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Abstract

The vast majority of processors in the world are actually microcontroller units
(MCUs), which find widespread use performing simple control tasks in applications
ranging from automobiles to medical devices and office equipment. The Internet
of Things (IoT) promises to inject machine learning into many of these every-day
objects via tiny, cheap MCUs. However, these resource-impoverished hardware
platforms severely limit the complexity of machine learning models that can be
deployed. For example, although convolutional neural networks (CNNs) achieve
state-of-the-art results on many visual recognition tasks, CNN inference on MCUs
is challenging due to severe memory limitations. To circumvent the memory
challenge associated with CNNs, various alternatives have been proposed that do
fit within the memory budget of an MCU, albeit at the cost of prediction accuracy.
This paper challenges the idea that CNNs are not suitable for deployment on
MCUs. We demonstrate that it is possible to automatically design CNNs which
generalize well, while also being small enough to fit onto memory-limited MCUs.
Our Sparse Architecture Search method combines neural architecture search with
pruning in a single, unified approach, which learns superior models on four popular
IoT datasets. The CNNs we find are more accurate and up to 7.4× smaller than
previous approaches, while meeting the strict MCU working memory constraint.

1 Introduction

The microcontroller unit (MCU) is a truly ubiquitous computer. MCUs are self-contained single-chip
processors which are small (∼ 1cm2), cheap (∼ $1), and power efficient (∼ 1mW). Applications
are extremely broad, but often include seemingly banal tasks such as simple control and sequencing
operations for everyday devices like washing machines, microwave ovens, and telephones. The key
advantage of MCUs over application specific integrated circuits is that they are programmed with
software and can be readily updated to fix bugs, change functionality, or add new features. The
short time to market and flexibility of software has led to the staggering popularity of MCUs. In
the developed world, a typical home is likely to have around four general-purpose microprocessors.
In contrast, the number of MCUs is around three dozen [46]. A typical mid-range car may have
about 30 MCUs. Public market estimates suggest that around 50 billion MCU chips will ship in
2019 [1], which far eclipses other chips like graphics processing units (GPUs), whose shipments
totalled roughly 100 million units in 2018 [2].

MCUs can be highly resource constrained; Table 1 compares MCUs with bigger processors. The
broad proliferation of MCUs relative to desktop GPUs and CPUs stems from the fact that they are
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Table 1: Processors for ML inference: estimated characteristics to indicate the relative capabilities.
Processor Usecase Compute Memory Power Cost
Nvidia 1080Ti GPU Desktop 10 TFLOPs/Sec 11 GB 250 W $700
Intel i9-9900K CPU Desktop 500 GFLOPs/Sec 256 GB 95 W $499
Google Pixel 1 (Arm CPU) Mobile 50 GOPs/Sec 4 GB ~5 W –
Raspberry Pi (Arm CPU) Hobbyist 50 GOPs/Sec 1 GB 1.5 W –
Micro Bit (Arm MCU) IoT 16 MOPs/Sec 16 KB ~1 mW $1.75
Arduino Uno (Microchip MCU) IoT 4 MOPs/Sec 2 KB ~1 mW $1.14

orders of magnitude cheaper (∼ 600×) and less power hungry (∼ 250, 000×). In recent years, MCUs
have been used to inject intelligence and connectivity into everything from industrial monitoring
sensors to consumer devices, a trend commonly referred to as the Internet of Things (IoT) [10, 22, 43].
Deploying machine learning (ML) models on MCUs is a critical part of many IoT applications,
enabling local autonomous intelligence rather than relying on expensive and insecure communication
with the cloud [9]. In the context of supervised visual tasks, state-of-the-art (SOTA) ML models
typically take the form of convolutional neural networks (CNNs) [35]. While tools for deploying
CNNs on MCUs have started to appear [7, 6, 4], the CNNs themselves remain far too large for
the memory-limited MCUs commonly used in IoT devices. In the remainder of this work, we use
MCU to refer specifically to IoT-sized MCUs, like the Micro Bit. In contrast to this work, the
majority of preceding research on compute/memory efficient CNN inference has targeted CPUs and
GPUs [26, 11, 61, 62, 45, 54, 49].

