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Abstract

Differential privacy has emerged as the gold standard for measuring the risk posed
by an algorithm’s output to the privacy of a single individual in a dataset. It is
defined as the worst-case distance between the output distributions of an algorithm
that is run on inputs that differ by a single person. In this work, we present a novel
relaxation of differential privacy, capacity bounded differential privacy, where the
adversary that distinguishes the output distributions is assumed to be capacity-
bounded – i.e. bounded not in computational power, but in terms of the function
class from which their attack algorithm is drawn. We model adversaries of this
form using restricted f -divergences between probability distributions, and study
properties of the definition and algorithms that satisfy them. Our results demon-
strate that these definitions possess a number of interesting properties enjoyed by
differential privacy and some of its existing relaxations; additionally, common
mechanisms such as the Laplace and Gaussian mechanisms enjoy better privacy
guarantees for the same added noise under these definitions.

1 Introduction

Differential privacy [8] has emerged as a gold standard for measuring the privacy risk posed by
algorithms analyzing sensitive data. A randomized algorithm satisfies differential privacy if an
arbitrarily powerful attacker is unable to distinguish between the output distributions of the algorithm
when the inputs are two datasets that differ in the private value of a single person. This provides a
guarantee that the additional disclosure risk to a single person in the data posed by a differentially
private algorithm is limited, even if the attacker has access to side information. However, a body
of prior work [28, 3, 17, 1] has shown that this strong privacy guarantee comes at a cost: for many
machine-learning tasks, differentially private algorithms require a much higher number of samples to
acheive the same amount of accuracy than is needed without privacy.

Prior work has considered relaxing differential privacy in a number of different ways. Pufferfish [16]
and Blowfish [12] generalize differential privacy by restricting the properties of an individual that
should not be inferred by the attacker, as well as explicitly enumerating the side information available
to the adversary. Renyi- and KL-differential privacy [23, 31] measure privacy loss as the α-Renyi
and KL-divergence between the output distributions (respectively). The original differential privacy
definition measures privacy as a max-divergence (or α-Renyi, with α → ∞). Computational
differential privacy (CDP) [24] considers a computationally bounded attacker, and aims to ensure that
the output distributions are computationally indistinguishable. These three approaches are orthogonal
to one another as they generalize or relax different aspects of the privacy definition.

In this paper, we consider an novel approach to relaxing differential privacy by restricting the
adversary to “attack" or post-process the output of a private algorithm using functions drawn from a
restricted function class and show how to quantitatively calculate privacy losses against particular
function classes. These adversaries, that we call capacity bounded, can be used to model two kinds of
application scenarios. The first is where the attacker is machine learnt and lies in some known space
of functions (e.g., all linear functions, linear classifiers, etc.). The second is a user under a data-usage
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contract that restricts how the output of a private algorithm can be used. If the contract stipulates
that the user can only compute a certain class of functions on the output, then a privacy guarantee
of this form ensures that no privacy violation can occur if users obey their contracts. By showing
how to quatify privacy loss in these settings allows (a) better decisions in cases where we expect the
adversaries to be bounded in what they can do – for example, automated adversaries or adversaries
under a data-usage contract – and (b) better design of data-usage contracts. Unlike computational
DP, where computationally bounded adversaries do not meaningfully relax the privacy definition in
the typical centralized differential privacy model [11], we believe that capacity bounded adversaries
will relax the definition to permit more useful algorithms and are a natural and interesting class of
adversaries.

The first challenge is how to model these adversaries. We begin by showing that privacy with capacity
bounded adversaries can be cleanly modeled through the restricted divergences framework [21, 20, 26]
that has been recently used to build a theory for generative adversarial networks. This gives us a
notion of (H,Γ)-capacity bounded differential privacy, where the privacy loss is measured in terms
of a divergence Γ (e.g., Renyi) between output distributions of a mechanism on datasets that differ by
a single person restricted to functions inH (e.g., lin, the space of all linear functions).

We next investigate properties of these privacy definitions, and show that they enjoy many of the
good properties enjoyed by differential privacy and its relaxations – convexity, graceful composition,
as well as post-processing invariance to certain classes of functions. We analyze well-known privacy
mechanisms, such as the Laplace and the Gaussian mechanism under (lin,KL) and (lin,Renyi)
capacity bounded privacy – where the adversaries are the class of all linear functions. We show that
restricting the capacity of the adversary does provide improvements in the privacy guarantee in many
cases. We then use this to demonstrate that the popular Matrix Mechanism [18, 19, 22] gives an
improvement in the privacy guarantees when considered under capacity bounded definition.

We conclude by showing some preliminary results that indicate that the capacity bounded definitions
satisfy a form of algorithmic generalization. Specifically, for every class of queries Q, there exists a
(non-trivial)H such that an algorithm that answers queries in the class Q and is (H,KL)-capacity
bounded private with parameter ε also ensures generalization with parameter O(

√
ε).

The main technical challenge we face is that little is known about properties of restricted divergences.
While unrestricted divergences such as KL and Renyi are now well-understood as a result of more
than fifty years of research in information theory, these restricted divergences are only beginning to
be studied in their own right. A side-effect of our work is that we advance the information geometry
of these divergences, by establishing properties such as versions of Pinsker’s Inequality and the Data
Processing Inequality. We believe that these will be of independent interest to the community and aid
the development of the theory of GANs, where these divergences are also used.

2 Preliminaries

2.1 Privacy

Let D be a dataset, where each data point represents a single person’s value. A randomized algorithm
A satisfies differential privacy [8] if its output is insensitive to adding or removing a data point
to its input D. We can define this privacy notion in terms of the Renyi Divergence of two output
distributions: A(D) – the distribution of outputs generated by A with input D, and A(D′), the
distrbution of outputs generated by A with input D′, where D and D′ differ by a single person’s
value [23]. Here, recall that the Renyi divergence of order α between distributions P and Q can be
written as: DR,α(P,Q) = 1

α−1 log
(∫
x
P (x)αQ(x)1−αdx

)
.

Definition 1 (Renyi Differential Privacy). A randomized algorithm A that operates on a dataset D
is said to provide (α, ε)-Renyi differential privacy if for all D and D′ that differ by a single person’s
value, we have: DR,α(A(D), A(D′)) ≤ ε.

When the order of the divergence α → ∞, we require the max-divergence of the two distrbutions
bounded by ε – which is standard differential privacy [7]. When α→ 1, DR,α becomes the Kullback-
Liebler (KL) divergence, and we get KL differential privacy [32].
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2.2 Divergences and their Variational Forms

A popular class of divergences is Czisar’s f -divergences [5], defined as follows.
Definition 2. Let f be a lower semi-continuous convex function such that f(1) = 0, and let P
and Q be two distributions over a probability space (Ω,Σ) such that P is absolutely continuous
with respect to Q. Then, the f -divergence between P and Q, denoted by Df (P,Q) is defined as:

Df (P,Q) =
∫

Ω
f
(
dP
dQ

)
dQ.

Examples of f -divergences include the KL divergence (f(t) = t log t), the total variation distance
(f(t) = 1

2 |t− 1|) and α-divergence (f(t) = (|t|α − 1)/(α2 − α)).

Given a function f with domain R, we use f∗ to denote its Fenchel conjugate: f∗(s) = supx∈R x ·
s− f(x). [25] shows that f -divergences have a dual variational form:

Df (P,Q) = sup
h∈F

Ex∼P [h(x)]− Ex∼Q[f∗(h(x))], (1)

where F is the set of all functions over the domain of P and Q.

Restricted Divergences. Given an f -divergence and a class of functionsH ⊆ F , we can define a
notion of aH-restricted f -divergence by selecting, instead of F , the more restricted class of functions
H, to maximize over in (1):

DHf (P,Q) = sup
h∈H

Ex∼P [h(x)]− Ex∼Q[f∗(h(x))], (2)

These restricted divergences have previously been considered in the context of, for example, Genera-
tive Adversarial Networks [26, 2, 20, 21].

