
A Appendix - Proofs and Additional Material

A.1 Section 1

A.1.1 Additional Material

Example A.1 (Without inverse stability: parameter minimum 6=⇒ realization minimum). Consider
the two domains

D1 := {(x1, x2) ∈ (−1, 1)2 : x2 > |x1|}, D2 := {(x1, x2) ∈ (−1, 1)2 : x1 > |x2|}. (40)

For simplicity of presentation, assume we are given two samples x1 ∈ D1, x2 ∈ D2 with labels
y1 = 0, y2 = 1. The corresponding MSE is

L(g) = 1
2

(
(g(x1))2 + (g(x2)− 1)2

)
(41)

for every g ∈ C(R2,R). Let the zero realization be parametrized by5

Γ∗ = (0, (−1, 0)) ∈ N(2,1,1) (42)

with loss L(R(Γ∗)) = 1
2 . Note that changing each weight by less than 1

2 does not decrease the loss,
as this rotates the vector (−1, 0) by at most 45◦. Thus Γ∗ is a local minimum in the parametrization
space. However, the sequence of realizations given by

gk(x) = 1
kρ(x1 − x2) = R((1,−1), 1

k ) (43)

satisfies that
‖gk −R(Γ∗)‖W 1,∞((−1,1)2) = ‖gk‖W 1,∞((−1,1)2) ≤ 1

k (44)
and

L(gk) = 1
2 (gk(x2)− 1)2 < 1

2 = L(R(Γ∗)), (45)
see Figure 6. Accordingly, R(Γ∗) is not a local minimum in the realization space even w.r.t. the
Sobolev norm. The problem occurs, since inverse stability fails due to unbalancedness of Γ∗.

(x2, y2)

(x1, y1)

(x2, y2)

(x1, y1)

Figure 6: The figure shows the samples ((xi, yi))i=1,2, the realizationR(Γ∗) of the local parameter
minimum (left) and g3 (right).

Theorem A.2 (Quality of local realization minima). Assume that

sup
f∈S

inf
Φ∈ΩN

‖R(Φ)− f‖ < η (approximability). (46)

Let g∗ be a local minimum with radius r′ ≥ 2η of the optimization problem ming∈R(ΩN ) L(g). Then
it holds for every g ∈ R(ΩN ) (in particular for every global minimizer) that

L(g∗) ≤ L(g) + 2c
r′ ‖g∗ − g‖η. (47)

Proof. Define λ := r′

2‖g−g∗‖ and f := (1− λ)g∗ + λg ∈ S. Due to (46) there is Φ ∈ ΩN such that
‖R(Φ)− f‖ ≤ η and by the assumptions on g∗ and L it holds that

L(g∗) ≤ L(R(Φ)) ≤ L(f) + cη ≤ (1− λ)L(g∗) + λL(g) + cη.

This completes the proof. See Figure 7 for illustration.
5See notation in the beginning of Section 2.
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Figure 7: The figure illustrates the proof idea of Theorem A.2. Note that decreasing η, c, ‖g∗ − g‖ or
increasing r′ leads to a better local minimum due to the convexity of the loss function (red).

A.1.2 Proofs

Proof of Proposition 1.2. By Definition 1.1 we know that for every g ∈ R(Ω) with ‖g −R(Γ∗)‖ ≤
( rs )1/α there exists Φ ∈ Ω with

R(Φ) = g and ‖Φ− Γ∗‖∞ ≤ s‖g −R(Γ∗)‖α ≤ r. (48)

Therefore by assumption it holds that

L(R(Γ∗)) ≤ L(R(Φ)) = L(g). (49)

which proves the claim.

Proof of Theorem 1.3. Let ε, r > 0, define r′ := ( rs )1/α and η := min{( 2c
r′ diam(S))−1ε, r

′

2 }.
Then compactness of S implies the existence of an architecture n(ε, r) ∈ AL such that for every
N ∈ AL with N1 ≥ n1(ε, r), . . . , NL−1 ≥ nL−1(ε, r) the approximability assumption (46) is
satisfied. Let now Γ∗ be a local minimum with radius at least r of minΓ∈ΩN

L(R(Γ)). As we
assume uniform (s, α) inverse stability, Proposition 1.2 implies that R(Γ∗) is a local minimum of
the optimization problem ming∈R(ΩN ) L(g) with radius at least r′ = ( rs )1/α ≥ 2η. Theorem A.2
establishes the claim.

