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A

The following results are proved in Appendix A in Kumar [2017].

E[θ|M = m] =
1

m
− E[R2

M |M = m]

m
(1)

since R2
M ≤ λ2

n2 , for large sampling rate, the second term in the above equation is negligible. It is
shown(in Appendix A in Kumar [2017]) that

mam +m(m− 1)bm = E[R2
M |M = m]

or
bm =

1

m(m− 1)

(
−mam + E[R2

M |M = m]
)

(2)

where am = E
[(
θ1 − 1

m

)2 ∣∣M = m
]

and bm = E
[(
θ1 − 1

m

) (
θ2 − 1

m

) ∣∣M = m
]
.

The mean squared error between location s and Sb(M−1)sc+1 conditioned on M=m is

E
[∣∣Sl(M,s) − s

∣∣2 ∣∣∣∣M = m

]
(3)

= E

[∣∣∣∣Sl(M,s) −
l(M, s)

M
+
l(M, s)

M
− s
∣∣∣∣2 ∣∣∣∣M = m

]
(4)

= E

[∣∣∣∣Sl(M,s) −
l(M, s)

m

∣∣∣∣2 ∣∣∣∣M = m

]
+ E

[∣∣∣∣ l(M, s)

m
− s
∣∣∣∣2 ∣∣∣∣M = m

]
(5)

+ 2E
[(
Sl(M,s) −

l(M, s)

m

)(
l(M, s)

m
− s
) ∣∣∣∣M = m

]
. (6)

The term l(M,s)
m − s in the above equation can be simplified as, l(m,s)m − s = b(m−1)s+1c

m − s ≤ 1
m .

Therefore,

E
[∣∣Sl(M,s) − s

∣∣2 ∣∣∣∣M = m

]
≤ E

[∣∣∣∣Sl(M,s) −
l(M, s)

m

∣∣∣∣2 ∣∣∣∣M = m

]

+
1

m2
+ 2

1

m
E
[
Sl(M,s) −

l(M, s)

m

∣∣∣∣M = m

]
. (7)
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The first term in the Right hand side (RHS) of (7) is

E

[∣∣∣∣Sl(M,s) −
l(M, s)

m

∣∣∣∣2
∣∣∣∣∣M = m

]

= E


l(M,s)∑

i=1

(
θi −

1

m

)2 ∣∣∣∣∣M = m


= E

l(M,s)∑
i=1

l(M,s)∑
j=1

(
θi −

1

m

)(
θj −

1

m

)∣∣∣∣∣M = m


= (l(m, s))E

[(
θi −

1

m

)2
∣∣∣∣∣M = m

]

+ (l(m, s))(l(m, s)− 1)E

[(
θi −

1

m

)(
θj −

1

m

) ∣∣∣∣∣M = m

]
where i 6= j

≤ ((m− 1)s+ 1)am + ((m− 1)s+ 1)((m− 1)s)bm

where l(m, s) = b(m− 1)sc+ 1.

Substituting for bm from equation (2) we get,

E

[∣∣∣∣Sl(M,s) −
l(M, s)

m

∣∣∣∣2
∣∣∣∣∣M = m

]
(8)

≤ ((m− 1)s+ 1)am +
((m− 1)s+ 1)((m− 1)s)

m(m− 1)

(
−mam +

λ2

n2

)
(9)

= ((m− 1)s+ 1)am − ((m− 1)s2 + s)am +

(
(m− 1)s2 + s

m

)
λ2

n2
(10)

= (m− 1)s(1− s)am + (1− s)am +

(
(m− 1)s2 + s

m

)
λ2

n2
. (11)

The above equation can be simplified by substituting for am defined as

am = E

[(
θ − 1

m

)2 ∣∣M = m

]
= E

[
θ2 − 2

θ

m
+

1

m2

∣∣∣∣M = m

]
.

Since E[θ|M = m] = 1
m from (1) and E[θ2] ≤ λ2

n2 ,

am ≤
λ2

n2
− 1

m2
.

