
Supplementary Material

A Additional figures

Figure S1: Sample of neural network outputs. The lines correspond to the functions learned for
100 different initializations. The configuration is the same as in Figure 2.

Figure S2: A convolutional network and its linearization behave similarly when trained using
full batch gradient descent with a momentum optimizer. Binary CIFAR classification task with
MSE loss, tanh convolutional network with 3 hidden layers of channel size n = 512, 3 ⇥ 3 size
filters, average pooling after last convolutional layer, ⌘ = 0.1, � = 0.9, |D| = 128, �2

w = 2.0 and
�2
b = 0.1. The linearized model is trained directly by full batch gradient descent with momentum,

rather than by integrating its continuous time analytic dynamics. Panes are the same as in Figure 3.

1

Figure S3: A neural network and its linearization behave similarly when both are trained
via SGD with momentum on cross entropy loss on MNIST. Experiment is for 10 class MNIST
classification using a ReLU fully connected network with 2 hidden layers of width n = 2048,
⌘ = 1.0, � = 0.9, |D| = 50, 000, k = 10, �2

w = 2.0, and �2
b = 0.1. Both models are trained using

stochastic minibatching with batch size 64. Panes are the same as in Figure 3, except that the top row
shows all ten logits for a single randomly selected datapoint.

Figure S4: Logit deviation for cross entropy loss. Logits for models trained with cross entropy loss
diverge at late times. If the deviation between the logits of the linearized model and original model
are large early in training, as shown for the narrower networks (first row), logit deviation at late
times can be significantly large. As the network becomes wider (second row), the logit deviates at a
later point in training. Fully connected tanh network L = 4 trained on binary CIFAR classification
problem.

2

Figure S5: Error dependence on depth, width, and dataset size. Final value of the RMSE for
fully-connected, convolutional, wide residual network as networks become wider for varying depth
and dataset size. Error in fully connected networks as the depth is varied from 1 to 16 (first) and the
dataset size is varied from 32 to 4096 (last). Error in convolutional networks as the depth is varied
between 1 and 32 (second), and WRN for depths 10 and 16 corresponding to N=1,2 described in
Table S1 (third). Networks are critically initialized �2

w = 2.0, �2
b = 0.1, trained with gradient descent

on MSE loss. Experiments in the first three panes used |D| = 128.

Figure S6: Relative Frobenius norm change during training. (top) One hidden layer, ReLU
networks trained with ⌘ = 1.0, on a 2-class CIFAR10 subset of size |D| = 128. We measure changes
of (read-out/non read-out) weights, empirical ⇥̂ and empirical K̂ after T = 216 steps of gradient
descent updates for varying width. (bottom) Networks with three layer tanh nonlinearity and other
details are identical to Figure 1.

B Extensions

B.1 Momentum

One direction is to go beyond vanilla gradient descent dynamics. We consider momentum updates12

✓i+1 = ✓i + �(✓i � ✓i�1)� ⌘r✓L|✓=✓i . (S1)

The discrete update to the function output becomes

f lin
i+1(x) = f lin

i (x)� ⌘⇥̂0(x,X)rf lin
i (X)L+ �(f lin

i (x)� f lin
i�1(x)) (S2)

12Combining the usual two stage update into a single equation.

3

where f lin
t (x) is the output of the linearized network after t steps. One can take the continuous time

limit as in Qian [44], Su et al. [45] and obtain

!̈t = �̃!̇t �r✓f
lin
0 (X)Trf lin

t (X)L (S3)

f̈t
lin(x) = �̃ḟ lin

t (x)� ⇥̂0(x,X)rf lin
t (X)L (S4)

where continuous time relates to steps t = i
p
⌘ and �̃ = (� � 1)/

p
⌘. These equations are also

amenable to analytic treatment for MSE loss. See Figure S2, S3 and 4 for experimental agreement.

B.2 Multi-dimensional output and cross-entropy loss

One can extend the loss function to general functions with multiple output dimensions. Unlike
for squared error, we do not have a closed form solution to the dynamics equation. However, the
equations for the dynamics can be solved using an ODE solver as an initial value problem.

`(f, y) = �

X

i

yi log �(f i), �(f i) ⌘
exp(f i)P
j exp(f

j)
. (S5)

Recall that @`
@ŷi = �(ŷi)� yi. For general input point x and for an arbitrary parameterized function

f i(x) parameterized by ✓, gradient flow dynamics is given by

ḟ i
t (x) = r✓f

i
t (x)

d✓

dt
= �⌘r✓f

i
t (x)

X

j

X

(z,y)2D


r✓f

j
t (z)

T @`(ft, y)

@ŷj

�
(S6)

= �⌘
X

(z,y)2D

X

j

r✓f
i
t (x)r✓f

j
t (z)

T
⇣
�(f j

t (z))� yj
⌘

(S7)

Let ⇥̂ij(x,X) = r✓f i(x)r✓f j(X)T . The above is

ḟt(X) = �⌘⇥̂t(X ,X) (�(ft(X))� Y) (S8)

ḟt(x) = �⌘⇥̂t(x,X) (�(ft(X))� Y) . (S9)

The linearization is

ḟt
lin
(X) = �⌘⇥̂0(X ,X)

�
�(f lin

t (X))� Y
�

(S10)

ḟt
lin
(x) = �⌘⇥̂0(x,X)

�
�(f lin

t (X))� Y
�
. (S11)

For general loss, e.g. cross-entropy with softmax output, we need to rely on solving the ODE
Equations S10 and S11. We use the dopri5 method for ODE integration, which is the default
integrator in TensorFlow (tf.contrib.integrate.odeint).