To illustrate the challenge of deploying CNNs on MCUs, consider the seemingly simple task of
deploying the well-known LeNet CNN on an Arduino Uno to perform MNIST character recogni-
tion [38]. Assuming the weights can be quantized to 8-bit integers, 420 KB of memory is required to
store the model parameters, which exceeds the Uno’s 32 KB of read-only (flash) memory. An addi-
tional 391 (resp. 12) KB of random access memory (RAM) is then required to store the intermediate
feature maps produced by LeNet under memory model (5) (resp. (6)), which far exceeds the Uno’s
2 KB RAM. The dispiriting implication is that it is not possible to perform LeNet inference on the
Uno. This has led many to conclude that CNNs should be abandoned on constrained MCUs [36, 24].
Nevertheless, the sheer popularity of MCUs coupled with the dearth of techniques for leveraging
CNNs on MCUs motivates our work, where we take a step towards bridging this gap.

Deployment of CNNs on MCUs is challenging along multiple dimensions, including power con-
sumption and latency, but as the example above illustrates, it is the hard memory constraints that
most directly prohibit the use of these networks. MCUs typically include two types of memory. The
first is static RAM, which is relatively fast, but volatile and small in capacity. RAM is used to store
intermediate data. The second is flash memory, which is non-volatile and larger than RAM; it is
typically used to store the program binary and any constant data. Flash memory has very limited
write endurance, and is therefore treated as read-only memory (ROM). The two MCU memory types
introduce the following constraints on CNN model architecture:

C1 : The maximum size of intermediate feature maps cannot exceed the RAM capacity.

C2 : The model parameters must not exceed the ROM (flash memory) capacity.

To the best of our knowledge, there are currently no CNN architectures or training procedures
that produce CNNs satisfying these memory constraints for MCUs with less than 2 KB RAM and
deployed using standard toolchains [36, 24]. This is true even ignoring the memory required for the
runtime (in RAM) and the program itself (in ROM). The severe memory constraints for inference on
MCUs have pushed research away from CNNs and toward simpler classifiers based on decision trees
and nearest neighbors [36, 24]. We demonstrate for the first time that it is possible to design CNNs
that are at least as accurate as Kumar et al. [36], Gupta et al. [24] and at the same time satisfy C1-C2,
even for devices with just 2 KB of RAM. We achieve this result by designing CNNs that are heavily
specialized for deployment on MCUs using a method we call Sparse Architecture Search (SpArSe).
The key insight is that combining neural architecture search (NAS) and network pruning allows us to
balance generalization performance against tight memory constraints C1-C2. Critically, we enable
SpArSe to search over pruning strategies in conjunction with conventional hyperparameters around
morphology and training. Pruning enables SpArSe to quickly evaluate many sub-networks of a given
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input

MaxPool 1x1x3

Conv2D 5x5x [11/50]
 ModelSize [286/1300]

 WorkingMemory [1310/2324]

MaxPool 2x2
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(b) Acc=73.58%, MS = 0.61 KB, WM = 14.3 KB

Figure 1: Model architectures found with best test accuracy on CIFAR10-binary, while optimizing for
(a) 2KB for both MODELSIZE (MS) and WORKINGMEMORY (WM), and (b) minimum MS. Each
node in the graph is annotated with MS and WM using the model in (5), and the values in square
brackets show the quantities before and after pruning, respectively. Optimizing for WM yields more
than 11.2x WM reduction. Note that pruning has a considerable impact on the CNN.

network, thereby expanding the scope of the overall search. While previous NAS approaches have
automated the discovery of performant models with reduced parameterizations, we are the first to
simultaneously consider performance, parameter memory constraints, and inference-time working
memory constraints.

