
A Omitted material

Proof of Proposition 6. We have:

‖p− q‖2 =

d∑
i=1

[(p1,i − λp(p1,i − p2,i))− (q1,i − λq(q1,i − q2,i))]
2 (I)

=

d∑
i=1

[(p1,i − λp(p1,i − p2,i))
2 − 2(p1,i − λp(p1,i − p2,i))(q1,i − λq(q1,i − q2,i))

+ (q1,i − λq(q1,i − q2,i))
2] (II)

=

d∑
i=1

[p2
1,i − 2λpp1,i(p1,i − p2,i) + λ2

p(p1,i − p2,i)
2

− 2(p1,i − λp(p1,i − p2,i))(q1,i − λq(q1,i − q2,i)) + q2
1,i − 2λqq1,i(q1,i − q2,i)

+ λ2
q(q1,i − q2,i)

2] (III)

=

d∑
i=1

[p2
1,i − 2λpp

2
1,i + 2λpp1,ip2,i + λ2

pp
2
1,i − 2λ2

pp1,ip2,i + λ2
pp

2
2,i − 2p1,iq1,i

+ 2λqp1,i(q1,i − q2,i) + 2λpq1,i(p1,i − p2,i)− 2λpλq(p1,i − p2,i)(q1,i − q2,i)

+ q2
1,i − 2λqq

2
1,i + 2λqq1,iq2,i + λ2

qq
2
1,i − 2λ2

qq1,iq2,i + λ2
qq

2
2,i] (IV)

=

d∑
i=1

[(1− 2λp + λ2
p)p

2
1,i + λ2

pp
2
2,i + (1− 2λq + λ2

q)q
2
1,i + λ2

qq
2
2,i

+ 2λp(1− λp)p1,ip2,i − 2p1,iq1,i + 2λqp1,iq1,i − 2λqp1,iq2,i + 2λpp1,iq1,i

− 2λpp2,iq1,i − 2λpλqp1,iq1,i + 2λpλqp2,iq1,i + 2λpλqp1,iq2,i

− 2λpλqp2,iq2,i + 2λq(1− λq)q1,iq2,i] (V)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ 2λp(1− λp)〈p1, p2〉+ 2(λp + λq − λpλq − 1)〈p1, q1〉
+ 2(λpλq − λq)〈p1, q2〉+ 2(λpλq − λp)〈p2, q1〉 − 2λpλq〈p2, q2〉
+ 2λq(1− λq)〈q1, q2〉 (VI)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ 2λp(1− λp)‖p1‖‖p2‖ cos^(p1, p2)

+ 2(λp + λq − λpλq − 1)‖p1‖‖q1‖ cos^(p1, q1)

+ 2(λpλq − λq)‖p1‖‖q2‖ cos^(p1, q2)

+ 2(λpλq − λp)‖p2‖‖q1‖ cos^(p2, q1)

− 2λpλq‖p2‖‖q2‖ cos^(p2, q2) + 2λq(1− λq)‖q1‖‖q2‖ cos^(q1, q2) (VII)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ (λp − λ2
p)(‖p1‖2 + ‖p2‖2 − ‖p1 − p2‖2)

+ (λq − λ2
q)(‖q1‖2 + ‖q2‖2 − ‖q1 − q2‖2)

− (1− λp − λq + λpλq)(‖p1‖2 + ‖q1‖2 − ‖p1 − q1‖2)

− (λq − λpλq)(‖p1‖2 + ‖q2‖2 − ‖p1 − q2‖2)

− (λp − λpλq)(‖p2‖2 + ‖q1‖2 − ‖p2 − q1‖2)

− λpλq(‖p2‖2 + ‖q2‖2 − ‖p2 − q2‖2) (VIII)

= (1− 1− 2λp + λp + λp + λ2
p − λ2

p + λq − λq + λpλq − λpλq︸ ︷︷ ︸
=0

)‖p1‖2

+ (λ2
p − λ2

p + λp − λp + λpλq − λpλq︸ ︷︷ ︸
=0

)‖p2‖2
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+ (1− 1− 2λq + λq + λq + λ2
q − λ2

q + λp − λp + λpλq − λpλq︸ ︷︷ ︸
=0

)‖q1‖2

+ (λ2
q − λ2

q + λq − λq + λpλq − λpλq︸ ︷︷ ︸
=0

)‖q2‖2

− (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2 (IX)

We obtain Eq. (I) to Eq. (V) using only algebraic manipulations, Eq. (VI) is obtained using the
definition of the Euclidean norm and the algebraic definition of the dot product, in Eq. (VII) we use
the geometric definition of the dot product and finally in Eq. (VIII) we apply the law of cosines.
Eq. (IX) follows by algebraic manipulations.