While Renyi divergences are not f -divergences in general, we can also define restricted versions
for them by going through the corresponding α-divergence – which, recall, is an f -divergence with
f(t) = (|t|α − 1)/(α2 − α), and is related to the Renyi divergence by a closed form equation [4].
Given a function classH, an order α, and two probability distributions P and Q, we can define the
H-restricted Renyi divergence of order α using the same closed form equation on theH-restricted
α-divergence as follows:

DHR,α(P,Q) =
(
log
(
1 + α(α− 1)DHα (P,Q)

))
/(α− 1) (3)

where DHα is the correspondingH-restricted α-divergence.

3 Capacity Bounded Differential Privacy

The existence ofH-restricted divergences suggests a natural notion of privacy – when the adversary
lies in a (restricted) function classH, we can, instead of F , consider the classH of functions in the
supremum. This enforces that no adversary in the function classH can distinguish between A(D)
and A(D′) beyond ε. We call these capacity bounded adversaries.
Definition 3 ((H,Γ)-Capacity Bounded Differential Privacy). Let H be a class of functions with
domain X , and Γ be a divergence. A mechanism A is said to offer (H,Γ)-capacity bounded privacy
with parameter ε if for any two D and D′ that differ by a single person’s value, the H-restricted
Γ-divergence between A(D) and A(D′) is at most ε:

ΓH(A(D), A(D′)) ≤ ε

When H is the class of all functions, and Γ is a Renyi divergence, the definition reduces to Renyi
Differential privacy; capacity bounded privacy is thus a generalization of Renyi differential privacy.

Function Classes. The definition of capacity bounded privacy allows for an infinite number of
variations corresponding to the class of adversariesH.

An example of such a class is all linear adversaries over a feature space φ, which includes all linear
regressors over φ. A second example is the class of all functions in an Reproducible Kernel Hilbert
Space; these correspond to all kernel classifiers. A third interesting class is linear combinations of
all Relu functions; this correspond to all two layer neural networks. These function classes would
capture typical machine learnt adversaries, and designing mechanisms that satisfy capacity bounded
DP with respect to these functions classes is an interesting research direction.
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4 Properties

The success of differential privacy has been attributed its highly desirable properties that make it
amenable for practical use. In particular, [15] proposes that any privacy definition should have three
properties – convexity, post-processing invariance and graceful composition – all of which apply to
differential privacy. We now show that many of these properties continue to hold for the capacity
bounded definitions. The proofs appear in Appendix B.

Post-processing. Most notions of differential privacy satisfy post-processing invariance, which
states that applying any function to the output of a private mechanism does not degrade the privacy
guarantee. We cannot expect post-processing invariance to hold with respect to all functions for
capacity bounded privacy – otherwise, the definition would be equivalent to privacy for all adversaries!

However, we can show that for anyH and for any Γ, (H,Γ)-capacity bounded differential privacy is
preserved after post-processing if certain conditions about the function classes hold:
Theorem 1. Let Γ be an f -divergence or the Renyi divergence of order α > 1, and letH G, and I be
function classes such that for any g ∈ G and i ∈ I , i◦g ∈ H. If algorithmA satisfies (H,Γ)-capacity
bounded privacy with parameter ε, then, for any g ∈ G, g ◦ A satisfies (I,Γ)-capacity bounded
privacy with parameter ε.

Specifically, if I = H, then A is post-processing invariant. Theorem 1 is essentially a form of the
popular Data Processing Inequality applied to restricted divergences; its proof is in the Appendix
and follows from the definition as well as algebra. An example of function classes G,H, and I that
satisfy this conditions is when G,H, I are linear functions, where G : Rs → Rd,H : Rs → R, and
I : Rd → R.

Convexity. A second property is convexity [14], which states that if A and B are private mecha-
nisms with privacy parameter ε then so is a composite mechanism M that tosses a (data-independent)
coin and chooses to run A with probability p and B with probability 1− p. We show that convexity
holds for (H,Γ)-capacity bounded privacy for anyH and any f -divergence Γ.
Theorem 2. Let Γ be an f -divergence and A and B be two mechanisms which have the same range
and provide (H,Γ)-capacity bounded privacy with parameter ε. Let M be a mechanism which tosses
an independent coin, and then executes mechanism A with probability λ and B with probability
1− λ. Then, M satisfies (H,Γ)-capacity bounded privacy with parameter ε.

We remark that while differential privacy and KL differential privacy satisfy convexity, (standard)
Renyi differential privacy does not; it is not surprising that neither does its capacity bounded version.
The proof uses convexity of the function f in an f -divergence.

Composition. Broadly speaking, composition refers to how privacy properties of algorithms applied
multiple times relate to privacy properties of the individual algorithms. Two styles of composition are
usually considered – sequential and parallel.

A privacy definition is said to satisfy parallel composition if the privacy loss obtained by applying
multiple algorithms on disjoint datasets is the maximum of the privacy losses of the individual
algorithms. In particular, Renyi differential privacy of any order satisfies parallel composition. We
show below that so does capacity bounded privacy.
Theorem 3. LetH1,H2 be two function classes that are convex and translation invariant. LetH be
the function class:

H = {h1 + h2|h1 ∈ H1, h2 ∈ H2}
and let Γ be the KL divergence or the Renyi divergence of order α > 1. If mechanisms A and B
satisfy (H1,Γ) and (H2,Γ) capacity bounded privacy with parameters ε1 and ε2 respectively, and
if the datasets D1 and D2 are disjoint, then the combined release (A(D1), B(D2)) satisfies (H,Γ)
capacity bounded privacy with parameter max(ε1, ε2).

In contrast, a privacy definition is said to compose sequentially if the privacy properties of algorithms
that satisfy it degrade gracefully as the same dataset is used in multiple private releases. In particular,
Renyi differential privacy is said to satisfy sequential additive composition – if multiple private
algorithms are used on the same dataset, then their privacy parameters add up. We show below that
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Divergence Mechanism Privacy Parameter, Linear Adversary Privacy Parameter, Unre-
stricted

KL Laplace
√

1 + ε2 − 1 + log
(

1− (
√

1+ε2−1)2

ε2

)
ε− 1 + e−ε

KL Gaussian 1/2σ2 1/2σ2

α-Renyi Laplace ≤ 1
α−1 log(1 + 2α−1εα) ≥ ε− log(2)/α−1

α-Renyi Gaussian ≤ 1
α−1 log(1 +

√
2π
α−1
/σα) α/2σ2

α-Renyi Laplace, d-dim ≤ 1
α−1 log(1 + 2d(α−1)(ε‖v‖α)α) ≥ ε‖v‖1 − d log(2)/α−1

α-Renyi Gaussian, d-dim ≤ 1
α−1 log

(
1 +

2d(α−1)
√
π/2

α−1
‖v‖αα

σα

)
α‖v‖22
2σ2

Table 1: Privacy parameters of different mechanisms and divergences with a linear adversary and
unrestricted. Proofs appear in Appendix C

a similar result can be shown for (H,Γ)-capacity bounded privacy when Γ is the KL or the Renyi
divergence, andH satisfies some mild conditions.
Theorem 4. LetH1 andH2 be two function classes that are convex, translation invariant, and that
includes a constant function. LetH be the function class:

H = {h1 + h2|h1 ∈ H1, h2 ∈ H2}
and let Γ be the KL divergence or the Renyi divergence of order α > 1. If mechanisms A and B
satisfy (H1,Γ) and (H2,Γ) capacity bounded privacy with parameters ε1 and ε2 respectively, then
the combined release (A,B) satisfies (H,Γ) capacity bounded privacy with parameter ε1 + ε2.

The proof relies heavily on the relationship between the restricted and unrestricted divergences, as
shown in [21, 20, 9], and is provided in the Appendix. Observe that the conditions onH1 andH2 are
rather mild, and include a large number of interesting functions. One such example ofH is the set of
ReLU neural networks with linear output node, a common choice when performing neural network
regression.

The composition guarantees offered by Theorem 4 are non-adaptive – the mechanisms A and B
are known in advance, and B is not chosen as a function of the output of A. Whether fully general
adaptive composition is possible for the capacity bounded definitions is left as an open question for
future work.