We use SpArSe to uncover SOTA models on four datasets, in terms of accuracy and model size,
outperforming both pruning of popular architectures and MCU-specific models [36, 24]. The multi-
objective approach of SpArSe leads to new insights in the design of memory-constrained architectures.
Fig. 1a shows an example of a discovered architecture which has high accuracy, small model size,
and fits within 2KB RAM. By contrast, we find that optimizing networks solely to minimize the
number of parameters (as is typically done in the NAS literature, e.g., [14]), is not sufficient to
identify networks that minimize RAM usage. Fig. 1b illustrates one such example.

1.1 Related work

CNNs designed for resource constrained inference have been widely published in recent years
[49, 30, 63], motivated by the goal of enabling inference on mobile phone platforms [60, 29].
Advances include depth-wise separable layers [50], deployment-centric pruning [62, 45], quantization
[58, 21], and matrix decomposition techniques [55]. More recently, NAS has been leveraged to
achieve even more efficient networks on mobile phone platforms [11, 52]. In a complimentary line
of work, Gural and Murmann [25] propose memory-optimal direct convolutions (MODC). Unlike
MODC, SpArSe yields CNNs that can be deployed with off-the-shelf tools and is shown to work on
an array of IoT datasets.

Although mobile phones are more constrained than general-purpose CPUs and GPUs, they still have
many orders of magnitude more memory capacity and compute performance than MCUs (Table 1). In
contrast, little attention has been paid to running CNNs on MCUs, which represent the most numerous
compute platform in the world. Kumar et al. [36] propose Bonsai, a pruned shallow decision tree with
non-axis aligned decision boundaries. Gupta et al. [24] propose a compressed k-nearest neighbors
(kNN) approach (ProtoNN), where model size is reduced by projecting data into a low-dimensional
space, maintaining a subset of prototypes to classify against, and pruning parameters. We build upon
Kumar et al. [36], Gupta et al. [24] by targeting the same MCUs, but using NAS to find CNNs which
are at least as small and more accurate.

Algorithms for identifying performant CNN architectures have received significant attention recently
[64, 14, 11, 40, 23, 15, 39]. The approaches closest to SpArSe are Stamoulis et al. [52], Elsken et al.
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[14]. In Stamoulis et al. [52], the authors optimize the kernel size and number of feature maps of
the MBConv layers in a MobileNetV2 backbone [49] by expressing each of the layer choices as a
pruned version of a superkernel. In some ways, Stamoulis et al. [52] is less a NAS algorithm and
more of a structured pruning approach, given that the only allowed architectures are reductions of
MobileNetV2. SpArSe does not constrain architectures to be pruned versions of a baseline, which
can be too restrictive of an assumption for ultra small CNNs. SpArSe is not based on an existing
backbone, giving it greater flexibility to extend to different problems. Like Elsken et al. [14], SpArSe
uses a form of weight sharing called network morphism [59] to search over architectures without
training each one from scratch. SpArSe extends the concept of morphisms to expedite training and
pruning CNNs. Because Elsken et al. [14] seek compact architectures by using the number of network
edges as one of the objectives in the search, potential gains from weight sparsity are ignored, which
can be significant (Section 3 [18, 19]). Moreover, since SpArSe optimizes both the architecture and
weight sparsity, Elsken et al. [14] can be seen as a special case of SpArSe.

2 SpArSe framework: CNN design as multi-objective optimization

Our approach to designing a small but performant CNN is to specify a multi-objective opti-
mization problem that balances the competing criteria. We denote a point in the design space
as Ω = {α, ϑ, ω, θ}, in which: α = {V,E} is a directed acyclic graph describing the network connec-
tivity, where V and E denote the set of graph vertices and edges; ω denotes the network weights; ϑ
represents the operations performed at each edge, i.e. convolution, pooling, etc.; and θ are hy-
perparameters governing the training process. The vertices vi, vj ∈ V represent network neurons,
which are connected to each other if (vi, vj) ∈ E through an operation ϑij parameterized by ω. The
competing objectives in the present work of targeting constrained MCUs are:

f1(Ω) = 1− VALIDATIONACCURACY(Ω) (1)
f2(Ω) = MODELSIZE(ω) (2)
f3(Ω) = max

l∈1,...,L
WORKINGMEMORYl(Ω) (3)

where VALIDATIONACCURACY(Ω) is the accuracy of the trained model on validation data,
MODELSIZE(ω), or MS, is the number of bits needed to store the model parameters ω,
WORKINGMEMORYl(Ω) is the working memory in bits needed to compute the output of layer l,
with the maximum taken over the L layers to account for in-place operations. We refer to (3) as the
working memory (WM) for Ω. There is no single Ω which minimizes all of (1)− (3) simultaneously.
For instance, (1) prefers large networks with many non-zero weights whereas (2) favors networks with
no weights. Likewise, (3) prefers configurations with small intermediate representations, whereas
(2) has no preference as to the size of the feature maps. Therefore, in the context of CNN design,
it is more appropriate to seek the set of Pareto optimal configurations, where Ω? is Pareto optimal
if fk(Ω?) ≤ fk(Ω) ∀k,Ω and ∃j : fj(Ω

?) < fj(Ω) ∀Ω 6= Ω?. The concept of Pareto optimality is
appealing for multi-objective optimization, as it allows the ready identification of optimal designs
subject to arbitrary constraints in a subset of the objectives.

2.1 Search space

Our search space is designed to encompass CNNs of varying depth, width, and connectivity. Each
graph consists of optional input downsampling followed by a variable number of blocks, where
each block contains a variable number of convolutional layers, each parametrized by its own kernel
size, number of output channels, convolution type, and padding. We consider regular, depthwise
separable, and downsampled convolutions, where we define a downsampled convolution to be a
1 × 1 convolution that downsamples the input in depth, followed by a regular convolution. Each
convolution is followed by optional batch-normalization, ReLU, and spatial downsampling through
pooling of a variable window size. Each set of two consecutive convolutions has an optional residual
connection. Inspired by the decision tree approach in Kumar et al. [36], we let the output layer use
features at multiple scales by optionally routing the output of each block to the output layer through a
fully connected (FC) layer (see Fig. 1a). All of the FC layer outputs are merged before going through
an FC layer that generates the output. The search space also includes parameters governing CNN
training and pruning. The Appendix contains a complete description of the search space.
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2.2 Quantifying memory requirements

The VALIDATIONACCURACY(Ω) metric is readily available for models via a held-out validation set
or by cross-validation. However, the memory constraints of interest in this work demand more careful
specification. For simplicity, we estimate the model size as

MODELSIZE(ω) ≈ ‖ω‖0 . (4)

For working memory, we consider two different models:

WORKINGMEMORY1
l (Ω) ≈ ‖xl‖0 + ‖ωl‖0 (5)

WORKINGMEMORY2
l (Ω) ≈ ‖xl‖0 + ‖yl‖0 (6)

where xl, yl, and ωl are the input, output, and weights for layer l, respectively. The assumption in (5)
is that the inputs to layer l and the weights need to reside in RAM to compute the output, which is
consistent with deployment tools like [7] which allow layer outputs to be written to an SD card. The
model in (6) is also a standard RAM usage model, adopted in [8], for example. For merge nodes that

sum two vector inputs x1l and x2l , we set xl =
[(
x1l
)T (

x2l
)T ]T in (5)-(6). The reliance of (4)-(6)

on the `0 norm is motivated by our use of pruning to minimize the number of non-zeros in both ω and
{xl}Ll=1, which is also the compression mechanism used in related work [36, 24]. Note that (4)-(6)
are reductive to varying degrees. However, since SpArSe is a black-box optimizer, the measures in
(4)-(6) can be readily updated as MCU deployment toolchains mature.