C Neural Tangent kernel for ReLU and erf

For ReLU and erf activation functions, the tangent kernel can be computed analytically. We begin
with the case � = ReLU; using the formula from Cho and Saul [46], we can compute T and Ṫ in
closed form. Let ⌃ be a 2⇥ 2 PSD matrix. We will use

kn(x, y) =

Z
�n(x · w)�n(y · w)e�kwk2/2dw · (2⇡)�d/2 =

1

2⇡
kxknkyknJn(✓) (S12)

where

�(x) = max(x, 0), ✓(x, y) = arccos

✓
x · y

kxkkyk

◆
,

J0(✓) = ⇡ � ✓ , J1(✓) = sin ✓ + (⇡ � ✓) cos ✓ =

s

1�

✓
x · y

kxkkyk

◆2

+ (⇡ � ✓)

✓
x · y

kxkkyk

◆
.

(S13)

4

Let d = 2 and u = (x ·w, y ·w)T . Then u is a mean zero Gaussian with ⌃ = [[x ·x, x ·y]; [x ·y, y ·y]].
Then

T (⌃) = k1(x, y) =
1

2⇡
kxkkykJ1(✓) (S14)

Ṫ (⌃) = k0(x, y) =
1

2⇡
J0(✓) (S15)

For � = erf , let ⌃ be the same as above. Following Williams [47], we get

T (⌃) =
2

⇡
sin�1

2x · yp

(1 + 2x · x)(1 + 2y · y)

!
(S16)

Ṫ (⌃) =
4

⇡
det(I + 2⌃)�1/2 (S17)

D Gradient flow dynamics for training only the readout-layer

The connection between Gaussian processes and Bayesian wide neural networks can be extended to
the setting when only the readout layer parameters are being optimized. More precisely, we show that
when training only the readout layer, the outputs of the network form a Gaussian process (over an
ensemble of draws from the parameter prior) throughout training, where that output is an interpolation
between the GP prior and GP posterior.

Note that for any x, x0
2 Rn0 , in the infinite width limit x̄(x) · x̄(x0) = K̂(x, x0) ! K(x, x0) in

probability, where for notational simplicity we assign x̄(x) =
h
�wxL(x)p

nL
,�b

i
. The regression problem

is specified with mean-squared loss

L =
1

2
kf(X)� Yk

2
2 =

1

2
kx̄(X)✓L+1

� Yk
2
2, (S18)

and applying gradient flow to optimize the readout layer (and freezing all other parameters),

✓̇L+1 = �⌘x̄(X)T
�
x̄(X)✓L+1

� Y
�
, (S19)

where ⌘ is the learning rate. The solution to this ODE gives the evolution of the output of an arbitrary
x⇤. So long as the empirical kernel x̄(X)x̄(X)T is invertible, it is

ft(x
⇤) = f0(x

⇤) + K̂(x,X)K̂(X ,X)�1
⇣
exp

⇣
�⌘tK̂(X ,X)

⌘
� I
⌘
(f0(X)� Y) (S20)

For any x, x0
2 Rn0 , letting nl ! 1 for l = 1, . . . , L, one has the convergence in distribution in

probability and distribution respectively

x̄(x)x̄(x0) ! K(x, x0) and x̄(X)✓L+1
0 ! N (0,K(X ,X)). (S21)

Moreover x̄(X)✓L+1
0 and the term containing f0(X) are the only stochastic term over the ensemble

of network initializations, therefore for any t the output f(x⇤) throughout training converges to a
Gaussian distribution in the infinite width limit, with

E[ft(x⇤)] = K(x⇤,X)K�1(I � e�⌘Kt)Y , (S22)

Var[ft(x
⇤)] = K(x⇤, x⇤)�K(x⇤,X)K�1(I � e�2⌘Kt)K(x⇤,X)T . (S23)

Thus the output of the neural network is also a GP and the asymptotic solution (i.e. t ! 1) is
identical to the posterior of the NNGP (Equation 13). Therefore, in the infinite width case, the
optimized neural network is performing posterior sampling if only the readout layer is being trained.
This result is a realization of sample-then-optimize equivalence identified in Matthews et al. [12].