Proof of Corollary 1.4. We simply combine the main observations from our paper. First, note that
the assumptions imply that the restricted parametrization space Ω, which we are optimizing over, is
the space N ∗(d+2,N1+1,D) from Definition 3.2. Secondly, Theorem 3.3 implies that the realization
map is (4, 1/2) inverse stable on Ω. Thus, Proposition 1.2 directly proves Claim 1. For the proof
of Claim 2 we make use of Lemma A.6. It implies that for every Θ ∈ P(d,N1,D) there exists Γ ∈ Ω
such that it holds that

1
n

n∑
i=1

‖R(Γ)(x̃i)− yi‖2 = 1
n

n∑
i=1

‖R(Θ)(xi)− yi‖2, (50)

which proves the claim.

A.2 Section 2

A.2.1 Additional Material

Lemma A.3 (Reparametrization in case of linearly independent weight vectors). Let

Θ = (AΘ, CΘ) =
(
[aΘ

1 | . . . |aΘ
m]T , [cΘ1 | . . . |cΘm]

)
∈ N(d,m,D) (51)
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with linearly independent weight vectors (aΘ
i )mi=1 and mini∈[m] ‖cΘi ‖∞ > 0 and let

Φ = (AΦ, BΦ) =
(
[aΦ

1 | . . . |aΦ
m]T , [cΦ1 | . . . |cΦm]

)
∈ N(d,m,D) (52)

withR(Φ) = R(Θ). Then there exists a permutation π : [m]→ [m] such that for every i ∈ [m] there
exist λi ∈ (0,∞) with

aΦ
i = λia

Θ
π(i) and cΦi = 1

λi
cΘπ(i). (53)

This means that, up to reordering and rebalancing, Θ is the unique parametrization ofR(Θ).

Proof. First we define for every s ∈ {0, 1}m the corresponding open orthant

Os := {x ∈ Rm : x1(2s1 − 1) > 0, . . . , xm(2sm − 1) > 0} ⊆ Rm. (54)

By assumption AΘ has rank m, i.e. is surjective, and therefore the preimages of the orthants

Hs := {x ∈ Rd : AΘx ∈ Os} ⊆ Rd, s ∈ {0, 1}m, (55)

are disjoint, non-empty open sets. Note that on each Hs the realizationR(Θ) is linear with

R(Θ)(x) = CΘ diag(s)AΘx and DR(Θ)(x) = CΘ diag(s)AΘ. (56)

Since AΘ has full row rank, it has a right inverse. Thus we have for s, t ∈ {0, 1}m that

CΘ diag(s)AΘ = CΘ diag(t)AΘ =⇒ CΘ diag(s) = CΘ diag(t). (57)

Note that CΘ diag(s) = CΘ diag(t) can only hold if s = t due to the assumptions that ‖cΘi ‖∞ 6= 0
for all i ∈ [m]. Thus the above establishes that for s, t ∈ {0, 1}m it holds that

CΘ diag(s)AΘ = CΘ diag(t)AΘ if and only if s = t, (58)

i.e. R(Θ) has different derivatives on its 2m linear regions. In order for R(Φ) to have matching
linear regions and matching derivatives on each one of them, there must exist a permutation matrix
P ∈ {0, 1}m×m such that for every s ∈ {0, 1}m

PAΦx ∈ Os for every x ∈ Hs. (59)

Thus, there exist (λi)
m
i=1 ∈ (0,∞)m such that

AΦ = diag(λ1, . . . , λm)PTAΘ. (60)

The assumption that DR(Θ) = DR(Ψ), together with (56) for s = (1, . . . , 1), implies that

CΦ = CΘP diag( 1
λ1
, . . . , 1

λm
), (61)

which proves the claim.