2.3 Neural network pruning

Pruning [37] is essential to MCU deployment using SpArSe, as it heavily reduces the model size and
working memory without significantly impacting classification accuracy. Pruning is a procedure for
zeroing out network parameters ω and can be seen as a way to generate a new set of parameters ω̄
that have lower ‖ω̄‖0. We consider both unstructured and structured, or channel [27], pruning, where
the difference is that the latter prunes away entire groups of weights corresponding to output feature
maps for convolution layers and input neurons for FC layers. Both forms of pruning reduce ‖ω‖0
and, consequently, (4)-(5). Structured pruning is critical for reducing (5)-(6) because it provides a
mechanism for reducing the size of layer inputs. We use Sparse Variational Dropout (SpVD) [44] and
Bayesian Compression (BC) [42] to realize unstructured and structured pruning, respectively. Both
approaches assume a sparsity promoting prior on the weights and approximate the weight posterior
by a distribution parameterized by φ. See the Appendix for a description of SpVD and BC. Notably,
φ contains all of the information about the network weight values as well as which weights to prune.

2.4 Multi-objective Bayesian optimization

SpArSe consists of three stages, where each stagem samples Tm configurations. At iteration n, a new
configuration Ωn is generated by the multi-objective Bayesian optimizer (MOBO) with probability ρm
and uniformly at random with probability 1− ρm. We adopt the combination of model-based and
entirely random sampling from [17] to increase search space coverage. The optimizer considers
candidates which are morphs of previous configurations and returns both the new and reference
configurations (Section 2.5). The parameters of the new architecture are then inherited from the
reference before being retrained and pruned.

SpArSe uses a MOBO based on the idea of random scalarizations [47]. The MOBO approach
is appealing as it builds flexible nonparametric models of the unknown objectives and enables
reasoning about uncertainty in the search for the Pareto frontier. A scalarized objective is given by
g (Ω) = maxk∈1,...,K λkfk(Ω), where λk is drawn randomly. Choosing the domain of the prior
on λk allows the user to specify preferences about the region of the Pareto frontier to explore.
For example, IoT practitioners may care about models with less than 1000 parameters. Since the
functional form of fk(Ω) is unknown in practice, it is modeled by a Gaussian process [48] with a
kernel κ (·, ·) that supports the types of variables included in Ω, i.e., real-valued, discrete, categorical,
and hierarchically related variables [53, 20]. A new Ωn is sampled by minimizing g (·) through
Thompson sampling. This MOBO yields better coverage of the Pareto frontier than the deterministic
scalarization methods used in [11, 52].
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Figure 2: SpArSe results from minimization of (1− VALIDATIONACCURACY(Ω)) ,MODELSIZE(ω).

2.5 Network morphism

Evaluating each configuration Ωn from a random initialization is slow, as evidenced by early NAS
works which required thousands of GPU days [64, 65]. Search time can be reduced by constraining
each proposal to be a morph of a reference Ωr ∈

{
Ωj
}n−1
j=0

[14]. Loosely speaking, we say that Ωn

is a morph of Ωr if most of the elements in Ωn are identical to those in Ωr. The advantage of
using morphism to generate Ωn is that most of φn can be inherited from φr, where φr denotes
the weight posterior parameters for configuration Ωr. Initializing φn in this way means that Ωn

inherits knowledge about the value and pruning mask for most of its weights. Compared to running
SpVD/BC from scratch, morphisms enable pruning proposals using 2-8× fewer epochs, depending
on the dataset. Further details on morphism are given in the Appendix, including allowed morphs.

Because our search space includes such a diversity of parameters, including architectural parameters,
pruning hyperparameters, etc., we find it helpful to perform the search in stages, where each successive
stage increasingly limits the set of possible proposals. This coarse-to-fine search enables exploring
decisions at increasing granularity, to wit: Stage 1) A candidate configuration can be generated
by applying modifications to any of {Ωr}n−1r=1 , Stage 2) The allowable morphs are restricted to the
pruning parameters, Stage 3) The reference configurations are restricted to the Pareto optimal points.