E Computing NTK and NNGP Kernel

For completeness, we reproduce, informally, the recursive formula of the NNGP kernel and the
tangent kernel from [5] and [13], respectively. Let the activation function � : R ! R be absolutely

5

continuous. Let T and Ṫ be functions from 2⇥ 2 positive semi-definite matrices ⌃ to R given by
⇢
T (⌃) = E[�(u)�(v)]
Ṫ (⌃) = E[�0(u)�0(v)]

(u, v) ⇠ N (0,⌃) . (S24)

In the infinite width limit, the NNGP and tangent kernel can be computed recursively. Let x, x0

be two inputs in Rn0 . Then hl(x) and hl(x0) converge in distribution to a joint Gaussian as
min{n1, . . . , nl�1}. The mean is zero and the variance K

l(x, x0) is

K
l(x, x0) = K̃

l(x, x0)⌦ Idnl (S25)

K̃
l(x, x0) = �2

!T

✓
K̃

l�1(x, x) K̃
l�1(x, x0)

K̃
l�1(x, x0) K̃

l�1(x0, x0)

�◆
+ �2

b (S26)

with base case

K
1(x, x0) = �2

! ·
1

n0
xTx0 + �2

b . (S27)

Using this one can also derive the tangent kernel for gradient descent training. We will use induction
to show that

⇥l(x, x0) = ⇥̃l(x, x0)⌦ Idnl (S28)

where

⇥̃l(x, x0) = K̃
l(x, x0) + �2

!⇥̃
l�1(x, x0)Ṫ

✓
K̃

l�1(x, x) K̃
l�1(x, x0)

K̃
l�1(x, x0) K̃

l�1(x0, x0)

�◆
(S29)

with ⇥̃1 = K̃
1. Let

J l(x) = r✓lhl
0(x) = [r✓lhl

0(x),r✓<lhl
0(x)]. (S30)

Then

J l(x)J l(x0)T = r✓lhl
0(x)r✓lhl

0(x
0)T +r✓<lhl

0(x)r✓<lhl
0(x

0)T (S31)

Letting n1, . . . , nl�1 ! 1 sequentially, the first term converges to the NNGP kernel Kl(x, x0). By
applying the chain rule and the induction step (letting n1, . . . , nl�2 ! 1 sequentially), the second
term is

r✓<lhl
0(x)r✓<lhl

0(x
0)T =

@hl
0(x)

@hl�1
0 (x)

r✓l�1hl�1
0 (x)r✓l�1hl�1

0 (x0)T
@hl

0(x
0)

@hl�1
0 (x0)

T

(S32)

!
@hl

0(x)

@hl�1
0 (x)

⇥̃l�1(x, x0)⌦ Idnl�1

@hl
0(x

0)

@hl�1
0 (x0)

T

(n1, . . . , nl�2 ! 1)

(S33)

! �2
!

⇣
E�0(hl�1

0,i (x))�
0(hl�1

0,i (x
0))⇥̃l�1(x, x0)

⌘
⌦ Idnl (nl�1 ! 1)

(S34)

=

✓
�2
!⇥̃

l�1(x, x0)Ṫ

✓
K̃

l�1(x, x) K̃
l�1(x, x0)

K̃
l�1(x, x0) K̃

l�1(x0, x0)

�◆◆
⌦ Idnl (S35)

F Results in function space for NTK parameterization transfer to standard
parameterization

In this Section we present a sketch for why the function space linearization results, derived in [13] for
NTK parameterized networks, also apply to networks with a standard parameterization. We follow
this up with a formal proof in §G of the convergence of standard parameterization networks to their
linearization in the limit of infinite width. A network with standard parameterization is described as:

⇢
hl+1 = xlW l+1 + bl+1

xl+1 = �
�
hl+1

� and

(
W l

i,j = !l
ij ⇠ N

⇣
0, �2

!
nl

⌘

blj = �l
j ⇠ N

�
0,�2

b

� . (S36)

6

(a) MNIST (b) CIFAR

Figure S7: NTK vs Standard parameterization. Across different choices of dataset, activation
function and loss function, models obtained from (S)GD training for both parameterization (circle
and triangle denotes NTK and standard parameterization respectively) get similar performance.

The NTK parameterization in Equation 1 is not commonly used for training neural networks. While
the function that the network represents is the same for both NTK and standard parameterization,
training dynamics under gradient descent are generally different for the two parameterizations. How-
ever, for a particular choice of layer-dependent learning rate training dynamics also become identical.
Let ⌘lNTK,w and ⌘lNTK,b be layer-dependent learning rate for W l and bl in the NTK parameterization,
and ⌘std = 1

nmax
⌘0 be the learning rate for all parameters in the standard parameterization, where

nmax = maxl nl. Recall that gradient descent training in standard neural networks requires a learning
rate that scales with width like 1

nmax
, so ⌘0 defines a width-invariant learning rate [31]. If we choose

⌘lNTK, w =
nl

nmax�2
!

⌘0, and ⌘lNTK, b =
1

nmax�2
b

⌘0, (S37)

then learning dynamics are identical for networks with NTK and standard parameterizations. With
only extremely minor modifications, consisting of incorporating the multiplicative factors in Equation
S37 into the per-layer contributions to the Jacobian, the arguments in §2.4 go through for an NTK
network with learning rates defined in Equation S37. Since an NTK network with these learning rates
exhibits identical training dynamics to a standard network with learning rate ⌘std, the result in §2.4
that sufficiently wide NTK networks are linear in their parameters throughout training also applies to
standard networks.