Proof of Lemma 7. First note that the construction of f succeeds with probability ρ ∈ (0, 1] by
Definition 4. We condition the remaining proof on this event.

From Proposition 6 we now know that

‖p− q‖2 = − (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2

and

‖p′ − q′‖2 = − (λp − λ2
p)‖f(p1)− f(p2)‖2 − (λq − λ2

q)‖f(q1)− f(q2)‖2

+ (1− λp − λq + λpλq)‖f(p1)− f(q1)‖2 + (λq − λpλq)‖f(p1)− f(q2)‖2

+ (λp − λpλq)‖f(p2)− f(q1)‖2 + λpλq‖f(p2)− f(q2)‖2.
Because every coefficient is non-negative, it can be observed that this sum is maximized under f
when

‖f(p1)− f(p2)‖2 = (1− ε)2‖p1 − p2‖2,
‖f(q1)− f(q2)‖2 = (1− ε)2‖q1 − q2‖2,
‖f(p1)− f(q1)‖2 = (1 + ε)2‖p1 − q1‖2,
‖f(p1)− f(q2)‖2 = (1 + ε)2‖p1 − q2‖2,
‖f(p2)− f(q1)‖2 = (1 + ε)2‖p2 − q1‖2

and
‖f(p2)− f(q2)‖2 = (1 + ε)2‖p2 − q2‖2.

Using the facts that (1 + ε)2 − (1 − ε)2 = 4ε, (λq − λ2
q) ≤ 1

4 and (λp − λ2
p) ≤ 1

4 , we get
that ‖p′ − q′‖2 ≤ (1 + ε)2‖p − q‖2 + ε(‖p1 − p2‖2 + ‖q1 − q2‖2). The lower bound follows
analogously.

Proof of Theorem 8. First note that the construction of f and thus also F succeeds with probability
ρ ∈ (0, 1] by Definition 4. We condition the remaining proof on this event.

Let τ, σ ∈ T be arbitrary polygonal curves and vτ1 , . . . , v
τ
|τ |, respective vσ1 , . . . , v

σ
|σ| be their vertices,

as well as tτ1 , . . . , t
τ
|τ |, respective tσ1 , . . . , t

σ
|σ| be their instants. Further let

g ∈ arg inf
h∈H

max
t∈[0,1]

‖τ(t)− σ(h(t))‖

and
g′ ∈ arg inf

h∈H
max
t∈[0,1]

‖F (τ)(t)− F (σ)(h(t))‖.

Let t1 ∈ arg maxt∈[0,1]‖F (τ)(t) − F (σ)(g(t))‖, there exists an i ∈ {1, . . . , |τ |} and a j ∈
{1, . . . , |σ|} with tτi ≤ t1 ≤ tτi+1 and tσj ≤ g(t1) ≤ tσj+1, such that we can write

F (τ)(t1) = lp

(
f(vτi )f(vτi+1),

t1 − tτi
tτi+1 − tτi

)
,
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F (σ)(g(t1)) = lp

(
f(vσj )f(vσj+1),

g(t1)− tσj
tσj+1 − tσj

)
,

τ(t1) = lp

(
vτi v

τ
i+1,

t1 − tτi
tτi+1 − tτi

)
,

and

σ(g(t1)) = lp

(
vσj v

σ
j+1,

g(t1)− tσj
tσj+1 − tσj

)
.

For each t′1 ∈ arg maxt∈[0,1]‖F (τ)(t)− F (σ)(g′(t))‖ we obtain:

d2
F (F (τ), F (σ)) = ‖F (τ)(t′1)− F (σ)(g′(t′1))‖2 (I)

≤ ‖F (τ)(t1)− F (σ)(g(t1))‖2 (II)

≤ (1 + ε)2‖τ(t1)− σ(g(t1))‖2 + ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
(III)

≤ (1 + ε)2 max
t∈[0,1]

‖τ(t)− σ(g(t))‖2 + ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
≤ (1 + ε)2d2

F (τ, σ) + 2εα(τ, σ)2

Eq. (I) follows by definition of t′1 and g′, Eq. (II) follows from the fact that g′ is an infimum, Eq. (III)
follows from an application of Lemma 7 and the last inequality follows from Definition 3 and the
definition of α(·, ·).