5 Privacy Mechanisms

The definition of capacity bounded privacy allows for an infinite number of variations, corresponding
to the class of adversariesH and divergences Γ, exploring all of which is outside the scope of a single
paper. For the sake of concreteness, we consider linear and (low-degree) polynomial adversaries for
H and KL as well as Renyi divergences of order α for γ. These correspond to cases where a linear or
a low-degree polynomial function is used by an adversary to attack privacy.

A first sanity check is to see what kind of linear or polynomial guarantee is offered by a mechanism
that directly releases a non-private value (without any added randomness). This mechanism offers no
finite linear KL or Renyi differential privacy parameter – which is to be expected from any sensible
privacy definition (see Lemma 2 in the Appendix).

We now look at the capacity bounded privacy properties of the familiar Laplace and Gaussian
mechanisms which form the building blocks for much of differential privacy. Bounds we wish to
compare appear in Table 1.

Laplace Mechanism. The Laplace mechanism adds Lap(0, 1/ε) noise to a function with global
sensitivity 1. In d dimensions, the mechanism adds d i.i.d. samples from Lap(0, 1/ε) to a function
with L1 sensitivity 1. More generally, we consider functions whose global sensitivity along coordinate
i is vi. We let v = (v1, v2, . . . , vd).

Table 1 shows (lin,KL)-capacity bounded privacy and KL-DP parameters for the Laplace mecha-
nism. The former has a slightly smaller parameter than the latter.

5



(a) Plots of (lin,Renyi) capacity bounded DP and
Renyi-DP parameters for Laplace mechanism when
ε = 1. For (lin,Renyi), the upper bound and exact
value are shown.

(b) Comparison of exact values of (poly,Renyi) ca-
pacity bounded DP parameters for Laplace mechanism
when ε = 1.

Table 1 also contains an upper bound on the (lin,Renyi) capacity bounded privacy, and a lower
bound on the Renyi-DP. The exact value of the Renyi-DP is:

1

α− 1
log

((
1

2
+

1

4α− 2

)
e(α−1)ε +

(
1

2
− 1

4α− 2

)
e−αε

)
(4)

By multiplying by α− 1 and exponentiating, we see that the (lin,Renyi) upper bound grows with
1 + ε(2ε)α−1, while the Renyi-DP lower bound grows with (eε)α−1. This means no matter what ε is,
a moderately-sized α will make the (lin,Renyi) upper bound smaller than the Renyi lower bound.

Figure 1a plots the (lin,Renyi) upper bound, (4), and the exact value of the (lin,Renyi) parameter,
as functions of α when ε = 1. We see the exact (lin,Renyi) is always better than (4), although the
upper bound may sometimes be worse. The upper bound overtakes the lower bound when α ≈ 3.3.

For the multidimensional Laplace Mechanism, the story is the same. The (lin,Renyi) upper bound
can now be thought of as a function of ε‖v‖α, and the Renyi lower bound a function of ε‖v‖1.
Because ‖v‖α ≤ ‖v‖1, we can replace ‖v‖α with ‖v‖1 in the (lin,Renyi) upper bound, and repeat
the analysis for the unidimensional case. Notice that our (lin,Renyi) upper bound is slightly better
than using composition d times on the unidimensional Laplace mechanism which would result in a
multiplicative factor of d.

Figure 1b contains plots of the exact (poly,Renyi) paramters for degree 1,2, and 3 polynomials, as
functions of α when ε = 1. As we expect, as the polynomial complexity increases, the (poly,Renyi)
parameters converge to the Renyi-DP parameter. This also provides an explanation for the counterin-
tuitive observation that the (poly,Renyi) parameters eventually decrease with α. The polynomial
function classes are too simple to distinguish the two distributions for larger α, but their ability to do
so increases as the polynomial complexity increases.

Gaussian Mechanism. The Gaussian mechanism adds N (0, σ2) noise to a function with global
sensitivity 1. In d dimensions, the mechanism adds N (0, σ2Id) to a function with L2 sensitivity
1. More generally, we consider functions whose global sensitivity along coordinate i is vi We let
v = (v1, v2, . . . , vd).

Whereas the (lin,KL) parameter for Laplace is a little better than the KL-DP parameter, Table 1
shows the Gaussian mechanism has the same parameter. This is because if P andQ are two Gaussians
with equal variance, the function h that maximizes the variational formulation corresponding to the
KL-divergence is a linear function.

For Renyi capacity bounded privacy, the observations we make are nearly identical to that of the
Laplace Mechanism. The reader is referred to Appendix A for plots and specific details.
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Matrix Mechanism.

Now, we show how to use the bounds in Table 1 to obtain better capacity bounded parameters for
a composite mechanism often used in practice: the Matrix mechanism [18, 19, 22]. The Matrix
mechanism is a very general method of computing linear queries on a dataset, usually with less error
than the Laplace Mechanism. Given a dataset D ∈ Σm over a finite alphabet Σ of size n, we can
form a vector of counts x ∈ Rn such that xi contains how many times i appears in D. A linear query
is a vector w ∈ Rn and has answer wTx. A set of d linear queries can then be given by a matrix
W ∈ Rd×n with the goal of computing Wx privately.

A naive way to do this is to use the Laplace Mechanism in d dimensions to release x and then multiply
by W . The key insight is that, for any A ∈ Rs×n of rank n, we can instead add noise to Ax and
multiply the result by WA†. Here, A† denotes the pseudoinverse of A such that WA†A = W .

The Laplace Mechanism arises as the special case A = I; however, more carefully chosen As may
be used to get privacy with less noise. This gives rise to the Matrix mechanism:

MA(W,x, ε) = WA†(Ax+ ‖A‖1Lapd(0, 1/ε))
Here, ‖A‖1 is the maximum L1-norm of any column of a. Prior work shows that this mechanism
provides differential privacy and suggest different methods for picking an A. Regardless of which
A is chosen, , we are able to provide a capacity-bounded privacy parameter that is better than any
known Renyi-DP analysis has shown:
Theorem 5 (Matrix Mechanism). Let x ∈ Rn be a data vector, W ∈ Rd×n be a query matrix, and
A ∈ Rs×n be a strategy matrix. Then, releasing MA(W,x, ε) offers (lin,Renyi) capacity bounded
privacy with parameter at most 1

α−1 log(1 + 2s(α−1)εα).

Note this is the same upper bound as the d-dimensional Laplace mechanism; indeed, the proof works
by applying post-processing to the Laplace mechanism.

6 Algorithmic Generalization

Overfitting to input data has long been the curse of many statistical and machine learning methods;
harmful effects of overfitting can range from poor performance at deployment time all the way up to
lack of reproducibility in scientific research due to p-hacking [13]. Motivated by these concerns, a
recent line of work in machine learning investigates properties that algorithms and methods should
possess so that they can automatically guarantee generalization [27, 10, 6, 29]. In this connection,
differential privacy and many of its relaxations have been shown to be highly successful; it is known
for example, that if adaptive data analysis is done by a differentially private algorithm, then the results
automatically possess certain generalization guarantees.

A natural question is whether these properties translate to the capacity bounded differential privacy,
and if so, under what conditions. We next investigate this question, and show that capacity bounded
privacy does offer promise in this regard. A more detailed investigation is left for future work.

Problem Setting. More specifically, the problem setting is as follows. [27, 10, 6, 29]. We are given
as input a data set S = {x1, . . . , xn} drawn from an (unknown) underlying distribution D over an
instance space X , and a set of “statistical queries” Q; each statistical query q ∈ Q is a function
q : X → [0, 1].

A data analyst M observes S, and then picks a query qS ∈ Q based on her observation; we say
that M generalizes well if the query qS evaluated on S is close to qS evaluated on a fresh sample
from D (on expectation); more formally, this happens when the generalization gap 1

n

∑n
i=1 qS(xi)−

Ex∼D[qS(x)] is low.