We can verify this property of networks with the standard parameterization experimentally. In
Figure S7, we see that for different choices of dataset, activation function and loss function, final
performance of two different parameterization leads to similar quality model for similar value of
normalized learning rate ⌘std = ⌘NTK/n. Also, in Figure S8, we observe that our results is not due to
the parameterization choice and holds for wide networks using the standard parameterization.

G Convergence of neural network to its linearization, and stability of NTK
under gradient descent

In this section, we show that how to use the NTK to provide a simple proof of the global convergence
of a neural network under (full-batch) gradient descent and the stability of NTK under gradient descent.
We present the proof for standard parameterization. With some minor changes, the proof can also
apply to the NTK parameterization. To lighten the notation, we only consider the asymptotic bound
here. The neural networks are parameterized as in Equation S36. We make the following assumptions:

Assumptions [1-4]:

1. The widths of the hidden layers are identical, i.e. n1 = · · · = nL = n (our proof extends
naturally to the setting nl

nl0
! ↵l,l0 2 (0,1) as min{n1, . . . , nL} ! 1.)

7

Figure S8: Exact and experimental dynamics are nearly identical for network outputs, and
are similar for individual weights (Standard parameterization). Experiment is for an MSE loss,
ReLU network with 5 hidden layers of width n = 2048, ⌘ = 0.005/2048 |D| = 256, k = 1,
�2
w = 2.0, and �2

b = 0.1. All three panes in the first row show dynamics for a randomly selected
subset of datapoints or parameters. First two panes in the second row show dynamics of loss and
accuracy for training and test points agree well between original and linearized model. Bottom right
pane shows the dynamics of RMSE between the two models on test points using empirical kernel.

2. The analytic NTK ⇥ (defined in Equation S42) is full-rank, i.e. 0 < �min := �min(⇥) 
�max := �max(⇥) < 1. We set ⌘critical = 2(�min + �max)�1 .

3. The training set (X ,Y) is contained in some compact set and x 6= x̃ for all x, x̃ 2 X .
4. The activation function � satisfies

|�(0)|, k�0
k1, sup

x 6=x̃
|�0(x)� �0(x̃)|/|x� x̃| < 1. (S38)

Assumption 2 indeed holds when X ✓ {x 2 Rn0} : kxk2 = 1} and �(x) grows non-polynomially
for large x [13]. Throughout this section, we use C > 0 to denote some constant whose value may
depend on L, |X | and (�2

w,�
2
b) and may change from line to line, but is always independent of n.

Let ✓t denote the parameters at time step t. We use the following short-hand

f(✓t) = f(X , ✓t) 2 R|X |⇥k (S39)

g(✓t) = f(X , ✓t)� Y 2 R|X |⇥k (S40)

J(✓t) = r✓f(✓t) 2 R(|X |k)⇥|✓| (S41)

where |X | is the cardinality of the training set and k is the output dimension of the network. The
empirical and analytic NTK of the standard parameterization is defined as

(
⇥̂t := ⇥̂t(X ,X) = 1

nJ(✓t)J(✓t)
T

⇥ := limn!1 ⇥̂0 in probability.
(S42)

Note that the convergence of the empirical NTK in probability is proved rigorously in [37]. We
consider the MSE loss

L(t) =
1

2
kg(✓t)k

2
2. (S43)

8

Since f(✓t) converges in distribution to a mean zero Guassian with covariance K, one can show that
for arbitrarily small �0 > 0, there are constants R0 > 0 and n0 (both may depend on �0, |X | and K)
such that for every n � n0, with probability at least (1� �0) over random initialization,

kg(✓0)k2 < R0. (S44)

The gradient descent update with learning rate ⌘ is

✓t+1 = ✓t � ⌘J(✓t)
T g(✓t) (S45)

and the gradient flow equation is

✓̇t = �J(✓t)
T g(✓t). (S46)

We prove convergence of neural network training and the stability of NTK for both discrete gradient
descent and gradient flow. Both proofs rely on the local lipschitzness of the Jacobian J(✓).
Lemma 1 (Local Lipschitzness of the Jacobian). There is a K > 0 such that for every C > 0,

with high probability over random initialization (w.h.p.o.r.i.) the following holds

8
><

>:

1p
n
kJ(✓)� J(✓̃)kF  Kk✓ � ✓̃k2

1p
n
kJ(✓)kF  K

, 8✓, ✓̃ 2 B(✓0, Cn� 1
2) (S47)

where

B(✓0, R) := {✓ : k✓ � ✓0k2 < R}. (S48)