3 Results

We report results on a variety of datasets: MNIST (55e3, 5e3, 10e3) [38], CIFAR10 (45e3, 5e3, 10e3)
[34], CUReT (3704, 500, 1408) [57], and Chars4k (3897, 500, 1886) [16], corresponding to classi-
fication problems with 10, 10, 61, and 62 classes, respectively, with the training/validation/test set
sizes provided in parentheses. To match the setup in [36], we also report on binary versions of these
datasets, meaning that the classes are split into two groups and re-labeled. The only pre-processing
we perform is mean subtraction and division by the standard deviation. Experiments were run on four
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Table 2: Dominating configurations for parameter minimization experiment. SpArSe models are
listed on top and the competing method on bottom. SpArSe finds CNNs that are more accurate and
have fewer parameters than competing methods. The amount of time spent obtaining each dominating
configuration is reported in GPU days (GPUD).

MNIST CIFAR10-binary CUReT Chars4k

A
cc

‖ω
‖ 0

G
PU

D

A
cc

‖ω
‖ 0

G
PU

D

A
cc

‖ω
‖ 0

G
PU

D

A
cc

‖ω
‖ 0

G
PU

D

Bonsai 97.24
97.01

510
2.15e4

11 73.08
73.02

487
512

1 96.45
95.23

8.5e3
2.9e4

1 67.82
58.59

1.7e3
2.6e4

1

Bonsai (16 kB) – – – 76.66
76.64

1.4e3
4.1e3

9 – – – – – –

ProtoNN 96.84
95.88

476
1.6e4

11 76.56
76.35

1.4e3
4.1e3

10 96.45
94.44

8.5e3
1.6e4

1 – – –

GBDT 98.78
97.90

804
1.5e6

11 77.90
77.19

1.6e3
4e5

8 96.45
90.81

8.5e3
6.1e5

1 67.82
43.34

1.7e3
2.5e6

1

kNN 96.84
94.34

476
4.71e7

11 76.34
73.70

1.4e3
2e7

10 96.45
89.81

8.5e3
2.6e6

2 67.82
39.32

1.7e3
1.7e6

1

RBF-SVM 97.42
97.30

569
1e7

10 81.77
81.68

3.2e3
1.6e7

3 97.58
97.43

2.2e4
2.3e6

2 67.82
48.04

1.7e3
2e6

1

LeNet + SpVD 99.16
99.10

1e3
1.8e3

8 75.35
75.09

1.4e3
1.6e5

10 – – – – – –

MODC 99.17
99.15

1.45e3
3e3

1 – – – – – – – – –

NVIDIA RTX 2080 GPUs. We compare against previous SOTA works: Bonsai [36], ProtoNN [24],
Gradient Boosted Decision Tree Ensemble Pruning [12], kNN, radial basis function support vector
machine (SVM), and MODC [25]. We do not compare against previous NAS works because they
have not addressed the memory-constrained classification problem addressed here.

3.1 Models optimized for number of parameters

First, we address C2 by showing that SpArSe finds CNNs with higher accuracy and fewer parameters
than previously published methods. We use unstructured pruning and optimize {fk (Ω)}2k=1. Fig. 2
shows the Pareto curves for SpArSe and confirms that it finds smaller and more accurate models on
all datasets. For each competing method, we also report the SpArSe-obtained configuration which
attains the same or higher test accuracy and minimum number of parameters, which we term the
dominating configuration. Results are shown in Table 2. To confirm that SpArSe learns non-trivial
solutions, we compare with applying SpVD pruning to LeNet in Fig. 2 and Table 2.