Example A.4 (Failure due to unbalancedness). Let

Γk :=
(
(k, 0), 1

k2

)
∈ N(2,1,1), k ∈ N, (62)

and gk ∈ R(N(2,1,1)) be given by

gk(x) = 1
kρ(〈(0, 1), x〉), k ∈ N. (63)

The only way to parametrize gk is gk(x) = R(Φk)(x) = cρ(〈(0, a), x〉) with a, c > 0 (see
Lemma A.3), and we have

|R(Φk)−R(Γk)|W 1,∞ ≤ 1
k and ‖Φk − Γk‖∞ ≥ k. (64)

Lemma A.5. Let d,m ∈ N and ai ∈ Rd, i ∈ [m], such that
∑
i∈[m] ai = 0. Then it holds for all

x ∈ Rd that ∑
i∈[m]

ρ(〈ai, x〉) =
∑
i∈[m]

ρ(〈−ai, x〉). (65)

Proof. By assumption we have for all x ∈ Rd that
∑
i∈[m]〈ai, x〉 = 0. This implies for all x ∈ Rd

that ∑
i∈[m] : 〈ai,x〉≥0

〈ai, x〉 −
∑
i∈[m]

〈ai, x〉 =
∑

i∈[m] : 〈ai,x〉≤0

−〈ai, x〉, (66)

which proves the claim.
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A.2.2 Proofs

Proof of Example 2.1. We have for every k ∈ N that

‖gk‖L∞((−1,1)2) ≤ 1
k and |gk|W 1,∞ = k2. (67)

Assume that there exists sequence of networks (Φk)k∈N ⊆ N(2,2,1) with R(Φk) = gk and with
uniformly bounded parameters, i.e. supk∈N ‖Φk‖∞ < ∞. Note that there exists a constant C (de-
pending only on the network architecture) such that the realizationsR(Φk) are Lipschitz continuous
with

Lip(R(Φk)) ≤ C‖Φk‖2∞
(see [34, Prop. 5.1]). It follows that |R(Φk)|W 1,∞ ≤ Lip(R(Φk)) is uniformly bounded which
contradicts (67).

Proof of Example 2.2. The only way to parametrize gk is gk(x) = R(Φk)(x) = cρ(〈(0, a), x〉) with
a, c > 0 (see also Lemma A.3), which proves the claim.

Proof of Example 2.3. Any parametrization of gk must be of the form Φk := (A, c) ∈ R2×2 ×R1×2

with

A =

[
a1 0
0 a2

]
or A =

[
0 a2

a1 0

]
(68)

(see Lemma A.3). Thus it holds that ‖Φk − Γ‖∞ ≥ ‖(1, 0) − (0, a2)‖∞ ≥ 1 and the proof is
completed by direct calculation.

Proof of Example 2.4. Let Φk be an arbitrary parametrization of gk given by

Φk =
(
[ã1|ã2| . . . |ã2m]T , c̃

)
∈ N(d,2m,1) (69)

As gk has two linear regions separated by the hyperplane with normal vector v, there exists j ∈ [2m]
and λ ∈ R \ {0} such that

ãj = λv. (70)

The distance of any weight vector ±ai of Γ to the line {λv : λ ∈ R} can be lower bounded by

‖ ± ai − λv‖2∞ ≥ 1
d‖ ± ai − λv‖

2
2 ≥ 1

d2

[
‖ai‖22‖v‖22 − 〈ai, v〉2

]
, i ∈ [m], λ ∈ R. (71)

The Cauchy-Schwarz inequality and the linear independence of v to each ai, i ∈ [m], establishes
that C := 1

d2 mini∈[m]

[
‖ai‖22‖v‖22 − 〈ai, v〉2

]
> 0. Together with the fact that R(Γ) = 0, this

completes the proof.

Proof of Example 2.5. Since x = ρ(x)− ρ(−x) for every x ∈ R, the difference of the realizations
is linear, i.e.

R(Θk)−R(Γk) = 〈ck1ak1 + ck2a
k
2 + ck3a

k
3 , x〉 = 〈(0, 0, 3), x〉 (72)

and thus the difference of the gradients is constant, i.e.

|R(Θk)−R(Γk)|W 1,∞ = 3, k ∈ N. (73)

However, regardless of the balancing and reordering of the weight vectors aki , i ∈ [3], we have that

‖Θk − Γk‖∞ ≥ k. (74)

By Lemma A.3, up to balancing and reordering, there does not exist any other parametrization of Θk

with the same realization.
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A.3 Section 3

A.3.1 Additional Material

Lemma A.6. Let d,m,D ∈ N and Θ ∈ P(d,m,D). Then there exists Γ ∈ N ∗(d+2,m+1,D) such that
for all x ∈ Rd it holds that

R(Γ)(x1, . . . , xd, 1,−1) = R(Θ)(x). (75)

Proof. Since Θ ∈ P(d,m,D) it can be written as

Θ =
((
A, b

)
,
(
c, e
))