The following are the main results of this section.
Theorem G.1 (Gradient descent). Assume Assumptions [1-4]. For �0 > 0 and ⌘0 < ⌘critical, there

exist R0 > 0, N 2 N and K > 1, such that for every n � N , the following holds with probability at

least (1� �0) over random initialization when applying gradient descent with learning rate ⌘ = ⌘0

n ,

8
>><

>>:

kg(✓t)k2 

⇣
1� ⌘0�min

3

⌘t
R0

Pt
j=1 k✓j � ✓j�1k2 

⌘0KR0p
n

Pt
j=1(1�

⌘0�min

3)j�1


3KR0
�min

n� 1
2

(S49)

and

sup
t

k⇥̂0 � ⇥̂tkF 
6K3R0

�min
n� 1

2 . (S50)

Theorem G.2 (Gradient Flow). Assume Assumptions[1-4]. For �0 > 0, there exist R0 > 0,

N 2 N and K > 1, such that for every n � N , the following holds with probability at least (1� �0)
over random initialization when applying gradient flow with “learning rate" ⌘ = ⌘0

n
8
><

>:

kg(✓t)k2  e�
⌘0�min

3 tR0

k✓t � ✓0k2 
3KR0
�min

(1� e�
1
3⌘0�mint)n� 1

2

(S51)

and

sup
t

k⇥̂0 � ⇥̂tkF 
6K3R0

�min
n� 1

2 . (S52)

See the following two subsections for the proof.
Remark 1. One can extend the results in Theorem G.1 and Theorem G.2 to other architectures or

functions as long as

1. The empirical NTK converges in probability and the limit is positive definite.

2. Lemma 1 holds, i.e. the Jacobian is locally Lipschitz.

9

G.1 Proof of Theorem G.1

As discussed above, there exist R0 and n0 such that for every n � n0, with probability at least
(1� �0/10) over random initialization,

kg(✓0)k2 < R0 . (S53)

Let C = 3KR0
�min

in Lemma 1. We first prove Equation S49 by induction. Choose n1 > n0 such that
for every n � n1 Equation S47 and Equation S53 hold with probability at least (1 � �0/5) over
random initialization. The t = 0 case is obvious and we assume Equation S49 holds for t = t. Then
by induction and the second estimate of Equation S47

k✓t+1 � ✓tk2  ⌘kJ(✓t)kopkg(✓t)k2 
K⌘0
p
n

✓
1�

⌘0�min

3

◆t

R0, (S54)

which gives the first estimate of Equation S49 for t+1 and which also implies k✓j�✓0k2 
3KR0
�min

n� 1
2

for j = 0, . . . , t+ 1. To prove the second one, we apply the mean value theorem and the formula for
gradient decent update at step t+ 1

kg(✓t+1)k2 = kg(✓t+1)� g(✓t) + g(✓t)k2 (S55)

= kJ(✓̃t)(✓t+1 � ✓t) + g(✓t)k2 (S56)

= k � ⌘J(✓̃t)J(✓t)
T g(✓t) + g(✓t)k2 (S57)

 k1� ⌘J(✓̃t)J(✓t)
T
kopkg(✓t)k2 (S58)

 k1� ⌘J(✓̃t)J(✓t)
T
kop

✓
1�

⌘0�min

3

◆t

R0, (S59)

where ✓̃t is some linear interpolation between ✓t and ✓t+1. It remains to show with probability at
least (1� �0/2),

k1� ⌘J(✓̃t)J(✓t)
T
kop  1�

⌘0�min

3
. (S60)

This can be verified by Lemma 1. Because ⇥̂0 ! ⇥ [37] in probability, one can find n2 such that the
event

k⇥� ⇥̂0kF 
⌘0�min

3
(S61)

has probability at least (1� �0/5) for every n � n2. The assumption ⌘0 < 2
�min+�max

implies

k1� ⌘0⇥kop  1� ⌘0�min. (S62)

Thus

k1� ⌘J(✓̃t)J(✓t)
T
kop (S63)

k1� ⌘0⇥kop + ⌘0k⇥� ⇥̂0kop + ⌘kJ(✓0)J(✓0)
T
� J(✓̃t)J(✓t)

T
kop (S64)

1� ⌘0�min +
⌘0�min

3
+ ⌘0K

2(k✓t � ✓0k2 + k✓̃t � ✓0k2) (S65)

1� ⌘0�min +
⌘0�min

3
+ 2⌘0K

2 3KR0

�min

1
p
n
 1�

⌘0�min

3
(S66)

with probability as least (1� �0/2) if

n �

✓
18K3R0

�2
min

◆2

. (S67)

Therefore, we only need to set

N = max

(
n0, n1, n2,

✓
18K3R0

�2
min

◆2
)
. (S68)

10

To verify Equation S50, notice that

k⇥̂0 � ⇥̂tkF =
1

n
kJ(✓0)J(✓0)

T
� J(✓t)J(✓t)

T
kF (S69)


1

n

�
kJ(✓0)kopkJ(✓0)

T
� J(✓t)

T
kF + kJ(✓t)� J(✓0)kopkJ(✓t)

T
kF

�
(S70)

 2K2
k✓0 � ✓tk2 (S71)


6K3R0

�min

1
p
n
, (S72)

where we have applied the second estimate of Equation S49 and Equation S47.