3.2 Models optimized for total memory footprint

Next, we demonstrate that SpArSe resolves C1-C2 by finding CNNs that consume less device
memory than Bonsai [36]. We use structured pruning and optimize {fk (Ω)}3k=1. We quantize
weights and activations to one byte to yield realistic memory calculations and for fair comparison
with Bonsai [5]. Table 3 compares SpArSe to Bonsai in terms of accuracy, MS, and WM under
the model in (5). For all datasets and metrics, SpArSe yields CNNs which outperform Bonsai. For
MNIST, Bonsai reports performance on a binarized dataset, whereas we use the original ten-class
problem, i.e., we solve a significantly more complex problem with fewer resources. Table 4 reports
results for WM model (6), showing that SpArSe outperforms Bonsai across all metrics and datasets,
with the exception that Bonsai yields a model with smaller MS for CIFAR10-binary.

3.3 What SpArSe reveals about pruning

Pruning can be considered a form of NAS, where ω̄ represents a sub-network of {α, ϑ, ω} given
by {{V,Ep} , ϑ, ω}, and Ep ⊆ E contains only the edges for which ω̄ is non-zero [18]. The question
then becomes, should one look for Ep directly or begin with a large edge-set E and prune it? There
is conflicting evidence whether the same validation accuracy can be achieved by both approaches
[18, 19, 41]. Importantly, previous NAS approaches have focused on searching for Ep directly by
using |E| as one of the optimization objectives [14]. On the other hand, SpArSe is able to explore both
strategies and learn the optimal interaction between network graph α, operations ϑ, and pruning. Fig.
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Table 3: Comparison of Bonsai with SpArSe for WM model (5). The first row shows the highest
accuracy model for WM ≤ 2KB and the second row shows the highest accuracy model for WM, MS
≤ 2KB. For MNIST, SpArSe is evaluated on the full ten-class dataset whereas Bonsai reports on a
reduced two-class problem. SpArSe finds models with smaller MS, less WM, and higher accuracy in
all cases. WM,MS reported in KB. Best performance highlighted in bold.
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SpArSe 98.64 1.96 2.77 1 73.84 1.28 0.78 5 80.68 1.66 2.34 1 77.78 0.72 0.46 1 96.76 1.06 1.60 1
SpArSe 96.49 1.33 1.44 1 73.84 1.28 0.78 5 79.97 1.43 1.69 1 77.78 0.72 0.46 1 96.76 1.06 1.60 1
Bonsai 94.38∗ < 2 1.96 73.02 < 2 1.98 – – – 74.28 < 2 2 94.42 <2 2

Table 4: SpArSe versus Bonsai for WM model (6). See Table 3 for details.
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SpArSe 97.03 1.38 15 1 73.66 1.13 3.95 25 73.22 1.9 0.14 2 76.83 0.39 20.12 1 97.56 1.81 31.79 1
SpArSe 95.76 0.62 1.76 2 71.76 1.40 1.88 27 73.22 1.9 0.14 2 74.87 1.64 0.16 3 96.21 0.98 1.48 1
Bonsai 94.38∗ < 2 1.96 73.02 < 2 1.98 – – – 74.71 < 2 2 94.42 <2 2

3a compares SpArSe to SpArSe without pruning on MNIST. The results show that including pruning
as part of the optimization yields roughly an 80x reduction in number of parameters, indicating that
the formulation of SpArSe is better suited to designing tiny CNNs compared to [14]. To gain more
insight, we show scatter plots of |E| versus ‖ω̄‖0 for the best-performing configurations on two
datasets in Fig. 3b-3c, revealing two important trends (see the Appendix for results on the Chars4k
and CUReT datasets). First, ‖ω̄‖0 tends to increase with increasing |E| for |E| greater than some
threshold ζ. This suggests that optimizing |E| can be a proxy for optimizing ‖ω̄‖0 when targeting
large networks. At the same time, ‖ω̄‖0 tends to decrease with increasing |E| for |E| < ζ, which has
implications for both NAS and pruning in the context of small CNNs. Fig. 3b-3c suggest that |E| is
not always indicative of weight sparsity, such that minimizing |E| would actually lead to ignoring
graphs with more edges but the same amount of non-zero weights. Since CNNs with more edges
contain more subgraphs, it is possible that one of these subgraphs has better accuracy and the same
number of non-zero weights as the subgraphs of a graph with less edges. The key is that pruning
provides a mechanism for uncovering such high performing subgraphs [18].