=
((

[a1| . . . |am]T , b
)
, ([c1| . . . |cm], e)

)
(76)

with

R(Θ)(x) =

m∑
i=1

ciρ(〈ai, x〉+ bi) + e, x ∈ Rd, (77)

where A ∈ Rm×d, b ∈ Rm, C ∈ RD×m, and e ∈ RD. We define for i ∈ [m]

b+i :=

{
bi + 1 : bi ≥ 0

1 : bi < 0
, and b−i :=

{
1 : bi ≥ 0

−bi + 1 : bi < 0
(78)

and observe that b+i > 0, b−i > 0, and b+i − b
−
i = bi. For i ∈ [m] let

c∗i :=

{
ci : ‖ci‖∞ 6= 0

(1, . . . , 1) : ‖ci‖∞ = 0
(79)

and

a∗i :=

{
(ai,1, . . . , ai,d, b

+
i , b
−
i ) : ‖ci‖∞ 6= 0

(0, . . . , 0, 1, 1) : ‖ci‖∞ = 0
. (80)

Note that we have

R(Θ)(x) =

m∑
i=1

c∗i ρ(〈a∗i , (x1, . . . , xd, 1,−1)〉) + e, x ∈ Rd. (81)

To include the second bias e let

c∗m+1 :=

{
e : e 6= 0

(1, . . . , 1) : e = 0
, and a∗m+1 :=

{
(0, . . . , 0, 2, 1) : e 6= 0

(0, . . . , 0, 1, 1) : e = 0
. (82)

In order to balance the network, let aΓ
i = a∗i (

‖c∗i ‖∞
‖a∗i ‖∞

)1/2 and cΓi = c∗i (
‖a∗i ‖∞
‖c∗i ‖∞

)1/2 for every i ∈ [m+1].
Then the claim follows by direct computation.

A.3.2 Proofs

Proof of Theorem 3.1. Without loss of generality6, we can assume for all i ∈ [m] that aΘ
i = 0 if and

only if cΘi = 0. We now need to show that there always exists a way to reparametrize R(Θ) such
that the architecture remains the same and (35) is satisfied. For simplicity of notation we will write
r := |g −R(Γ)|W 1,∞ throughout the proof. Let fΓ

i : Rd → R resp. fΘ
i : Rd → R be the part that is

contributed by the i-th neuron, i.e.

R(Γ) =

m∑
i=1

fΓ
i with fΓ

i (x) := cΓi ρ(〈aΓ
i , x〉), (83)

g =R(Θ) =

m∑
i=1

fΘ
i with fΘ

i (x) := cΘi ρ(〈aΘ
i , x〉). (84)

6In case one of them is zero, the other one can be set to zero without changing the realization.
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Further let
H+

Γ,i := {x ∈ Rd : 〈aΓ
i , x〉 > 0},

H0
Γ,i := {x ∈ Rd : 〈aΓ

i , x〉 = 0},
H−Γ,i := {x ∈ Rd : 〈aΓ

i , x〉 < 0}.
(85)

By conditions C.2 and C.3a we have for all i, j ∈ IΓ that

i 6= j =⇒ H0
Γ,i 6= H0

Γ,j . (86)

Further note that we can reparametrizeR(Θ) such that the same holds there. To this end observe that

cρ(〈a, x〉) + c′ρ(〈a′, x〉) = (c+ c′ ‖a
′‖∞
‖a‖∞ )ρ(〈a, x〉), (87)

given that a′ is a positive multiple of a. Specifically, let (Jk)Kk=1 be a partition of IΘ (i.e. Jk 6= ∅,
∪Kk=1Jk = IΘ and Jk ∩ Jk′ = ∅ if k 6= k′), such that for all k ∈ [K] it holds that

i, j ∈ Jk =⇒
aΘ
j

‖aΘ
j ‖∞

=
aΘ
i

‖aΘ
i ‖∞

. (88)

We denote by jk the smallest element in Jk and make the following replacements, for all i ∈ IΘ,
without changing the realization of Θ:

aΘ
i 7→ aΘ

i , c
Θ
i 7→

∑
j∈Jk

cΘj
‖aΘ

j ‖∞
‖aΘ

jk
‖∞
, if i ∈ Jk and i = jk, (89)

aΘ
i 7→ 0, cΘi 7→ 0, if i ∈ Jk and i 6= jk. (90)