Let t2 ∈ arg maxt∈[0,1]‖τ(t) − σ(g′(t))‖, again, there exists an i ∈ {1, . . . , |τ |} and a j ∈
{1, . . . , |σ|} with tτi ≤ t2 ≤ tτi+1 and tσj ≤ g′(t2) ≤ tσj+1, such that we can write

F (τ)(t2) = lp

(
f(vτi )f(vτi+1),

t2 − tτi
tτi+1 − tτi

)
,

F (σ)(g′(t2)) = lp

(
f(vσj )f(vσj+1),

g′(t2)− tσj
tσj+1 − tσj

)
,

τ(t2) = lp

(
vτi v

τ
i+1,

t2 − tτi
tτi+1 − tτi

)
,

and

σ(g′(t2)) = lp

(
vσj v

σ
j+1,

g′(t2)− tσj
tσj+1 − tσj

)
.

For each t′1 ∈ arg maxt∈[0,1]‖F (τ)(t)− F (σ)(g′(t))‖ we obtain:

d2
F (F (τ), F (σ)) = ‖F (τ)(t′1)− F (σ)(g′(t′1))‖2 (IV)

≥ ‖F (τ)(t2)− F (σ)(g′(t2))‖2 (V)

≥ (1− ε)2‖τ(t2)− σ(g′(t2))‖2 − ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
(VI)

≥ (1− ε)2 max
t∈[0,1]

‖τ(t)− σ(g(t))‖2 − ε
(
‖vτi − vτi+1‖2 + ‖vσj − vσj+1‖2

)
≥ (1− ε)2d2

F (τ, σ)− 2εα(τ, σ)2

Here Eq. (IV) follows by the definition of g′ and t′1, Eq. (V) follows, because the term is maximized for
t′1, Eq. (VI) follows from an application of Lemma 7 and the last inequality follows from Definition 3
and the definition of α(·, ·).

Proof of Theorem 11. Let c ∈ arg minτ∈T
∑
τ ′∈T dF (τ, τ ′) be an optimal 1-median for T and let

X(τ) := dF (τ, c) be a random variable uniformly distributed over τ ∈ T . By the uniform distribution
and linearity E[X] = 1

|T |
∑
τ∈T dF (τ, c). Now, let

B1+ε :=

{
τ ∈ T | dF (τ, c) ≤ (1 + ε)

|T |
∑
τ ′∈T

dF (τ ′, c)

}
.
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For every τ ∈ B1+ε by the triangle-inequality∑
τ ′∈T

dF (τ, τ ′) ≤
∑
τ ′∈T

(dF (τ ′, c) + dF (c, τ)) ≤ (2 + ε)
∑
τ ′∈T

dF (τ ′, c).

Thus, τ is at least a (2 + ε)-approximate 1-median for T .

For i ∈ {1, . . . , `s}, let FBi the event that si 6∈ B1+ε. By Markov’s inequality we have that
Pr[FBi ] ≤ 1

1+ε < 1.

Further, by independence and choosing `S ≥
⌈

2 ln(2/δ)
ε

⌉
the probability that no sample is contained

in B1+ε is bounded by

Pr[FB1 ∧ · · · ∧ FB`S ] ≤ 1

(1 + ε)`S
≤ 1

exp( ε2`S)
≤ exp(−εln(2/δ)/ε) =

δ

2
.

Let cS ∈ arg minτ∈S
∑
τ ′∈T dF (τ, τ ′). We do not want any bad sample s ∈ S with∑

τ∈T dF (s, τ) > (1 + ε)
∑
τ∈T dF (cS , τ) to have lower cost with respect to W than cS . Us-

ing Theorem 10 and a union bound over the elements of S and `W = 64
ε2 ln(2|S|/δ), the probability

for this event is bounded by∑
s∈S

exp

(
−ε

2`W
64

)
≤ |S| exp

(
−ε

2`W
64

)
≤ |S| exp (− ln (2|S|/δ)) ≤ δ

2
.

Now, if we take the s ∈ S that minimizes
∑
τ ′∈W dF (s, τ ′), by an application of the union bound,

with probability at least 1− δ it holds that∑
τ ′∈T

dF (s, τ ′) ≤ (1+ε)
∑
τ ′∈T

dF (cS , τ
′) ≤ (1+ε)(2+ε)

∑
τ ′∈T

dF (c, τ ′) ≤ (2+4ε)
∑
τ ′∈T

dF (c, τ ′).