3.4 Ablation study

Table 5 presents an ablation experiment on SpArSe with MNIST where we replaced the multi-
objective optimizer with a product scalarizer [11, 28] and excluded pruning from the search [13]. In
both cases, the algorithm was incapable of finding architectures that are both accurate and meet strict
MCU memory requirements. These results support the design choices made in SpArSe in the context
of memory constrained MCUs. Table 5 also shows that searching without morphisms yields higher
accuracy while meeting the same constraints, albeit at the cost of 50% longer search.
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Figure 3: Fig. 3a: Pareto frontier of SpArSe with and without pruning, where both experiments
sample the same number (325) of configurations. Fig. 3b-3c show scatter plots of |E| versus ‖ω̄‖0
for the best performing configurations from the parameter minimization experiment. Fig. 3b: MNIST
networks with > 95% accuracy. Fig. 3c: CIFAR10-binary networks with > 70% accuracy.
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Table 5: Ablation on MNIST using WM model (6), searching for models with WM,MS ≤ 2KB on
250 configuration budget. SpArSe w/o pruning did not yield a model that satisfies the constraints.

SpArSe SpArSe w/o pruning SpArSe w/ product scalarization SpArSe w/o morphism
Acc 95.76 – 11.35 97.46
WM 0.62 – 0.01 0.68
MS 1.76 – 0.05 1.31

GPUD 2 – 2 3

Table 6: Measurement of SpArSe models on Micro Bit and STM MCUs, compared with Bonsai on
Arduino Uno. Latency in ms.
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SpArSe 96.97 1.32 15.86 – – 285.82 203.79 73.4 2.4 9.94 – – 2529.84 1803.78 73.22 2.06 0.56 671.72 70.87 103.67 73.92 74.87 1.87 0.27 207.04 21.83 77.89 55.54
SpArSe 95.76 0.71 2.35 115.40 12.17 27.06 19.29 70.48 2.12 2.74 – – 498.57 355.48 73.22 2.06 0.56 671.72 70.87 103.67 73.92 74.87 1.87 0.27 207.04 21.83 77.89 55.54
Bonsai 94.38∗ < 2 1.96 8.9 2.18 8.9 2.18 73.02 < 2 1.98 8.16 2.01 8.16 2.01 – – – – – – – 74.71 < 2 2 8.55 2.1 8.55 2.1

3.5 Latency and power measurements

For validation, we use uTensor [7] to convert CNNs from SpArSe into baremetal C++, which we
compile using mbed-cli [3] and deploy on the Micro Bit and STM32F413 MCUs. Table 6 shows the
latency and energy per inference measurements. Since uTensor has limited operator support, some
networks reported in Table 6 differ from Table 4. Due to uTensor issues with memory management,
including memory leaks, some models were only able to be run on the larger MCU. Corresponding
measurements for Bonsai cannot be directly compared because Bonsai operates on extracted features
instead of the raw input image itself [41]. A recent related work, MODC [25], is considerably slower
than SpArSe, at 684 ms for MNIST on the Arduino Uno. Although it may be too early to say if CNN
latency/power consumption can meet application requirements, we hope this work provides much
needed data to start to answer this question.

4 Conclusion

Although MCUs are the most widely deployed computing platform, they have been largely ignored
by ML researchers. This paper makes the case for targeting MCUs for deployment of ML, enabling
future IoT products and usecases. We demonstrate that, contrary to previous assertions, it is in fact
possible to design CNNs for MCUs with as little as 2KB RAM. SpArSe optimizes CNNs for the
multiple constraints of MCU hardware platforms, finding models that are both smaller and more
accurate than previous SOTA non-CNN models across a range of standard datasets.
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