√
log (4n/δ)

2m0

It follows immediately that with probability 1− δ over the observed labelings F , for all t ∈ [T ]

L
(
ht, γt,λt

)
−min

p,γ
L (p, γ,λt) ≤

4B

ρ̃min

√
log (4nT/δ)

2m0

which completes the proof.

Proof of Lemma B.2. The proof is similar to that of Lemma A.1. The terms

B log (2n+ 1)

ηT
+ η (1 + 2α)

2
B

come from the regret analysis of the exponentiated gradient descent algorithm.The only difference
is that now we have to bound the difference between false positive rates, one with respect to the
distribution Q̂ and another with respect to the distribution Q̂t, for all i and t:∣∣∣EFP

(
xi, ψ̂t; Q̂

)
− EFP

(
xi, ψ̂t; Q̂t

)∣∣∣
Let ρ̂t,i = P

f∼Q̂t
[f(xi) = 0] and recall ρ̂i = P

f∼Q̂
[f(xi) = 0]. We have that

EFP

(
xi, ψ̂t; Q̂

)
=

E
f∼Q̂

[
P

h∼ψ̂t,f
[h(xi) = 1, f(xi) = 0]

]
ρ̂i

EFP

(
xi, ψ̂t; Q̂t

)
=

E
f∼Q̂t

[
P

h∼ψ̂t,f
[h(xi) = 1, f(xi) = 0]

]
ρ̂t,i

And therefore∣∣∣EFP

(
xi, ψ̂t; Q̂

)
− EFP

(
xi, ψ̂t; Q̂t

)∣∣∣
≤ 1

ρ̂i

{∣∣∣∣∣ E
f∼Q̂

[
P

h∼ψ̂t,f
[h(xi) = 1, f(xi) = 0]

]
− E
f∼Q̂t

[
P

h∼ψ̂t,f
[h(xi) = 1, f(xi) = 0]

]∣∣∣∣∣+ |ρ̂i − ρ̂t,i|

}
This inequality follows from the simple fact that for a ≤ b and c ≤ d all in R+:∣∣∣a

b
− c

d

∣∣∣ =
∣∣∣a
b
− c

b
+
c

b
− c

d

∣∣∣ ≤ 1

b
|a− c|+ c

∣∣∣∣1b − 1

d

∣∣∣∣ ≤ 1

b
|a− c|+ 1

b
|b− d|

Now by viewing Ft as a random sample from F , we can use the Chernoff-Hoeffding’s inequality to
bound each difference appearing above separately. We therefore have that with probability 1− δ over
the draws of Ft from F :∣∣∣EFP

(
xi, ψ̂t; Q̂

)
− EFP

(
xi, ψ̂t; Q̂t

)∣∣∣ ≤ 2

ρ̂i

√
log (4/δ)

2m0

The rest is similar to how the proof for Lemma A.1 proceeds.
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(a) convergence plot: synthetic data (b) error spread plot: synthetic data

Figure 1: (a) Error-unfairness trajectory plots illustrating the convergence of algorithm AIF-Learn.
(b) Error-unfairness tradeoffs and individual errors for AIF-Learn vs. simple mixtures of the error-
optimal model and random classification. Gray dots are shifted upwards slightly to avoid occlusions.

D Additional experimental results for AIF-Learn

We start this section by providing more details of AIF-Learn’s implementation. First, since our
interest is to evaluate the in-sample performance of the algorithm, we obviously avoid partitioning the
problems F into small batches which was rather a theoretical artifact of our proof for generalization
over the problem generating distribution Q. We therefore use in practice all learning tasks to update
the fairness violation vector in each round of the algorithm. As also discussed in the body of paper, we
implement the learning oracle assumed by our algorithm using linear threshold heuristics — identical
to Kearns et al. (2018). To elaborate, we build linear regression models for predicting the cost vectors
C0 ∈ Rn and C1 ∈ Rn and classify an individual according to the lowest predicted cost by the
regression models. Suggested by our theory, we set B = 1/α and η = c/B in our implementation
where the constant c can greatly affect the convergence speed of the algorithm. In the setting we
considered in our experiments — i.e. n = 200 individuals, m = 50 problems, d = 20 features — it
turns out choosing c in the order of 100 would lead to convergence with at most T = 1000 iterations
of the algorithm.

In addition to the experiments on the Communities and Crime data set presented in the body of the
paper, we ran additional experiments on synthetic data sets to further verify the performance of our
algorithms empirically. Given the parameters n (number of individuals), m (number of problems), d
(dimension), and a coin with bias q ≥ 0.5, an instance of the synthetic data is generated as follows:

First n individuals {xi}ni=1 are generated randomly where xi ∈ {±1}d. Let the first 75% of the
individuals be called “group 1” and call the rest “group 2”. For each learning task j ∈ [m], we sample
two weight vectors wj,maj, wj,min ∈ Rd. Now consider a matrix Y ∈ {0, 1}n×m that needs to be
filled in with labels. We intentionally inject unfairness into the data set (because otherwise fairness
would be achieved for free due to the random generation of data) by considering “majority” and
“minority” groups for each learning task (majority group will be labelled using wj,maj and the minority
by wj,min). For each learning task j, individuals in group 1 get q chance of falling into the majority
group of that task and individuals in group 2 get 1− q chance (this is implemented by flipping a coin
with bias q for each individual). Once the majority/minority groups for each task are specified, the
labels Y = [yij ] are set according to yij = sign(wTj xi) where wj ∈ {wj,maj, wj,min}. (Notice q = 1
corresponds to a fixed (across learning tasks) majority group of size 0.75n, and q = 0.5 corresponds
to an instance of the data set where the majority groups are formed completely at random and that
they have size 0.5n in expectation.)

It is “expected” that solving the unconstrained learning problem on an instance of the above synthetic
data generation process would result in discrimination against the minority groups which are formed
mostly by the individuals in group 2, and therefore our algorithm should provides a fix for this unfair
treatment. We therefore took an instance of the synthetic data set with parameters n = 200,m =
50, d = 20, q = 0.8 and ran our algorithm on varying values of allowed fairness violation 2α (notice
on an input α to the algorithm, the individual error rates are allowed to be within at most 2α of each
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other). We present the results (which are reported in-sample) in Figure 1 where similar to the results
on the Communities and Crime data set, we get convergence after T = 1000 iterations (or 50,000
calls to the learning oracle, see Figure 1(a)). Furthermore, Figure 1(b) suggests that our algorithm on
the synthetic data set considerably outperforms the baseline that only mixes the error-optimal model
with random classification (i.e. one that labels 0 or 1 with probability 0.5).
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