Substituting the above upper bound in (11) we get

E

[∣∣∣∣Sl(M,s) −
l(M, s)

m

∣∣∣∣2
∣∣∣∣∣M = m

]
(12)

≤ (m− 1)s(1− s)
(
λ2

n2
− 1

m2

)
+ (1− s)

(
λ2

n2
− 1

m2

)
+

(
(m− 1)s2 + s

m

)
λ2

n2
. (13)

(14)
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By replacing (m− 1) by m and rearranging the terms in above equation we can write,

E

[∣∣∣∣Sl(M,s) −
l(M, s)

m

∣∣∣∣2
∣∣∣∣∣M = m

]
(15)

≤
(
ms(1− s) + 1− s+ s2 +

s

m

) λ2
n2
− (ms(1− s) + 1− s) 1

m2
. (16)

(17)

The third term in the RHS of equation (7) can be simplified as

E
[
Sl(M,s) −

l(M, s)

m

∣∣∣∣M = m

]
= E

l(M,s)∑
i=1

θi −
l(M, s)

m

∣∣∣∣M = m

 (18)

= l(m, s)E[θ|M = m]− l(m, s)

m
= 0. (19)

Therefore, putting together equations (7) and (16), (19) we can write,

E
[∣∣Sl(M,s) − s

∣∣2] (20)

≤
(
E[M ]s(1− s) + 1− s+ s2 +

s

E[M ]

)
λ2

n2
− (E[M ]s(1− s) + 1− s) 1

E[M ]2
+

1

E[M ]2

(21)

≤
(
E[M ]s(1− s) + 1− s+ s2 +

s

E[M ]

)
λ2

n2
(22)

= (E[M ]s(1− s) + C)
λ2

n2
, (23)

where C is a constant.

B

The Firt Symmetrization Lemma[Pollard [2012]] states that: Let Z(t) : t ∈ T and Z ′(t) : t ∈ T
be independent stochastic processes sharing an index set T . Suppose there exist constants β > 0 and
γ > 0 such that P{|Z ′(t)| ≤ γ} ≥ β for every t ∈ T , then

P{sup
t
|Z(t)| ≥ ε} ≤ 1

β
P{sup

t
|Z(t)− Z ′(t)| > ε− γ} (24)

Let us define Z(s) = Sl(M,s) − s. Let Z ′(s) be independent of Z(s) sharing the same index set
s ∈ [0, 1], generated by a different set of sampling locations for the same number of total samples i.e
Z ′(s) = S′l(M,s) − s.

Using the upper bound in (20) in Appendix A,

P
(∣∣∣S′l(M,s) − s

∣∣∣ ≤ γ) = 1− P
(∣∣∣S′l(M,s) − s

∣∣∣ > γ
)

≥ 1−
E
[∣∣∣S′l(M,s) − s

∣∣∣2]
γ2

≥ 1−
(
E[M ]s(1− s) + 1− s+ s2 +

s

E[M ]

)
λ2

n2γ2
.

i.e. P{|Z ′(s)| ≤ γ} ≥ β where

β = 1−
(
E[M ]s(1− s) + 1− s+ s2 +

s

E[M ]

)
λ2

n2γ2
. (25)
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β goes to 1 as n −→∞.
Using the first symmetrization lemma we can write,

P{sup
s

∣∣Sl(M,s) − s
∣∣ > ε} ≤ 1

β
P
{
sup
s

∣∣∣∣Sl(M,s) − s− S′l(M,s) + s

∣∣∣∣ > ε− γ
}
.

=
1

β
P
{
sup
s

∣∣∣Sl(M,s) − S′l(M,s)

∣∣∣ > ε− γ
}

=
1

β
P

sup
s

∣∣∣∣∣∣
l(M,s)∑
i=1

(θi − θ′i)

∣∣∣∣∣∣ > ε− γ

 .

Taking γ = ε
2 in the above equation we get,

P{sup
s

∣∣Sl(M,s) − s
∣∣ > ε} ≤ 1

β
P

sup
s

∣∣∣∣∣∣
l(M,s)∑
i=1

(θi − θ′i)

∣∣∣∣∣∣ > ε

2

 (26)

Using the second symmetrization lemma[Pollard [2012]],

P{sup
s

∣∣Sl(M,s) − s
∣∣ > ε} ≤ 2

β
P

sup
s

∣∣∣∣∣∣
l(M,s)∑
i=1

σiθi

∣∣∣∣∣∣ > ε

4

 .

where σ1, σ2, σ3, . . . are i.i.d Rademacher random variables that are also independent of θi, θ′i and
P{σi = +1} = P{σi = −1} = 1

2 .