Note that we also update the set IΘ := {i ∈ [m] : aΘ
i 6= 0} accordingly. Let now

H+
Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 > 0},

H0
Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 = 0},
H−Θ,i := {x ∈ Rd : 〈aΘ

i , x〉 > 0}.
(91)

By construction and condition C.3a, we have for all i, j ∈ IΘ that

i 6= j =⇒ H0
Θ,i 6= H0

Θ,j . (92)

Note that we now have a parametrization Θ of g, where all weight vectors aΘ
i are either zero (in

which case the corresponding cΘi are also zero) or pairwise linearly independent to each other nonzero
weight vector.
Next, for s ∈ {0, 1}m, let

Hs
Γ :=

⋂
i∈[m] : si=1

H+
Γ,i ∩

⋂
i∈[m] : si=0

H−Γ,i,

Hs
Θ :=

⋂
i∈[m] : si=1

H+
Θ,i ∩

⋂
i∈[m] : si=0

H−Θ,i,
(93)

and

SΓ := {s ∈ {0, 1}m : Hs
Γ 6= ∅}, SΘ := {s ∈ {0, 1}m : Hs

Θ 6= ∅}. (94)

The Hs
Γ, s ∈ SΓ, and Hs

Θ, s ∈ SΘ, are the interiors of the different linear regions ofR(Γ) andR(Θ)
respectively. Next observe that the derivatives of fΓ

i , f
Θ
i are (a.e.) given by

DfΓ
i (x) = 1H+

Γ,i
(x) cΓi a

Γ
i , DfΘ

i (x) = 1H+
Θ,i

(x) cΘi a
Θ
i . (95)

Note that for every x ∈ Hs
Γ, y ∈ Hs

Θ we have

DR(Γ)(x) =
∑
i∈[m]

DfΓ
i (x) =

∑
i∈[m]

sic
Γ
i a

Γ
i =: ΣΓ

s ,

DR(Θ)(y) =
∑
i∈[m]

DfΘ
i (y) =

∑
i∈[m]

sic
Θ
i a

Θ
i =: ΣΘ

s .
(96)
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Next we use that for s ∈ SΓ, t ∈ SΘ we have |ΣΓ
s − ΣΘ

t | ≤ r if HΓ
s ∩ HΘ

t 6= ∅, and compare
adjacent linear regions ofR(Γ)−R(Θ). Let now i ∈ IΓ and consider the following cases:
Case 1: We have H0

Γ,i 6= H0
Θ,j for all j ∈ IΘ. This means that the DfΘ

k , k ∈ [m], and the DfΓ
k ,

k ∈ [m]\{i}, are the same on both sides near the hyperplane H0
Γ,i, while the value of DfΓ

i is 0 on
one side and cΓi a

Γ
i on the other. Specifically, there exist s+, s− ∈ SΓ and s∗ ∈ SΘ such that s+

i = 1,
s−i = 0, s+

j = s−j for all j ∈ [m]\{i}, and Hs+

Γ ∩Hs∗

Θ 6= ∅, Hs−

Γ ∩Hs∗

Θ 6= ∅, which implies

‖cΓi aΓ
i ‖∞ = ‖(ΣΓ

s+ − ΣΘ
s∗)− (ΣΓ

s− − ΣΘ
s∗)‖∞ ≤ 2r. (97)

Case 2: There exists j ∈ IΘ such that H0
Γ,i = H0

Θ,j . Note that (86) ensures that H0
Γ,i 6= H0

Γ,k for
k ∈ [m] \ {i} and (92) ensures that H0

Θ,j 6= H0
Γ,k for k ∈ [m] \ {j}. Moreover, Condition C.3b

implies H+
Γ,i = H+

Θ,j . This means that the DfΘ
k , k ∈ [m]\{j}, and the DfΓ

k , k ∈ [m]\{i}, are the
same on both sides near the hyperplane H0

Γ,i = H0
Θ,j , while the values of DfΓ

i and DfΘ
j change.