The claim follows by rescaling ε by 1
4 .

Proof of Theorem 12. Let c∗ ∈ arg minτ∈T
∑
τ ′∈T dF (τ, τ ′) be an optimal Fréchet 1-median for T .

For any non-empty setA of curves and a curve c let cost(A, c) =
∑
τ∈A dF (τ, c) denote the cost, i.e.,

the sum of Fréchet distances to c. Let ∆ = cost(T, c∗) denote the optimal cost. We define a parameter
0 < γ(T ) := 1

2 − ν(T ) < 1
2 (ν(T ) will be defined subsequently) which specifies the fraction of

outliers as a function of T , which may depend on |T | = n. We choose the radius r1 = ∆
γ(T )n

which parametrizes the distance of the outliers from the optimal median. Similarly, let r2 = 2ε∆
n .

Note that indeed r1 > r2 as desired, since γ(T ), ε < 1
2 . We partition the curves in T according

to their contribution relative to the average distance into disjoint sets T = F ∪̇M ∪̇C where
F = {τ ∈ T | dF (τ, c∗) > r1} are the curves far from c∗ , M = {τ ∈ T | r2 < dF (τ, c∗) ≤ r1}
are the curves with medium distance, and C = {τ ∈ T | dF (τ, c∗) ≤ r2} are the curves that are
close to the optimal median.

Note that if |F | > n · γ(T ) then cost(F, c∗) ≥ |F | · r1 > nγ(T ) · 1
γ(T )

∆
n = ∆. Together with our

assumption this means that we have (1− ε)nγ(T ) ≤ |F | ≤ nγ(T ).

Similarly, cost(F, c∗) > (1− ε)nγ(T ) 1
γ(T )

∆
n = (1− ε)∆, which means that the outliers make up a

constant fraction of the optimal cost.

Now this implies that cost(T \F, c∗) ≤ ∆− (1−ε)∆ = ε∆, which we can leverage in the following
way to bound the number of curves with medium contribution. We have

ε∆ ≥ cost(T \ F, c∗) = cost(M ∪̇C, c∗) ≥ cost(M, c∗) ≥ |M | · r2 = |M | · 2ε∆

n
.

Rearranging yields the desired bound |M | ≤ ε∆
2ε∆ · n = n

2 .

Let A be the event that an element sampled uniformly from T is contained in C. By the disjoint
union, the probability for this event can be bounded by

Pr[A] =
|C|
n

=
|T | − |M | − |F |

n
≥
n− n

2 − nγ(T )

n
=

1

2
− γ(T ) =: ν(T ).
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Figure 5: Distributions of curves (for simplicity represented as points) around their median. The
red circles represent the radii r1, r2 defining the sets of far, medium and close curves (cf. proof of
Theorem 12, best viewed in color). The left plot shows a “typical” distribution where the median
yields a good representative of the data that is robust against outliers. There is a reasonable but not too
large number of outliers, that are far away from the center and many curves are close to the optimal
median. Such distributions typically arise in physical domains. In such a situation, the sampling
algorithm of Theorem 12 yields a (1 + ε)-approximation. In the right plot we see a distribution which
is much more uniform. Most points are in an annulus about the average distance, there are no far
away outliers, and few curves close to the optimal. To find one of the latter, the (1+ε)-approximation
needs too many samples. Note however, that the same algorithm yields a (2 + ε)-approximation via
Theorem 11 that works in general for all inputs.
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Untypical distribution

The probability that all of `S = 1
1/2−γ(T ) ln( 2

δ ) i.i.d. uniform samples from T fail to hit C is thus

bounded by (1− ν(T ))
1

ν(T )
ln( 2

δ ) ≤ e− ln( 2
δ ) = δ

2 .

Thus, with probability at least 1− δ
2 our sample contains at least one c̃ ∈ C such that dF (c̃, c∗) ≤ r2.

Finally, we have by repeated use of the triangle inequality that

cost(T, c̃) ≤ cost(T, c∗) + n · dF (c̃, c∗) ≤ cost(T, c∗) + n · r2

≤ cost(T, c∗) + n · 2εcost(T, c∗)

n
≤ (1 + 2ε) cost(T, c∗).

As previously we sample a logarithmic number of witnesses `W = 64
ε2 ln( 2`S

δ ) such that by Theo-
rem 10 and an application of the union bound the probability that any center that is worse than c̃ by a
factor of more than (1 + ε) has lower cost than c̃ with respect to W is bounded by∑

s∈S
exp

(
−ε

2`W
64

)
≤ |S| · δ

2`S
=
δ

2
.