G.2 Proof of Theorem G.2

The first step is the same. There exist R0 and n0 such that for every n � n0, with probability at least
(1� �0/10) over random initialization,

kg(✓0)k2 < R0 . (S73)

Let C = 3KR0
�min

in Lemma 1. Using the same arguments as in Section G.1, one can show that there
exists n1 such that for all n � n1, with probability at least (1� �0/10)

1

n
J(✓)J(✓)T �

1

3
�minId 8✓ 2 B(✓0, Cn� 1

2) (S74)

Let

t1 = inf

⇢
t : k✓t � ✓0k2 �

3KR0

�min
n� 1

2

�
(S75)

We claim t1 = 1. If not, then for all t  t1, ✓t 2 B(✓0, Cn� 1
2) and

⇥̂t �
1

3
�minId. (S76)

Thus
d

dt

�
kg(t)k22

�
= �2⌘0g(t)

T ⇥̂tg(t)  �
2

3
⌘0�minkg(t)k

2
2 (S77)

and

kg(t)k22  e�
2
3⌘0�mintkg(0)k22  e�

2
3⌘0�mintR2

0. (S78)

Note that
d

dt
k✓t � ✓0k2 

����
d

dt
✓t

����
2

=
⌘0
n
kJ(✓t)g(t)k2  ⌘0KR0e

� 1
3⌘0�mintn�1/2 (S79)

which implies, for all t  t1

k✓t � ✓0k2 
3KR0

�min
(1� e�

1
3⌘0�mint)n� 1

2 
3KR0

�min
(1� e�

1
3⌘0�mint1)n� 1

2 <
3KR0

�min
n� 1

2 .

(S80)

This contradicts to the definition of t1 and thus t1 = 1. Note that Equation S78 is the same as the
first equation of Equation S51.

G.3 Proof of Lemma 1

The proof relies on upper bounds of operator norms of random Gaussian matrices.
Theorem G.3 (Corollary 5.35 [48]). Let A = AN,n be an N ⇥ n random matrix whose entries are

independent standard normal random variables. Then for every t � 0, with probability at least

1� 2 exp(�t2/2) one has

p

N �
p
n� t  �min(A)  �max(A) 

p

N +
p
n+ t. (S81)

11

For l � 1, let

�l(✓, x) := rhl(✓,x)f
L+1(✓, x) 2 Rkn (S82)

�l(✓,X) := rhl(✓,X)f
L+1(✓,X) 2 R(k⇥|X |)⇥(n⇥X) (S83)

Let ✓ = {W l, bl} and ✓̃ = {W̃ l, b̃l} be any two points in B(✓0,
Cp
n
). By the above theorem and the

triangle inequality, w.h.p. over random initialization,

kW 1
kop, kW̃ 1

kop  3�!

p
n

p
n0

, kW l
kop, kW̃ l

kop  3�! for 2  l  L+ 1 (S84)

Using this and the assumption on � Equation S38, it is not difficult to show that there is a constant
K1, depending on �2

!,�
2
b , |X | and L such that with high probability over random initialization13

n� 1
2 kxl(✓,X)k2, k�l(✓,X)k2  K1, (S85)

n� 1
2 kxl(✓,X)� xl(✓̃,X)k2, k�l(✓,X)� �l(✓̃,X)k2  K1k✓̃ � ✓k2 (S86)

Lemma 1 follows from these two estimates. Indeed, with high probability over random initialization

kJ(✓)k2F =
X

l

kJ(W l)k2F + kJ(bl)k2F (S87)

=
X

l

X

x2X
kxl�1(✓, x)�l(✓, x)T k2F + k�l(✓, x)T k2F (S88)



X

l

X

x2X
(1 + kxl�1(✓, x)k2F)k�

l(✓, x)T k2F (S89)



X

l

(1 +K2
1n)

X

x

k�l(✓, x)T k2F (S90)



X

l

K2
1 (1 +K2

1n) (S91)

 2(L+ 1)K4
1n, (S92)

and similarly

kJ(✓)� J(✓̃)k2F (S93)

=
X

l

X

x2X
kxl�1(✓, x)�l(✓, x)T � xl�1(✓̃, x)�l(✓̃, x)T k2F + k�l(✓, x)T � �l(✓̃, x)T k2F (S94)



X

l

�
K4

1n+K4
1n
�
+K2

1

!
k✓ � ✓̃k2 (S95)

3(L+ 1)K4
1n k✓ � ✓̃k2. (S96)

G.4 Remarks on NTK parameterization

For completeness, we also include analogues of Theorem G.1 and Lemma 1 with NTK parameteriza-
tion.
Theorem G.4 (NTK parameterization). Assume Assumptions [1-4]. For �0 > 0 and ⌘0 < ⌘critical,
there exist R0 > 0, N 2 N and K > 1, such that for every n � N , the following holds with

probability at least (1� �0) over random initialization when applying gradient descent with learning

rate ⌘ = ⌘0,

8
>><

>>:

kg(✓t)k2 

⇣
1� ⌘0�min

3

⌘t
R0

Pt
j=1 k✓j � ✓j�1k2  K⌘0

Pt
j=1(1�

⌘0�min

3)j�1R0 
3KR0
�min

(S97)

13These two estimates can be obtained via induction. To prove bounds relating to xl and �l, one starts with
l = 1 and l = L, respectively.