Observe that if the query was picked without an apriori look at the data S, then the problem would be
trivial and solved by a simple Chernoff bound. Thus bounding the generalization gap is challenging
because the choice of qS depends on S, and the difficulty lies in analyzing the behaviour of particular
methods that make this choice.

Our Result. Prior work in generalization theory [27, 10, 6, 29] shows that if M possesses certain
algorithmic stability properties – such as differential privacy as well as many of its relaxations and
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generalizations – then the gap is low. We next show that provided the adversarial function classH
satisfies certain properties with respect to the statistical query class Q, (H, lin)-capacity bounded
privacy also has good generalization properties.
Theorem 6 (Algorithmic Generalization). Let S be a sample of size n drawn from an underlying
data distribution D over an instance space X , and let M be a (randomized) mechanism that takes as
input S, and outputs a query qS in a class Q. For any x ∈ X , define a function hx : Q → [0, 1] as:
hx(q) = q(x), and letH be any class of functions that includes {hx|x ∈ X}.
If the mechanism M satisfies (H,KL)-capacity bounded privacy with parameter ε, then, for every

distribution D, we have:
∣∣∣ES∼D,M ( 1

n

∑n
i=1 qS(xi)− Ex∼D[qS(x)]

) ∣∣∣ ≤ 8
√
ε.

We remark that the result would not hold for arbitrary (H,KL)-capacity bounded privacy, and a
condition that connectsH to Q appears to be necessary. However, for specific distributions D, fewer
conditions may be needed.

Observe also that Theorem 6 only provides a bound on expectation. Stronger guarantees – such as
high probability bounds as well as adaptive generalization bounds – are also known in the adaptive
data analysis literature. While we believe similar bounds should be possible in our setting, proving
them requires a variery of information-theoretic properties of the corresponding divergences, which
are currently not available for restricted divergences. We leave a deeper investigation for future work.

Proof Ingredient: A Novel Pinsker-like Inequality. We remark that an ingredient in the proof of
Theorem 6 is a novel Pinsker-like inequality for restricted KL divergences, which was previously
unknown, and is presented below (Theorem 7). We believe that this theorem may be of independent
interest, and may find applications in the theory of generative adversarial networks, where restricted
divergences are also used.

We begin by defining an integral probability metric (IPM) [30] with respect to a function classH.
Definition 4. Given a function class H, and any two distributions P and Q, the Integral Proba-
bility Metric (IPM) with respect to H is defined as follows: IPMH(P,Q) = suph∈H |EP [h(x)] −
EQ[h(x)]|.

Examples of IPMs include the total variation distance where H is the class of all functions with
range [0, 1], and the Wasserstein distance whereH is the class of all 1-Lipschitz functions. With this
definition in hand, we can now state our result.
Theorem 7 (Pinsker-like Inequality for Restricted KL Divergences). Let H be a convex class of
functions with range [−1, 1] that is translation invariant and closed under negation. Then, for any
P and Q such that P is absolutely continuous with respect to Q, we have that: IPMH(P,Q) ≤
8 ·
√

KLH(P,Q).

This theorem is an extended version of the Pinsker Inequality, which states that the total variation
distance TV (P,Q) ≤

√
2KL(P,Q); however, instead of connecting the total variation distance and

KL divergences, it connects IPMs and the corresponding restricted KL divergences.

7 Conclusion

We initiate a study into capacity bounded differential privacy – a relaxation of differential privacy
against adversaries in restricted function classes. We show how to model these adversaries cleanly
through the recent framework of restricted divergences. We then show that the definition satisfies
privacy axioms, and permits mechanisms that have higher utility (for the same level of privacy) than
regular KL or Renyi differential privacy when the adverary is limited to linear functions. Finally, we
show some preliminary results that indicate that these definitions offer good generalization guarantees.

There are many future directions. A deeper investigation into novel mechanisms that satisfy the
definitions, particularly for other function classes such as threshold and relu functions remain open. A
second question is a more detailed investigation into statistical generalization – such as generalization
in high probability and adaptivity – induced by these notions. Finally, our work motivates a deeper
exploration into the information geometry of adversarial divergences, which is of wider interest to
the community.
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A Analysis of Gaussian Mechanism

(a) Plots of (lin,Renyi) capacity bounded DP and
Renyi-DP parameters for Gaussian mechanism when
σ = 1. For (lin,Renyi), the upper bound and exact
value are shown.

(b) Comparison of exact values of (poly,Renyi) ca-
pacity bounded DP parameters for Gaussian mecha-
nism when σ = 1.

Table 1 contains an upper bound on the (lin,Renyi) capacity bounded privacy parameter for the
Gaussian mechanism and the Renyi-DP parameter. By multiplying by α− 1 and exponentiating, we

see that the (lin,Renyi) upper bound grows with 1
σ

(√
2π
σ

)α−1

while the Renyi parameter grows

with (eα/(2σ
2))α−1. Because

√
2π
σ < eα/(2σ

2) for all σ, we conclude that modestly-sized values of α
will cause the (lin,Renyi) upper bound to fall below the Renyi parameter for all σ.

Figure 2a plots the (lin,Renyi) upper bound, the exact (lin,Renyi) parameter, and the Renyi-DP
parameter as functions of α when σ = 1. We see the exact (lin,Renyi) is always better than the
Renyi-DP parameter, although the upper bound is worse for small α. The upper bound overtakes the
Renyi-DP parameter when α ≈ 2.3.

For the multidimensional Gaussian mechanism, the story is mostly the same. Note that the
(lin,Renyi) upper bound can be written as

1

α− 1
log

(
1 + 2d(α−1)

√
π/2

α−1
(
‖v‖α
σ

)α)
The Renyi parameter, on the other hand, is

α

(
‖v‖2
σ

)2

Notice that these are the same functions we looked at for the unidimensional case, but instead
of 1

σ , they are in terms of ‖v‖ασ and ‖v‖2σ , respectively. Indeed this is no accident, because the
unidimensional cases assumed the L2 sensitivity of the function was 1. However, when α > 2, we
have ‖v‖α < ‖v‖2, so we can replace ‖v‖α with ‖v‖2, and the (lin,Renyi) upper bound will only
increase. But this still gives us the same conclusion as the unidimensional Gaussian mechanism,
since now both parameters are functions of ‖v‖2σ .

Finally, our multidimensional (lin,Renyi) upper bound is slightly better than composing the Gaus-
sian mechanism d times which would result in a multiplicative factor of d.

Figure 2b contains plots of the exact (poly,Renyi) parameters for degree 1,2, and 3 polynomials, as
functions of α when σ = 1. As we expect, as the polynomial complexity increases, the (poly,Renyi)
parameters converge to the Renyi-DP parameter. This also provides an explanation for the counterin-
tuitive observation that the (poly,Renyi) parameters eventually decrease with α. The polynomial
function classes are too simple to distinguish the two distributions for larget α, but their ability to do
so increases as the polynomial complexity increases.
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B Post-Processing, Convexity, and Composition

Proof. (Of Theorem 1) It suffices to show Post-Processing Invariance for a restricted f -divergence.
Let A be a mechanism that maps a dataset D into an output x in an instance space X . Let P =
Pr(A(D) = ·) and Q = Pr(A(D′) = ·).

Suppose g is a function in G which maps an x ∈ X into a y ∈ Y – that is y = g(x). Let P ′ and
Q′ be the distributions induced on Y by P and Q respectively when we map x into y. To show
post-processing, we need to show that DIf (P ′, Q′) ≤ DHf (P,Q).

To see this, observe that:
DIf (P ′, Q′) = sup

i∈I
EP ′ [i(y)]− EQ′ [f∗(i(y)]

= sup
i∈I

EP [i · g(x)]− EQ[f∗(i · g(x))]

≤ sup
h∈H

EP [h(x)]− EQ[f∗(h(x))]

where the first step follows because y = g(x) and the second step follows because i · g ∈ H. The
theorem follows from observing that the right hand side in the third line is exactly DHf (P,Q).