Thus with probability at least 1− δ we have that both, our sample S contains a (1 + 2ε)-approximate
solution c̃ and any c′ ∈ S that evaluates equal or better than c̃ on the sample W is within (1 + ε) to
the cost of c̃. Thus cost(T, c′) ≤ (1 + ε)(1 + 2ε) cost(T, c∗) ≤ (1 + 4ε) cost(T, c∗).

We conclude the proof by rescaling ε by 1
4 .

Proof of Theorem 14. We reduce from the equality test communication problem on bit-strings of
size m each. The deterministic communication complexity of this problem is Ω(m) (Wegener, 2005,
Theorem 15.2.2).
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In this setting Alice and Bob are given bit-strings A,B : {1, . . . ,m} → {0, 1} and their task is to
decide whether there exists at least one i ∈ {1, . . . ,m} such that A[i] 6= B[i] or not with as little
communication as possible. We give a one-way protocol for this problem, where only one message
from Alice to Bob is allowed.

In a first step, Alice and Bob construct from their bit-strings polygonal curves α, β with 4m vertices
each. Both curves consist of one gadget per bit. These are either straight-line- or zigzag-gadgets,
depending on the value of the respective bit. Specifically, for i ∈ {1, . . . ,m} we define the vertices
of α:

If A[i] = 0 then vα4i−3 := 2i, vα4i−2 := 2i+ 2/3, vα4i−1 := 2i+ 4/3 and vα4i := 2i+ 2.
Else, if A[i] = 1 then vα4i−3 := 2i, vα4i−2 := 2i+ 2, vα4i−1 := 2i and vα4i := 2i+ 2.

The vertices vβ4i−3, . . . , v
β
4i of β are defined analogously.

We claim that

1. ∃i ∈ {1, . . . ,m} : A[i] 6= B[i]⇒ dF (α, β) ≥ 1 and

2. ∀i ∈ {1, . . . ,m} : A[i] = B[i]⇒ dF (α, β) = 0.

To prove the first item, fix an arbitrary i ∈ {1, . . . ,m}. W.l.o.g., assume that A[i] 6= B[i] = 1. We
have the vertices vα4i−3 = 2i, vα4i−2 = 2i+ 2, vα4i−1 = 2i and vα4i = 2i+ 2, as well as, vβ4i−3 = 2i,
vβ4i−2 = 2i + 2/3, vβ4i−1 = 2i + 4/3 and vβ4i = 2i + 2. Let g ∈ arg infh∈Hmaxt∈[0,1]‖α(t) −
β(h(t))‖. Now, assume that dF (α, β) < 1. This means, that g must map vα4i−3 = 2i, vα4i−2 = 2i+ 2

and vα4i−1 = 2i to some points that lie closer than 2i + 1 ∈ vβ4i−2v
β
4i−1. This is a contradiction,

because g is required to be non-decreasing. Thus, in the optimal case vα4i−2 and vα4i−1 must be
mapped to some points infinitesimally close to 2i+ 1.

To prove the second item, observe that by symmetry of the construction, α and β represent the same
curve and therefore dF (α, β) = 0.

Now, suppose there exist oblivious functions S andE not depending on the data such that dF (α, β) ≤
E(S(α), β) ≤ η · dF (α, β), for an arbitrary η ∈ [1,∞).

Alice computes the compressed representation S(α) and communicates S(α) to Bob. Bob evaluates
the estimator E(S(α), β).

If E(S(α), β) = 0 then dF (α, β) ≤ E(S(α), β) = 0.

If E(S(α), β) > 0 then dF (α, β) ≥ E(S(α), β)/η > 0.

Thus, Bob can distinguish the above two cases and therefore solve the equality test problem, which
implies that S(α) consists of Ω(m) bits.

Proof of Theorem 15. We reduce from the set disjointness communication problem on bit strings
of size m each. These represent subsets of a common ground set. The randomized communication
complexity with public coins is Ω(m) (Håstad and Wigderson, 2007, Theorem 1.2).

Now, Alice and Bob are given their bit-strings A,B : {1, . . . ,m} → {0, 1} and their task is to decide
whether there exists at least one i ∈ {1, . . . ,m} such that A[i] = B[i] = 1 or not with as little
communication as possible. We give a one-way protocol for this problem, where only one message
from Alice to Bob is allowed.