12

and

sup
t

k⇥̂0 � ⇥̂tkF 
6K3R0

�min
n� 1

2 . (S98)

Lemma 2 (NTK parameterization: Local Lipschitzness of the Jacobian). There is a K > 0 such that

for every C > 0, with high probability over random initialization the following holds

8
<

:

kJ(✓)� J(✓̃)kF  Kk✓ � ✓̃k2

kJ(✓)kF  K

, 8✓, ✓̃ 2 B(✓0, C) (S99)

H Bounding the discrepancy between the original and the linearized
network: MSE loss

We provide the proof for the gradient flow case. The proof for gradient descent can be obtained
similarly. To simplify the notation, let glin(t) ⌘ f lin

t (X)� Y and g(t) ⌘ ft(X)� Y . The theorem
and proof apply to both standard and NTK parameterization. We use the notation . to hide the
dependence on uninteresting constants.
Theorem H.1. Same as in Theorem G.2. For every x 2 Rn0 with kxk2  1, for �0 > 0 arbitrarily

small, there exist R0 > 0 and N 2 N such that for every n � N , with probability at least (1� �0)
over random initialization,

sup
t

��glin(t)� g(t)
��
2
, sup

t

��glin(t, x)� g(t, x)
��
2
. n� 1

2R2
0. (S100)

Proof.

d

dt

⇣
exp(⌘0⇥̂0t)(g

lin(t)� g(t))
⌘

(S101)

=⌘0
⇣
⇥̂0 exp(⌘0⇥̂0t)(g

lin(t)� g(t)) + exp(⌘0⇥̂0t)(�⇥̂0g
lin(t) + ⇥̂tg(t))

⌘
(S102)

=⌘0
⇣
exp(⌘0⇥̂0t)(⇥̂t � ⇥̂0)g(t)

⌘
(S103)

Integrating both sides and using the fact glin(0) = g(0),

(glin(t)� g(t)) = �

Z t

0
⌘0
⇣
exp(⌘0⇥̂0(s� t))(⇥̂s � ⇥̂0)(g

lin(s)� g(s))
⌘
ds (S104)

+

Z t

0
⌘0
⇣
exp(⌘0⇥̂0(s� t))(⇥̂s � ⇥̂0)g

lin(s)
⌘
ds (S105)

Let �0 > 0 be the smallest eigenvalue of ⇥̂0 (with high probability �0 > 1
3�min). Taking the norm

gives

kglin(t)� g(t)k2 ⌘0
⇣Z t

0
k exp(⇥̂0⌘0(s� t))kopk(⇥̂s � ⇥̂0)kopkg

lin(s)� g(s)k2ds (S106)

+

Z t

0
k exp(⇥̂0⌘0(s� t))kopk(⇥̂s � ⇥̂0)kopkg

lin(s)k2ds
⌘

(S107)

⌘0
⇣Z t

0
e⌘0�0(s�t)

k(⇥̂s � ⇥̂0)kopkg
lin(s)� g(s)k2ds (S108)

+

Z t

0
e⌘0�0(s�t)

k(⇥̂s � ⇥̂0)kopkg
lin(s)k2ds

⌘
(S109)

Let
u(t) ⌘ e�0⌘0tkglin(t)� g(t)k2 (S110)

↵(t) ⌘ ⌘0

Z t

0
e�0⌘0sk(⇥̂s � ⇥̂0)kopkg

lin(s)k2ds (S111)

�(t) ⌘ ⌘0k(⇥̂t � ⇥̂0)kop (S112)

13

The above can be written as

u(t)  ↵(t) +

Z t

0
�(s)u(s)ds (S113)

Note that ↵(t) is non-decreasing. Applying an integral form of the Grönwall’s inequality (see
Theorem 1 in [38]) gives

u(t)  ↵(t) exp

✓Z t

0
�(s)ds

◆
(S114)

Note that

kglin(t)k2 = k exp
⇣
�⌘0⇥̂0t

⌘
glin(0)k2  k exp

⇣
�⌘0⇥̂0t

⌘
kopkg

lin(0)k2 = e��0⌘0tkglin(0)k2 .