Proof. (Of Theorem 2) To prove convexity, it suffices to show that
DHα (M(D),M(D′)) ≤ λDHα (A(D), A(D′)) + (1− λ)DHα (B(D), B(D′))

Observe that DHf (M(D),M(D′)) is equal to:
= sup

h∈H
Ex∼M(D)[h(x)]− Ex∼M(D′)[f

∗(h(x))]

= sup
h∈H

Ex∼λA(D)+(1−λ)B(D)[h(x)]− Ex∼λA(D′)+(1−λ)B(D′)[f
∗(h(x))]

= sup
h∈H

λEx∼A(D)[h(x)] + (1− λ)Ex∼B(D)[h(x)]− Ex∼λA(D′)+(1−λ)B(D′)[f
∗(h(x))]

= sup
h∈H

λEx∼A(D)[h(x)] + (1− λ)Ex∼B(D)[h(x)]− λEx∼A(D′)[f
∗(h(x))]− (1− λ)Ex∼B(D′)[f

∗(h(x))]

= sup
h∈H

λ(Ex∼A(D)[h(x)]− Ex∼A(D′)[f
∗(h(x))]) + (1− λ)(Ex∼B(D)[h(x)]− Ex∼B(D′)[f

∗(h(x))])

≤ λ · sup
h∈H

Ex∼A(D)[h(x)]− Ex∼A(D′)[f
∗(h(x))] + (1− λ) · sup

h∈H
Ex∼B(D)[h(x)]− Ex∼B(D′)[f

∗(h(x))]

where the second step follows from the fact that M(D) is a mixture of A(D) and B(D) with
mixing weights [λ, 1 − λ], the third step is a property of mixture distributions, the fourth step
from algebra, the fifth step from re-arrangement, and the last step from the observation that
maxy f(y) + g(y) ≤ maxy f(y) + maxy g(y). Observe that the last line is λDHf (A(D), A(D′)) +

(1− λ)DHf (B(D), B(D′)).

B.1 Composition (H-bounded Renyi, KL Privacy only)

Proof. (Of Theorem 4). Let D and D′ be two datasets that differ in the private value of a single
person, and let (P1, P2) = (A(D), B(D)) and (Q1, Q2) = (A(D′), B(D′)). Let P be the product
distribution P1 ⊗ P2 and Q be the product distribution Q1 ⊗ Q2. Finally, let a = α2 − α. By
assumption, DHiR,α(Pi, Qi) ≤ εi. Hence, we know DHiα (Pi, Qi) ≤ ηi where ηi = exp(εi(α−1))−1

a .
Then,
DHα (P,Q) = inf

P ′
Dα(P ′, Q) + sup

h∈H
EP [h]− EP ′ [h]

≤ inf
P ′=P ′1⊗P ′2

Dα(P ′, Q) + sup
h∈H

EP [h]− EP ′ [h]

= inf
P ′=P ′1⊗P ′2

aDα(P ′1, Q1)Dα(P ′2, Q2) +Dα(P ′1, Q1) +Dα(P ′2, Q2) + sup
h∈H

EP [h]− EP ′ [h]

≤ inf
P ′=P ′1⊗P ′2

aDα(P ′1, Q1)Dα(P ′2, Q2) +Dα(P ′1, Q1) +Dα(P ′2, Q2)

+ sup
h1∈H1

EP1
[h1]− EP ′1 [h1] + sup

h2∈H2

EP2
[h2]− EP ′2 [h2]
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Here the first step follows from [21], the second step from restricting P ′ to be a product distribution,
third from the multiplicative property of α-divergence for product distributions, fourth from the fact
that we can split the sup of the product distributions into two parts. To simplify further, we use [21]
again, this time on the assumptions:

DH1
α (P1, Q1) = inf

P ′1

Dα(P ′1, Q1) + sup
h∈H1

EP1
[h]− EP ′1 [h] ≤ η1

DH2
α (P2, Q2) = inf

P ′2

Dα(P ′2, Q2) + sup
h∈H2

EP2
[h]− EP ′2 [h] ≤ η2

Because h contains constant functions, we know that suph∈H EPi [h]− EP ′i [h] ≥ 0, and thus

DHiα (Pi, Qi) ≤ ηi

Continuing,

DHα (P,Q) ≤ inf
P ′=P ′1⊗P ′2

aη1η2 +Dα(P ′1, Q1) +Dα(P ′2, Q2)

+ sup
h1∈H1

EP1
[h1]− EP ′1 [h1] + sup

h2∈H2

EP2
[h2]− EP ′2 [h2]

≤ aη1η2 + inf
P ′=P ′1⊗P ′2

Dα(P ′1, Q1) + sup
h1∈H1

EP1
[h1]− EP ′1 [h1]

+Dα(P ′2, Q2) + sup
h2∈H2

EP2
[h2]− EP ′2 [h2]

≤ aη1η2 + η1 + η2

This means DHR,α(P,Q) ≤ 1
α−1 log(a(aη1η2 + η1 + η2) + 1). We can simplify this:

1

α− 1
log(a(aη1η2 + η1 + η2) + 1) =

1

α− 1
(log(aη1 + 1) + log(aη2 + 1))

= ε1 + ε2

Proof. (Of Theorem 3). Let D and D′ be two datasets which differ in the value of a single row. Then,
D = (D1, D2), and we have two cases for D′: D′ = (D1, D

′
2) or (D′1, D2) where the pairs D1, D

′
1

and D2, D
′
2 differ in one row. Suppose the first case is true. Then, (P1, P2) = (A(D1), B(D2))

and (Q1, Q2) = (A(D1), B(D′2)). Importantly, we have P1 = Q1. Then, letting P = P1 ⊗ P2,
Q = Q1 ⊗Q2, and a = α2 − α,

DHα (P,Q) = inf
P ′
Dα(P ′, Q) + sup

h∈H
EP [h]− EP ′ [h]

≤ inf
P ′=P1⊗P ′2

Dα(P ′, Q) + sup
h∈H

EP [h]− EP ′ [h]

= inf
P ′=P1⊗P ′2

aDα(P1, Q1)Dα(P ′2, Q2) +Dα(P1, Q1) +Dα(P ′2, Q2) + sup
h∈H

EP [h]− EP ′ [h]

= inf
P ′=P1⊗P ′2

Dα(P ′2, Q2) + sup
h∈H

EP [h]− EP ′ [h]

≤ inf
P ′2

Dα(P ′2, Q2) + sup
h1∈H1

EP1
[h1]− EP1

[h1] + sup
h2∈H2

EP2
[h2]− EP ′2 [h2]

= inf
P ′2

Dα(P ′2, Q2) + sup
h2∈H2

EP2
[h2]− EP ′2 [h2]

= DH2
α (P2, Q2)

Here the first step follows from [21], the second step from restricting P ′ to be a product distribution,
third from the multiplicative property of α-divergence for product distributions, fourth from the
fact that D(P1, Q1) = 0 when P1 = Q1 for any divergence, fifth from splitting the sup into two
parts, sixth from further cancellation. For the second case, where D′ = (D1, D

′
2), we can prove

DHα (P,Q) ≤ DH1
α (P1, Q1) via a similar argument. With a simple transformation from α to α-Renyi

divergence, we obtain our result.
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C Mechanisms

C.1 KL, Unbounded

Theorem 8 (Laplace Mechanism under KL). Let P and Q be Laplace distributions with mean 0 and
1 and parameter 1/ε. Then,

KL(P,Q) = ε− 1 + e−ε

Proof. We divide the real line into three intervals: I1 = [−∞, 0], I2 = [0, 1], I3 = [1,∞].