Specifically there exist s+, s− ∈ SΓ and t+, t− ∈ SΘ such that s+
i = 1, s−i = 0, s+

k = s−k for all
k ∈ [m]\{i}, t+j = 1, t−j = 0, t+k = t−k for all k ∈ [m]\{j} and HΓ

s+ ∩H
Θ
t+ 6= ∅, H

Γ
s− ∩H

Θ
t− 6= ∅,

which implies

‖cΓi aΓ
i − cΘj aΘ

j ‖∞ = ‖(ΣΓ
s+ − ΣΘ

t+)− (ΣΓ
s− − ΣΘ

t−)‖∞ ≤ 2r. (98)

Analogously we get for i ∈ IΘ that H0
Θ,i 6= H0

Γ,j for all j ∈ IΓ implies ‖cΘi aΘ
i ‖∞ ≤ 2r. Next let

I1 := {i ∈ [m] : H0
Γ,i 6= H0

Θ,j for all j ∈ IΘ} ∪ {i ∈ [m] : aΓ
i = 0} (99)

and

I2 := [m] \ I1 = {i ∈ [m] : ∃ j ∈ IΘ such that H+
Γ,i = H+

Θ,j}. (100)

Colloquially speaking, this shows that for every fΓ
i with i ∈ I2 there is a fΘ

j with exactly matching
half-spaces, i.e. H+

Γ,i = H+
Θ,j , and approximately matching gradients (Case 2). Moreover, all

unmatched fΓ
i and fΘ

j must have a small gradient (Case 1).
Specifically, the above establishes that there exists a permutation π : [m]→ [m] such that for every
i ∈ I1 it holds that

‖cΓi aΓ
i ‖∞, ‖cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r, (101)

and for every i ∈ I2 that

‖cΓi aΓ
i − cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r. (102)

We make the following replacements, for all i ∈ [m], without changing the realization of Θ:

aΘ
i → aΘ

π(i), cΘi → cΘπ(i). (103)

In order to balance the weights of Θ for I1, we further make the following replacements, for all i ∈ I1
with aΘ

i 6= 0, without changing the realization of Θ:

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi . (104)

This implies for every i ∈ I1 that

|cΘi |, ‖aΘ
i ‖∞ ≤ (2r)1/2. (105)

Moreover, due to Condition C.1, we get for every i ∈ I1 that

|cΓi |, ‖aΓ
i ‖∞ ≤ β. (106)

Thus we get for every i ∈ I1 that

|cΘi − cΓi |, ‖aΘ
i − aΓ

i ‖∞ ≤ β + (2r)1/2. (107)
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Next we (approximately) match the balancing of (cΘi , a
Θ
i ) to the balancing of (cΓi , a

Γ
i ) for i ∈ I2,

in order to derive estimates on |cΘi − cΓi | and ‖aΘ
i − aΓ

i ‖∞ from (102). Specifically, we make the
following replacements, for all i ∈ I2, without changing the realization of Θ:

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi , if ‖cΓi aΓ
i ‖∞ ≤ 2r, (108)

aΘ
i →

cΘi
cΓi
aΘ
i , cΘi → cΓi , if ‖cΓi aΓ

i ‖∞ > 2r, |cΓi | > ‖aΓ
i ‖∞, (109)

aΘ
i → aΓ

i , cΘi →
‖aΘ
i ‖∞
‖aΓ
i ‖∞

cΘi , if ‖cΓi aΓ
i ‖∞ > 2r, |cΓi | < ‖aΓ

i ‖∞, (110)

aΘ
i → (

|cΘi |
‖aΘ

i ‖∞
)1/2 aΘ

i , cΘi → (
‖aΘ

i ‖∞
|cΘi |

)1/2 cΘi , if ‖cΓi aΓ
i ‖∞ > 2r, |cΓi | = ‖aΓ

i ‖∞. (111)

Let now i ∈ I2 and consider the following cases:
Case A: We have ‖cΓi aΓ

i ‖∞ ≤ 2r which, together with (102), implies ‖cΘi aΘ
i ‖∞ ≤ 4r. Due to (108)

and Condition C.1 it follows that

|cΘi − cΓi |, ‖aΘ
i − aΓ

i ‖∞ ≤ β + 2r1/2. (112)

Case B.1: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | > ‖aΓ

i ‖∞ which ensures |cΓi | > ‖cΓi aΓ
i ‖

1/2
∞ . Due to

(109) we get cΘi = cΓi and it follows that

‖aΘ
i − aΓ

i ‖∞ =
1

|cΓi |
‖cΘi aΘ

i − cΓi aΓ
i ‖∞ ≤

2r

‖cΓi aΓ
i ‖

1/2
∞
≤ (2r)1/2. (113)