In a first step, Alice and Bob construct from their bit-strings polygonal curves α, β with 4m vertices
each. Both curves consist of one gadget per bit. These are either straight-line- or notch-gadgets,
depending on the value of the respective bit. Thus, for i ∈ {1, . . . ,m} we define the vertices of α:

If A[i] = 0 then vα4i−3 := (4i, 0), vα4i−2 := (4i, 0), vα4i−1 := (4i + 4, 0) and vα4i := (4i + 4, 0).
Otherwise vα4i−3 := (4i, 0), vα4i−2 := (4i, 1), vα4i−1 := (4i+ 4, 1) and vα4i := (4i+ 4, 0).

And we define the vertices of β:

If B[i] = 0 then vβ4i−3 := (4i, 0), vβ4i−2 := (4i, 0), vβ4i−1 := (4i + 4, 0) and vβ4i := (4i + 4, 0).
Otherwise vβ4i−3 := (4i, 0), vβ4i−2 := (4i,−1), vβ4i−1 := (4i+ 4,−1) and vβ4i := (4i+ 4, 0).
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We claim that

1. ∃i ∈ {1, . . . ,m} : (A[i] = B[i] = 1)⇒ dF (α, β) ≥ 2 and

2. ∀i ∈ {1, . . . ,m} : (A[i] = 0 ∨B[i] = 0)⇒ dF (α, β) <
√

2.

To prove the first item, fix an arbitrary i ∈ {1, . . . ,m}. If A[i] = B[i] = 1, we have the vertices
vα4i−3 = (4i, 0), vα4i−2 = (4i, 1), vα4i−1 = (4i+4, 1) and vα4i = (4i+4, 0), as well as, vβ4i−3 = (4i, 0),
vβ4i−2 = (4i,−1), vβ4i−1 = (4i+4,−1) and vβ4i = (4i+4, 0). Let g ∈ arg infh∈Hmaxt∈[0,1]‖α(t)−
β(h(t))‖. Now, assume that dF (α, β) < 2. This means, that g must map (4i+ 2, 1) ∈ vα4i−2v

α
4i−1 to

some point that lies closer than (4i+ 2,−1) ∈ vβ4i−2v
β
4i−1. This is a contradiction, because the circle

of radius 2 around (4i+ 2, 1) does only intersect one point of β, namely (4i+ 2,−1). In particular
vβ4i−3 and vβ4i have distance

√
5 > 2.

To prove the second item, assume w.l.o.g. that A[i] 6= B[i] for all i ∈ {1, . . . ,m}. Otherwise α
and β represent the same curve and have distance 0. Let m = 1 and w.l.o.g. assume that B[1] = 1.
Then we have the vertices vα1 = (4, 0), vα2 = (4, 0), vα3 = (4 + 4, 0) and vα4 = (4 + 4, 0), as well as
vβ1 = (4, 0), vβ2 = (4,−1), vβ3 = (4 + 4,−1) and vβ4 = (4 + 4, 0). Let g be a reparameterization that

maps vα1 to vβ1 and vα4 to vβ4 , as well as vβ1 v
β
2 and vβ3 v

β
4 to some infinitesimally small sub-segment of

vα1 v
α
4 each. Since these sub-segments have length less than 1 each, any point of these is mapped to a

point within distance less than
√

2. Now, let g map the remaining segment vβ2 v
β
3 of β linearly to the

remaining middle sub-segment of vα1 v
α
4 of α. Since this remaining sub-segment has length larger

than 2, again any point is mapped to a point within distance less than
√

2. Since we can inductively
apply this argument for any m > 1, i.e., any number of gadgets, we conclude that dF (α, β) <

√
2.

Now, suppose there exist oblivious randomized functions S and E not depending on the data such
that dF (α, β) ≤ E(S(α), β) ≤ η · dF (α, β) with constant probability, for an arbitrary η ∈ [1,

√
2].

Alice computes the compressed representation S(α) using some of the public coins and communicates
S(α) to Bob. Bob evaluates the estimator E(S(α), β).

If E(S(α), β) < 2 then with constant probability dF (α, β) ≤ E(S(α), β) < 2.

If E(S(α), β) ≥ 2 then with constant probability dF (α, β) ≥ E(S(α), β)/
√

2 ≥
√

2.

Thus, Bob can distinguish the above two cases and therefore solve the set disjointness problem with
constant probability, which implies that S(α) consists of Ω(m) bits.
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