For any x ∈ I1, P (x)/Q(x) = eε, and Pr(I1) = 1/2 (under P ). Therefore,

EP [log(P/Q), x ∈ I1] =
1

2
ε

Similarly for any x ∈ I3, P (x)/Q(x) = e−ε, and Pr(I3) under P is calculated as follows:

Pr(I3) =

∫ ∞
1

1

2
εe−εxdx =

1

2
e−ε

Therefore,

EP [log(P/Q), x ∈ I3] = −1

2
εe−ε

We are now left with I2. For any x ∈ I2, we have P (x)/Q(x) = e−εx/e−ε(1−x) = eε(1−2x).
Therefore,

EP [log(P/Q), x ∈ I2] =

∫ 1

0

1

2
ε2(1− 2x)e−εxdx

=
1

2
ε2
(∫ 1

0

e−εxdx−
∫ 1

0

2xe−εxdx

)

=
1

2
ε2

e−εx
−ε

∣∣∣∣∣
1

0

− 2xe−εx

−ε

∣∣∣∣∣
1

0

+

∫ 1

0

2e−εx

−ε

∣∣∣∣∣
1

0

dx


=

1

2
ε2
(

1− e−ε

ε
+

2e−ε

ε
−
∫ 1

0

2e−εxεdx

)

=
1

2
ε2

1 + e−ε

ε
− 2e−εx

−ε2

∣∣∣∣∣
1

0


=

1

2
ε2
(

1 + e−ε

ε
+

2e−ε − 2

ε2

)
Summing up the three terms, we get:

EP [log(P/Q)] =
1

2
ε− 1

2
εe−ε +

1

2
ε(1 + e−ε) + e−ε − 1 = ε− 1 + e−ε

The proof for the Gaussian Mechanism appears in Theorem 10.

C.2 KL, Linear-Bounded

Lemma 1. Let X be an instance space and φ be a vector of feature functions on X of length M . Let
lin be the class of functions:

lin = {aφ(x) + b|a ∈ RM , b ∈ R}
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Then, for any two distributions P and Q on X , we have:

KLH(P,Q) = sup
a∈RM

a>Ex∼P [φ(x)]− Ex∼Q[ea
>−1φ(x)]

KLlin(P,Q) = sup
a∈RM

a>Ex∼P [φ(x)]− logEx∼Q[ea
>φ(x)]

Proof. For KL-divergence, we have f(x) = x log(x). This means

f∗(s) = sup
x∈R

xs− x log x

The argument is maximized when x = es−1, so f∗(s) = es−1, and we obtain

KLH(P,Q) = sup
h∈H

Ex∼P [h(x)]− Ex∼Q[eh(x)−1]

Now, we plug lin intoH:

KLlin(P,Q) = sup
a∈RM ,b∈E

a>Ex∼P [φ(x)] + b− Ex∼Q[ea
>φ(x)+b−1]

Differentiating the objective with respect to b, we have that at the optimum:

1− eb−1Ex∼Q[ea
>φ(x)] = 0,

which means that the optimum b is equal to:

b = 1− logEx∼Q[ea
>φ(x)]

Plugging this in the objective, we get that:

KLH(P,Q) = sup
a∈RM

a>Ex∼P [φ(x)] + 1− logEx∼Q[ea
>φ(x)] + (Ex∼Q[ea

>φ(x)])−1Ex∼Q[ea
>φ(x)]

= sup
a∈RM

a>Ex∼P [φ(x)]− logEx∼Q[ea
>φ(x)]

The lemma follows.

Theorem 9 (Laplace mechanism under (lin,KL)). Let P = Lap(0, 1/ε) and Q = Lap(1, 1/ε).
Then,

KLlin(P,Q) = log

1−

(
1−
√

1 + ε2

ε

)2
+

√
1 + ε2 − 1

Proof. Recall that the density function of P (resp. Q) is ε
2e
−ε|x| (resp. ε

2e
−ε|x−1|). By Lemma 1,

computing the linear KL is equivalent to solving the following problem:

max
a

aEx∼P [x]−logEx∼Q[eax] = max
a
− log

(
ea

1− a2/ε2

)
, a ∈ [−ε, ε] = max

a
log(1−a2/ε2)−a, a ∈ [−ε, ε]

Note that the expression Ex∼Q[eax] blows up to∞ for a /∈ [−ε, ε], and hence the maximizer a has to
lie in [−ε, ε]. Taking the derivative and setting it to 0, we get:

−2a/ε2

1− a2/ε2
− 1 = 0,

which, after some algebra, becomes the quadratic equation:

a2 − 2a− ε2 = 0

The roots of this equation are: a = 1±
√

1 + ε2. The first root is more than ε, and hence we choose
a = 1−

√
1 + ε2 as the solution. Plugging this solution into the expression for KLlin, we get:

KLlin(P,Q) = log

1−

(
1−
√

1 + ε2

ε

)2
+

√
1 + ε2 − 1
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Theorem 10 (Gaussian mechanism under (lin)-KL). Let P = N (µ1, σ
2
1) and Q = N (µ2, σ

2
2).

Then,

KLlin(P,Q) =
(µ1 − µ2)2

2σ2
2

Proof. By definition,

KLlin(P,Q) = sup
a
aµ1 − log eaµ2+a2σ2

2/2 = sup
a
a(µ1 − µ2)− 1

2
a2σ2

2

Differentiating wrt a and setting the derivative to 0, the optimum is achieved at a = (µ1 − µ2)/σ2
2 , at

which the optimal value is (µ1 − µ2)2/2σ2
2 .

C.3 Renyi, Unbounded

Theorem 11 (Laplace Mechanism under α-Renyi). Let P and Q be i.i.d. Laplace distributions in d
dimensions with mean 0 (resp. v = (v1, v2, . . . , vd)) and parameter 1

ε . Then,

DR,α(P,Q) =
1

α− 1

d∑
i=1

log

((
1

2
+

1

4α− 2

)
evi(α−1)ε +

(
1

2
− 1

4α− 2

)
e−viαε

)

Proof. We first compute

Dα(P,Q) =
1

α2 − α

(∫
Rd

(
dP

dQ

)α
dQ− 1

)
We write the integral as a product. Let pi be the p.d.f. for the Lap(i, 1

ε ) distribution:∫
Rd

(
dP

dQ

)α
dQ =

∫
Rd

P (x)αQ(x)1−αdx

=

∫
Rd

(
d∏
i=1

p0(xi)
αpvi(xi)

1−α

)
dx

=

d∏
i=1

∫
R

p0(xi)
αpvi(xi)

1−αdxi

We will compute each integral in the product individually. For the first case, suppose vi > 0. We
now split the real line into three regions: I1 = [∞, 0], I2 = [0, vi], and I3 = [vi,∞]. Recall that
pi(x) = ε

2e
−|x−i|ε.∫ 0

−∞
p0(x)αpvi(x)1−αdx =

ε

2

∫ 0

−∞

(
exε

e(x−vi)ε

)α
e(x−vi)εdx

=
ε

2

∫ 0

−∞
eviαε−viε+xεdx =

1

2
evi(α−1)ε

∫ vi

0

p0(x)αpvi(x)1−αdx =
ε

2

∫ vi

0

(
e−xε

e(x−vi)ε

)α
e(x−vi)εdx

=
ε

2

∫ vi

0

e(1−2α)xε+vi(α−1)εdx =
1

2− 4α
evi(α−1)ε(evi(1−2α)ε − 1)∫ ∞

vi

p0(x)αpvi(x)1−α =
ε

2

∫ ∞
vi

(
e−xε

e(vi−x)ε

)α
e(vi−x)εdx

=
ε

2

∫ ∞
vi

e−viαε+viε−xεdx =
1

2
e−viαε∫

R

p0(x)αpvi(x)1−αdx =
1

2
evi(α−1)ε +

1

2
e−viαε +

1

2− 4α
(e−viαε − evi(α−1)ε)

=

(
1

2
+

1

4α− 2

)
evi(α−1)ε +

(
1

2
− 1

4α− 2

)
e−viαε
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When vi < 0, we get the same answer, with vi replaced by−vi. Let F (x) =
(

1
2 + 1

4α−2

)
e(α−1)|x|+(

1
2 −

1
4α−2

)
e−α|x|. We can write

Dα(P,Q) =
1

α2 − α

(
d∏
i=1

F (viε)− 1

)
(5)

The expression for DR,α(P,Q) follows easily.

Corollary 1. If α ≥ 1, then DR,α(P,Q) ≥ ε‖v‖1, where v = (v1, . . . , vd).