Case B.2: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | < ‖aΓ

i ‖∞ which ensures ‖aΓ
i ‖ > ‖cΓi aΓ

i ‖
1/2
∞ . Due to

(110) we get aΘ
i = aΓ

i and it follows that

|cΘi − cΓi | =
1

‖aΓ
i ‖∞

‖cΘi aΘ
i − cΓi aΓ

i ‖∞ ≤
2r

‖cΓi aΓ
i ‖

1/2
∞
≤ (2r)1/2. (114)

Case B.3: We have ‖cΓi aΓ
i ‖∞ > 2r and |cΓi | = ‖aΓ

i ‖∞. Note that ‖cΓi aΓ
i ‖∞ > 2r and (102) ensure

that sgn(cΘi ) = sgn(cΓi ), and that for x, y > 0 it holds that |x− y| ≤ |x2 − y2|1/2. Combining this
with the definition of I2, the reverse triangle inequality, and (111) implies that

‖aΘ
i − aΓ

i ‖∞ ≤ (2r)1/2 and |cΘi − cΓi
∣∣ ≤ (2r)1/2. (115)

Combining (107), (112), (113), (114), and (115) establishes that

‖Θ− Γ‖∞ ≤ β + 2r
1
2 , (116)

which completes the proof.

Proof of Theorem 3.3. Let Θ ∈ N ∗N be a parametrization of g, i.e.R(Θ) = g. We write

Γ =
(

aΓ
1
...

aΓ
m

 , [cΓ1 ∣∣ . . . ∣∣cΓm]), Θ =
(

aΘ
1
...

aΘ
m

 , [cΘ1 ∣∣ . . . ∣∣cΘm]) ∈ N ∗(d,m,D) (117)

and r := |g −R(Γ)|W 1,∞ . For convenience of notation we consider the weight vectors aΓ
i , aΘ

i here
as row vectors in order to write the derivatives of the ridge functions as cΓi a

Γ
i , c

Θ
i a

Θ
i ∈ RD×d without

transposing.
We will now adjust the approach used in the proof of Theorem 3.1 to work for multi-dimensional
outputs in the case of balanced networks. By definition of N ∗N , the (aΘ

i )mi=1 are pairwise linearly
independent and we can skip the first reparametrization step in (89) and (90).
The following “hyperplane-jumping” argument, which was used to get the estimates (97) and (98),
works analogously since Conditions C.2 and C.3 are fulfilled by definition of N ∗N . This establishes
the existence of a permutation π : [m]→ [m] and sets I1, I2 ⊆ [m], as defined as in (99) and (100),
such that for every i ∈ I1 it holds that

‖cΓi aΓ
i ‖∞, ‖cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r, (118)
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and for every i ∈ I2 that

‖cΓi aΓ
i − cΘπ(i)a

Θ
π(i)‖∞ ≤ 2r. (119)

As in (103), we make the following replacements, for all i ∈ [m], without changing the realization of
Θ:

aΘ
i → aΘ

π(i), cΘi → cΘπ(i). (120)

Note that the weights of Θ are already balanced, i.e. we have for every i ∈ [m] that

‖cΘi ‖∞ = ‖aΘ
i ‖∞ = ‖cΘi ‖1/2∞ ‖aΘ

i ‖1/2∞ = ‖cΘi aΘ
i ‖1/2∞ . (121)

Thus, we can skip the reparametrization step in (104) and get directly for every i ∈ I1 that

‖cΘi − cΓi ‖∞ ≤ ‖cΘi ‖∞ + ‖cΓi ‖∞ = ‖cΘi aΘ
i ‖1/2∞ + ‖cΓi aΓ

i ‖1/2∞ ≤ 2(2r)1/2 (122)

and analogously ‖aΘ
i − aΓ

i ‖∞ ≤ 2(2r)1/2.
For i ∈ I2 we need to slightly deviate from the proof of Theorem 3.1. We can skip the reparametriza-
tion step in (108)-(111) due to balancedness and need to distinguish three cases:
Case A.1: We have ‖cΓi aΓ

i ‖∞ ≤ 2r which, together with (119), implies ‖cΘi aΘ
i ‖∞ ≤ 4r. Due to

balancedness it follows that

‖cΘi − cΓi ‖∞, ‖aΘ
i − aΓ

i ‖∞ ≤ 4r1/2. (123)