(S115)

Then

kglin(t)� g(t)k2  ⌘0e
��0⌘0t

Z t

0
e�0⌘0sk⇥̂s � ⇥̂0kopkg

lin(s)k2ds exp

✓Z t

0
⌘0k⇥̂s � ⇥̂0kopds

◆

(S116)

 ⌘0e
��0⌘0tkglin(0)k2

Z t

0
k(⇥̂s � ⇥̂0)kopds exp

✓Z t

0
⌘0k⇥̂s � ⇥̂0kopds

◆

(S117)

Let �t = sup0st k⇥̂s � ⇥̂0kop. Then

kglin(t)� g(t)k2 .
�
⌘0t�te

��0⌘0t+�t⌘0t
�
kglin(0)k2 (S118)

As it is proved in Theorem G.1, for every �0 > 0, with probability at least (1 � �0) over random
initialization,

sup
t

�t  sup
t

k⇥̂0 � ⇥̂tkF . n�1/2R0 ! 0 (S119)

when n1 = · · · = nL = n ! 1. Thus for large n and any polynomial P (t) (we use P (t) = t here)

sup
t

e��0⌘0t+�t⌘0t⌘0P (t) = O(1) (S120)

Therefore

sup
t

kglin(t)� g(t)k2 . sup
t

�tR0 . n�1/2R2
0 ! 0 , (S121)

as n ! 1.

Now we control the discrepancy on a test point x. Let y be its true label. Similarly,

d

dt

�
glin(t, x)� g(t, x)

�
= �⌘0

⇣
⇥̂0(x,X)� ⇥̂t(x,X)

⌘
glin(t) + ⌘0⇥̂t(x,X)(g(t)� glin(t)).

(S122)

Integrating over [0, t] and taking the norm imply
��glin(t, x)� g(t, x)

��
2

(S123)

⌘0

Z t

0

���⇥̂0(x,X)� ⇥̂s(x,X)
���
2
kglin(s)k2ds+ ⌘0

Z t

0
k⇥̂s(x,X)k2kg(s)� glin(s)k2ds

(S124)

⌘0kg
lin(0)k2

Z t

0

���⇥̂0(x,X)� ⇥̂s(x,X)
���
2
e�⌘0�0sds (S125)

+ ⌘0

Z t

0
(k⇥̂0(x,X)k2 + k⇥̂s(x,X)� ⇥̂0(x,X)k2)kg(s)� glin(s)k2ds (S126)

14

Figure S9: Kernel convergence. Kernels computed from randomly initialized ReLU networks with
one and three hidden layers converge to the corresponding analytic kernel as width n and number of
Monte Carlo samples M increases. Colors indicate averages over different numbers of Monte Carlo
samples.

Similarly, Lemma 1 implies

sup
t

���⇥̂0(x,X)� ⇥̂t(x,X)
���
2
. n� 1

2R0 (S127)

This gives

(S125) . n� 1
2R2

0. (S128)

Using Equation S118 and Equation S119,

(S126) . k⇥̂0(x,X)k2

Z t

0

�
⌘0s�se

��0⌘0s+�s⌘0s
�
kglin(0)k2dt . n� 1

2 . (S129)

I Convergence of empirical kernel

As in Novak et al. [7], we can use Monte Carlo estimates of the tangent kernel (Equation 4) to probe
convergence to the infinite width kernel (analytically computed using Equations S26, S29). For
simplicity, we consider random inputs drawn from N (0, 1) with n0 = 1024. In Figure S9, we observe
convergence as both width n increases and the number of Monte Carlo samples M increases. For both
NNGP and tangent kernels we observe k⇥̂(n)

�⇥kF = O (1/
p
n) and kK̂

(n)
�KkF = O (1/

p
n),

as predicted by a CLT in Daniely et al. [16].

J Details on Wide Residual Network

Table S1: Wide Residual Network architecture from Zagoruyko and Komodakis [14]. In the
residual block, we follow Batch Normalization-ReLU-Conv ordering.

group name output size block type

conv1 32 ⇥ 32 [3⇥3, channel size]

conv2 32 ⇥ 32

3⇥ 3, channel size
3⇥ 3, channel size

�
⇥ N

conv3 16 ⇥ 16

3⇥ 3, channel size
3⇥ 3, channel size

�
⇥ N

conv4 8 ⇥ 8

3⇥ 3, channel size
3⇥ 3, channel size

�
⇥ N

avg-pool 1 ⇥ 1 [8 ⇥ 8]

15

Figure S10: Kernel convergence. Kernels from single hidden layer randomly initialized ReLU
network convergence to analytic kernel using Monte Carlo sampling (M samples). See §I for
additional discussion.

16

	Introduction
	Related work

	Theoretical results
	Notation and setup for architecture and training dynamics
	Linearized networks have closed form training dynamics for parameters and outputs
	Infinite width limit yields a Gaussian process
	Gaussian processes from gradient descent training

	Infinite width networks are linearized networks
	Extensions to other optimizers, architectures, and losses

	Experiments
	Discussion
	Additional figures
	Extensions
	Momentum
	Multi-dimensional output and cross-entropy loss

	Neural Tangent kernel for ReLU and erf
	Gradient flow dynamics for training only the readout-layer
	Computing NTK and NNGP Kernel
	Results in function space for NTK parameterization transfer to standard parameterization
	Convergence of neural network to its linearization, and stability of NTK under gradient descent
	Proof of Theorem G.1
	Proof of Theorem G.2
	Proof of Lemma 1
	Remarks on NTK parameterization

	Bounding the discrepancy between the original and the linearized network: MSE loss
	Convergence of empirical kernel
	Details on Wide Residual Network