Proof. When α > 1, then e(α−1)|x| > e−α|x|. Thus, F (x), defined above, is lower bounded by
1
2e

(α−1)|x|. Plugging into Equation (5), we get Dα(P,Q) ≥ 1
α2−α

(
eε(α−1)‖v‖1 − 1

)
. The result for

DR,α(P,Q) follows easily.

Theorem 12 (Gaussian mechanism under α-Renyi). Let P and Q be i.i.d. Normal distributions in d
dimensions with mean 0 (resp. v = (v1, v2, . . . , vd)) and variance σ2. Then, DR,α(P,Q) =

α‖v‖22
2σ2 .

Proof. We will compute

Dα(P,Q) =
1

α2 − α

(∫
Rd

(
dP

dQ

)α
dQ− 1

)
Just like Theorem 11, we can write∫

Rd

(
dP

dQ

)α
dQ =

d∏
i=1

∫
R

p0(xi)
αpvi(xi)

1−αdxi

where pi(x) is the p.d.f. of N (i, σ2). Therefore,∫
R

p0(x)αpvi(x)1−αdx =
1√

2πσ2

∫ ∞
−∞

(
e−x

2/(2σ2)

e−(x−vi)2/(2σ2)

)α
e−(x−vi)2/(2σ2)dx

=
1√

2πσ2

∫ ∞
−∞

e(−(x+vi(α−1))2+v2i (α−1)2+v2i (α−1))/(2σ2)dx

= ev
2
i ((α−1)2+(α−1))/(2σ2) = ev

2
i (α2−α)/(2σ2)

Therefore,

Dα(P,Q) =
1

α2 − α

(
d∏
i=1

ev
2
i (α2−α)/(2σ2) − 1

)
=

1

α2 − α
(e‖v‖

2
2(α2−α)/(2σ2) − 1)

The result for DR,α(P,Q) follows immediately.

C.4 Renyi, Linear-Bounded

Lemma 2 (Non-private Release). Let A be a mechanism such that there exist two datasets D and D′
for which A(D) and A(D′) are different point masses. LetH be a function class that contains linear
functions. Then, DR,α(A(D), A(D′)) =∞.

Proof. Let P denote the distribution of A(D) and Q denote the distribution of A(D′). If we show
that DHα (P,Q) = ∞, then certainly DHR,α(P,Q) = ∞. Observe that DHα (P,Q) ≥ Dlinα (P,Q) by
assumption. Hence, we are done if we show that Dlinα (P,Q) =∞.

Dlinα (P,Q) ≥ sup
a,b∈R

Ex∼P [ax+ b]− CαEx∼Q[|ax+ b|α/(α−1)]

Suppose P and Q are point masses at x = p and x = q respectively. Then, there exists an a and a b
such that ap+ b > 0 and aq + b = 0. Pick any λ > 0. Plugging into the above,

Dlinα (P,Q) ≥ λ(ap+ b)− λ(aq + b) = λ(ap+ b)

Observe that as ap+ b > 0 and is fixed with λ, λ(ap+ b)→∞ as λ→∞. The lemma follows.
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Lemma 3. Let X be an instance space and φ be a vector of feature functions on X of length M .
Then, for any two distributions P and Q on X , we have:

DHα (P,Q) = sup
h∈H

Ex∼P [h(x)]− CαEx∼Q[|h(x)|α/(α−1)]− 1

α2 − α

Dlinα (P,Q) = sup
a∈Rn,b∈R

Ex∼P [aTx+ b]− CαEx∼Q[|aTx+ b|α/(α−1)]− 1

α2 − α

where Cα = (α−1)α/(α−1)

α .

Proof. We need to compute f∗(s) = supx∈R xs− f(x) for f = |x|α−1
α2−α Setting the derivative of f

to zero, we get:

s− sign(x)
|x|α−1

α− 1
= 0 =⇒ x = (|s|(α− 1))1/(α−1)

Therefore,

f∗(s) =
1

α
(|s|(α− 1))α/(α−1) +

1

α2 − α
= Cα|s|+

1

α2 − α
This allows us to derive the expressions for Dlinα and DHα by plugging into

DHα (P,Q) = sup
h∈H

Ex∼P [h(x)]− Ex∼Q[f∗(h(x))]

Lemma 4. Suppose P is a d-dimensional r.v. such that sign(Ex∼P [x]) = (e1, e2, . . . ed) and Q is
a d-dimemsional r.v. with independent coordinates and marginals symmetric about 0. Then, the
variational form of Dlinα (P,Q) can be written as

sup
a∈Rd,sign(ai)=ei,b∈R,b≥0

Ex∼P [ax] + b− CαEx∼Q[|ax+ b|α/(α−1)]− 1

α2 − α

where Cα = (α−1)α/(α−1)

α .

Proof. By Lemma 3,

Dlinα (P,Q) = sup
a∈Rd,b∈R

Ex∼P [aTx] + b− CαEx∼Q[|aTx+ b|α/(α−1)]− 1

α2 − α
(6)

Let a = (a1, a2, . . . , ad). The distribution of |aTQ + b| is determined only by the magnitude of
each ai, not its sign, because of the symmetry of Q. The sign of b does not matter, either, as
|aTQ − b| = |(−a)TQ + b| = |aTQ + b|. Therefore, (6) achieves its maximum value when
sign(ai) = ei and b > 0, and we are done.

Lemma 5. The function f(a) = a−Xaα/(α−1) has a global maximum of

(α− 1)α−1

ααXα−1

Proof. We observe that f(a) is concave down over all real numbers. Its derivative vanishes when
a = (α−1)α−1

αα−1Xα−1 , and because of the first observation, this is the global maximum. This is equal to

(α− 1)α−1

αα−1Xα−1
− (α− 1)α

ααXα−1
=

(α− 1)α−1

ααXα−1
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Theorem 13. (Symmetric Distributions under lin α-Renyi): Suppose P = X and Q = X + v where
X is a d-dimensional r.v. consisting of d i.i.d samples from an underlying distribution Y , v ∈ Rd,
and Y is symmetric around 0 such that E[|Y |α/(α−1)] = K. Then,

DlinR,α(P,Q) ≤ 1

α− 1
log

(
1 +

‖v‖αα
(0.5dK)α−1

)
Proof. We apply Lemma 4. For simplicity, let A = α

α−1 . Then,

Dlinα (P,Q) = sup
a∈Rd,sign(ai)=sign(vi),b∈R,b≥0

aT v + b− CαEx∼Q[|aTx+ b|A]− 1

α2 − α
(7)

Because Q is symmetric, we can write

Ex∼Q[|aTx+ b|A] ≥ 1

2d
Ex∼Q|sign(x)=sign(ai)[|a

Tx+ b|A]

≥ 1

2d
Ex∼Q|sign(xi)=sign(ai)

[
d∑
i=1

(aixi)
A

]
+ bA

=
1

2d

d∑
i=1

Exi∼Y |sign(xi)=sign(ai)[(aixi)
A] + bA

=
1

2d

d∑
i=1

|ai|AExi∼Y |sign(xi)=sign(ai)[|xi|
A] + bA

=
1

2d

d∑
i=1

|ai|AK + bA

Here, the first step comes from discarding the parts of the expectation where sign(ai) 6= sign(x)
which is possible because the argument of the expectaion is always positive. Finally, the set that
remains has measure measure 1

2d
, so we normalize accordingly. The second step comes from the

fact that |aTx + b|A >
∑d
i=1(aixi)

A + bA when b, aixi > 0; the third comes from linearity of
expecation; the fourth from the fact that ai and xi have the same sign; and the fifth from the fact that
Y is symmetric. We can now plug into (7) and simplify.