Case A.2: We have ‖cΘi aΘ
i ‖∞ ≤ 2r which, together with (119), implies ‖cΓi aΓ

i ‖∞ ≤ 4r. Again it
follows that

‖cΘi − cΓi ‖∞, ‖aΘ
i − aΓ

i ‖∞ ≤ 4r1/2. (124)

Case B: We have ‖cΘi aΘ
i ‖∞ > 2r and ‖cΓi aΓ

i ‖∞ > 2r. Due to the definition of I2 there exists
ei ∈ Rd, λΓ

i , λ
Θ
i ∈ (0,∞) with ‖ei‖∞ = 1, aΘ

i = λΘ
i ei, and aΓ

i = λΓ
i ei. As in (115) we obtain that

‖aΘ
i − aΓ

i ‖∞ = ‖ei‖∞|λΘ
i − λΓ

i | ≤ |(λΘ
i )2 − (λΓ

i )2|1/2

= |‖cΘi ‖∞‖aΘ
i ‖∞ − ‖cΓi ‖∞‖aΓ

i ‖∞|1/2

≤ ‖cΘi aΘ
i − cΓi aΓ

i ‖1/2∞ ≤ (2r)1/2.

(125)

Let now w.l.o.g. ‖aΓ
i ‖∞ ≥ ‖aΘ

i ‖∞ (otherwise we switch their roles in the following) which implies
that λΓ

i = ∆i + λΘ
i with ∆i = λΓ

i − λΘ
i ≥ 0. Then it holds that

‖cΘi − cΓi ‖∞ =
‖cΘi aΓ

i − cΓi aΓ
i ‖∞

‖aΓ
i ‖∞

≤ ‖c
Θ
i a

Γ
i − cΘi aΘ

i ‖∞ + ‖cΘi aΘ
i − cΓi aΓ

i ‖∞
‖aΓ
i ‖∞

≤ ‖c
Θ
i ‖∞|λΓ

i − λΘ
i |+ 2r

λΓ
i

=
λΘ
i ∆i + 2r

∆i + λΘ
i

=
(2r)1/2(∆i + λΘ

i )− (λΘ
i − (2r)1/2)((2r)1/2 −∆i)

∆i + λΘ
i

≤ (2r)1/2.

(126)

The last step holds due to (125) and the balancedness of Θ which ensure that

λΘ
i = ‖cΘi aΘ

i ‖1/2∞ > (2r)1/2 ≥ |λΘ
i − λΓ

i | = ∆i. (127)

This completes the proof.

A.4 Section 4

A.4.1 Additional Material

Lemma A.7 (Inverse stability for fixed weight vectors). Let N = (d,m,D) ∈ N3, let A =
[a1| . . . |am]T ∈ Rm×d with

ai
‖ai‖∞

6= aj
‖aj‖∞

and (ai)d−1, (ai)d > 0 (128)
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for all i ∈ [m], j ∈ [m] \ {i}, and define

NA
N :=

{
Γ ∈ NN : aΓ

i = λiai with λi ∈ (0,∞) and ‖cΓi ‖∞ = ‖aΓ
i ‖∞ for all i ∈ [m]

}
. (129)

Then for every B ∈ (0,∞) there is CB ∈ (0,∞) such that we have uniform (CB , 1/2) inverse sta-
bility w.r.t. ‖ · ‖L∞((−B,B)d). That is, for all Γ ∈ NA

N and g ∈ R(NA
N ) there exists a parametrization

Φ ∈ NA
N with

R(Φ) = g and ‖Φ− Γ‖∞ ≤ CB‖g −R(Γ)‖
1
2

L∞((−B,B)d)
. (130)

Proof. Note that the non-zero angle between the hyperplanes given by the weight vectors (ai)
m
i=1

establishes that the minimal perimeter inside each linear region intersected with (−B,B)d is lower
bounded. As the realization is linear on each region, this implies the existence of a constant
C ′B ∈ (0,∞), such that for every Θ ∈ NA

N it holds that

|R(Θ)|W 1,∞ ≤ C ′B‖R(Θ)‖L∞((−B,B)d). (131)

Now note that for NA
N we can get the same uniform (4, 1/2) inverse stability result w.r.t. | · |W 1,∞

as in Theorem 3.3 by choosing π to be the identity in (118). Together with (131) this implies the
claim.
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