From Figure 1 we can see that,
∣∣∣∑l(M,s)

i=1 σiθi

∣∣∣ reaches it maximum value when s becomes k
M−1 .

Therefore supremum over s can be written as maximum over k
M−1 , i.e.

Figure 1:
∑b(M−1)sc+1
i=1 σiθi plotted against s.We can see that depending on the sign of σi, θi either

gets added or subtracted from
∑i−1

1 σkθk

P{sup
s

∣∣Sl(M,s) − s
∣∣ > ε} ≤ 2

β
P

{
max
k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣ > ε

4

}
where k = 0, 1, . . . (M − 1).

Using Chebyshev’s inequality we get,

P{sup
s

∣∣Sl(M,s) − s
∣∣ > ε} ≤ 2

β

16

ε2
E

max
k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2
 . (27)
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Figure 2: plot of exp(x) and (e− 1)x+ 1 for x between 0 and 1

From Jensen’s inequality,

exp

sE
max

k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2 ∣∣∣∣∣M = m

 (28)

≤ E

exp
smax

k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2
∣∣∣∣∣M = m

 (29)

= E

max
k

exp

s ∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2
∣∣∣∣∣M = m

 (30)

= E

max
k

exp

s k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 (31)

= E

max
k

exp

s
k+1∑
i=1

σ2
i θ

2
i +

k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 where i 6= j (32)

≤ E

max
k

exp

s
k+1∑
i=1

λ2

n2
+

k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 (33)

= E

max
k

exp

s
(k + 1)

λ2

n2
+

k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 (34)

≤ E

max
k

exp

(
sm

λ2

n2

)
exp

s k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 (35)

The maximum path length is one therefore,
∣∣∣∑k+1

i=1 σiθi

∣∣∣2 ≤ 1. This implies that,∑k+1
i=1

∑k+1
j=1 σiθiσjθj where i 6= j is less than 1. From figure 2 we can see that for 0 ≤

x ≤ 1, exp(x) ≤ (e − 1)x + 1. So, by replacing exp
(
s
∑k+1
i=1

∑k+1
j=1 σiθiσjθj

)
with
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(e− 1)s
∑k+1
i=1

∑k+1
j=1 σiθiσjθj + 1 we get

exp

sE
max

k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2 ∣∣∣∣∣M = m

 (36)

≤ E

exp(smλ2

n2

)
max
k

(e− 1)s

k+1∑
i=1

k+1∑
j=1

σiθiσjθj + 1

∣∣∣∣∣M = m

 (37)

= E

exp(smλ2

n2

)1 + max
k

(e− 1)s

k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 (38)

(39)

Since maxk(e− 1)s
∑k+1
i=1

∑k+1
j=1 σiθiσjθj ≤

∑m−1
k=0 (e− 1)s

∑k+1
i=1

∑k+1
j=1 σiθiσjθj ,

exp

sE
max

k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2 ∣∣∣∣∣M = m

 (40)

≤ E

exp(smλ2

n2

)
+ exp

(
sm

λ2

n2

)m−1∑
k=0

(e− 1)s

k+1∑
i=1

k+1∑
j=1

σiθiσjθj

∣∣∣∣∣M = m

 (41)

= exp

(
sm

λ2

n2

)
+ exp

(
sm

λ2

n2

)m−1∑
k=0

(e− 1)s

k+1∑
i=1

k+1∑
j=1

E[σiθiσjθj |M = m] (42)

As θ and σ are independent of each other and E[σ] = 0, E[σiθiσjθj |M = m] = 0 therefore,

exp

sE
max

k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2 ∣∣∣∣∣M = m

 ≤ exp

(
sm

λ2

n2

)
(43)

Taking natural log on both sides of above equation gives,

E

max
k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2 ∣∣∣∣∣M = m

 ≤ mλ2

n2
. (44)

Therefore,

E

max
k

∣∣∣∣∣
k+1∑
i=1

σiθi

∣∣∣∣∣
2
 ≤ E[M ]

λ2

n2
. (45)

Substituting the above bound in 27 we get,

P{sup
s

∣∣Sl(M,s) − s
∣∣ > ε} ≤ 2

β

16

ε2
E[M ]

λ2

n2
(46)

≤ 2

β

16

ε2
(n+ λ− 1)

λ2

n2
(47)
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