Dlinα (P,Q) ≤ sup
a∈Rd,sign(ai)=sign(vi),b∈R,b≥0

aT v + b− Cα
1

2d

d∑
i=1

|ai|AK − CαbA −
1

α2 − α

≤
d∑
i=1

sup
ai∈R,sign(ai)=sign(vi)

aivi −
CαK

2d
|ai|A + sup

b∈R,b>0
b− CαbA −

1

α2 − α

≤
d∑
i=1

|vi| sup
ai∈R,ai>0

ai −
CαK

2d|vi|
aAi + sup

b∈R,b>0
b− CαbA −

1

α2 − α

=

d∑
i=1

|vi|
(α− 1)α−1

αα
|vi|α−1(2d)α−1

Cα−1
α Kα−1

+
(α− 1)α−1

ααCα−1
α

− 1

α2 − α

=

d∑
i=1

|vi|
1

α2 − α
|vi|α−1(2d)α−1

Kα−1
+

1

α2 − α
− 1

α2 − α

=
2d(α−1)‖v‖αα

(α2 − α)Kα−1

Here, the second line comes from the fact that a sup of a sum is at most the sum of sups, the third is
from pulling out vi from the sup and being careful about signs, the fourth from applying Lemma 5,
the fifth from plugging in for the Cα term and simplification, and the sixth from writing the answer
in terms of norms.
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Corollary 2. For all α > 2, the following are true:

DlinR,α(N (0, σ2Id),N (v, σ2Id)) ≤
1

α− 1
log

(
1 +

‖v‖αα
(0.5d ×

√
2/π)α−1σα

)

DlinR,α(Lapd(0, 1/ε), Lapd(v, 1/ε)) ≤
1

α− 1
log

(
1 +

‖v‖ααεα

(0.5d)α−1

)
Proof. When α ≥ 2, α

α−1 is between 1 and 2, a rather small range. If Y = N (0, σ2), then

K = σα/(α−1)E[|Ỹ |α/(α−1)] ≥ σα/(α−1) inf
1≤γ≤2

E[|Ỹ |γ ]

where Ỹ = N (0, 1). E[|Ỹ |γ ] is minimized when γ = 1, and we get K ≥ σα/(α−1)
√

2
π ≈

0.79σα/(α−1). We then apply Theorem 13.

If Y = Lap(0, 1
ε ), then

K = εα/(α−1)E[|Ỹ |α/(α−1)] ≥ 1

εα/(α−1)
inf

1≤γ≤2
E[|Ỹ |γ ]

where Ỹ = Lap(0, 1). E[|Ỹ |γ ] is minimized when γ = 1, and we get K ≥ 1
εα/(α−1) . We then apply

Theorem 13.

Proof. (Of Theorem 5) Let x = (x1, x2, . . . , xn), and the columns of A be (a1, a2, . . . , an). Chang-
ing D in one place results in a change by 1 in at most one xi. Thus, Ax =

∑n
i=1 xiai has L1

sensitivity ‖A‖1. We can use the multidimensional Laplace mechanism (Corollary 2) which allows
us to release ã = Ax+ ‖A‖1Laps(0, 1/ε) offeringH-bounded privacy with parameter

1

α− 1
log

(
1 + ‖v‖αα2s(α−1) εα

‖v‖α1

)
where H is the set of linear functions : Rs → R. Because ‖v‖α ≤ ‖v‖1, we can simplify this
to 1

α−1 log(1 + 2(α−1)eεα). We let G be the set of linear functions Rs → Rd, H the set of linear
functions Rs → R, and I the set of linear functions Rd → R. Notice that WA† ∈ G and i ◦ g ∈ H
for all i ∈ I, g ∈ G. Relasing MA(W,x, ε) = WA†ã then satisfiesH- capacity bounded privacy by
post-processing.

D Generalization

Proof. (Of Theorem 6) Let S = {x1, . . . , xn} where xi are drawn iid from an underlying data
distribution D. Let Si→x denote S with its i-th element xi replaced by x. Then, we have:

ES∼Dn,M

(
1

n

n∑
i=1

qS(xi)− Ex∼D[qS(x)]

)
= ES∼Dn

1

n

n∑
i=1

(EM [qS(xi)]− Ex∼D,M [qS(x)])

= ES∼Dn
1

n

n∑
i=1

(EM [qS(xi)]− Ex∼D,M [qSi→x(xi)])

Here the first step follows from algebra, and the second step follows from observing that when
S ∼ Dn, x ∼ D, qS(x) has the same distribution as when S ∼ Dn, x ∼ D, qSi→x(xi). We pick any
i. The term:

EM [qS(xi)]− EM [qSi→x(xi)] = Eq∼M(S)[q(xi)]− Eq∼M(Si→x)[q(xi)]

= Eq∼M(S)[hxi(q)]− Eq∼M(Si→x)[hxi(q)]

≤ sup
h∈H

Eq∼M(S)[h(q)]− Eq∼M(Si→x)[h(q)]

≤ ε

Here the first step follows from simplifying notation, the second from the definition of hxi , the third
from the fact that H includes hxi and the fourth from the fact that IPMH(M(S),M(Si→x)) ≤ ε.
The theorem follows from combining this with Theorem 7.
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Proof. (Of Theorem 7) IfH is translation invariant and convex, then, we can write theH-restricted
KL divergence between any two distributions P and Q as follows: [21, 9]

KLH(P,Q) = inf
P̃

KL(P̃ , Q) + sup
h∈H

Ex∼P [h(x)]− Ex∼P̃ [h(x)] (8)

Let P ′ be the P̃ that achieves the infimum in (8). Then, from Pinsker Inequality, the left hand side
of (8) is at least:

1

2
(TV (P ′, Q))2 + sup

h∈H
Ex∼P [h(x)]− Ex∼P ′ [h(x)]

Let F be the class of all functions with range [−1, 1]; by definition of the total variation distance, and
becauseH ⊆ F , we have:

IPMF (P,Q) = 2TV (P,Q) ≥ IPMH(P,Q)

Therefore KLH(P,Q) is at least

≥ 1

8
(IPMH(P ′, Q))2 + IPMH(P, P ′)

≥ 1

16
(IPMH(P ′, Q))2 + (IPMH(P, P ′))2

≥ 1

64
(IPMH(P ′, Q) + IPMH(P, P ′))2

≥ 1

64
(IPMH(P,Q))2

Here the first step follows from Lemma 6, and the second step because as the range of any h is
[−1, 1], IPMH(P, P ′) ≤ 2, and hence IPMH(P, P ′) ≥ 1

2 (IPMH(P, P ′))2. The third step follows
because for any a and b, a

2

2 + b2 ≥ 1
8 (a+ b)2, and the final step from the triangle inequality of IPMs.

The theorem thus follows.

Lemma 6. LetH be a function class that is closed under negation. Then, for any two distributions
P and P ′,

IPMH(P, P ′) = sup
h∈H

Ex∼P [h(x)]− Ex∼P ′ [h(x)]

Proof. Observe that IPMH(P, P ′) ≥ suph∈H Ex∼P [h(x)]− Ex∼P ′ [h(x)] by definition.

Now let h′ be function in H that achieves the supremum in IPMH(P, P ′). If Ex∼P [h′(x)] ≥
Ex∼P [h′(x)], then

sup
h∈H

Ex∼P [h(x)]− Ex∼P ′ [h(x)] ≥ Ex∼P [h′(x)]− Ex∼P ′ [h′(x)] = IPMH(P, P ′),

If not, then, Ex∼P [−h′(x)] ≥ Ex∼P [−h′(x)], and

sup
h∈H

Ex∼P [h(x)]− Ex∼P ′ [h(x)] ≥ Ex∼P [−h′(x)]− Ex∼P ′ [−h′(x)] = IPMH(P, P ′)

The lemma follows.

21


	Introduction
	Preliminaries
	Privacy
	Divergences and their Variational Forms

	Capacity Bounded Differential Privacy
	Properties
	Privacy Mechanisms
	Algorithmic Generalization
	Conclusion
	Analysis of Gaussian Mechanism
	Post-Processing, Convexity, and Composition
	Composition (H-bounded Renyi, KL Privacy only)

	Mechanisms
	KL, Unbounded
	KL, Linear-Bounded
	Renyi, Unbounded
	Renyi, Linear-Bounded

	Generalization

