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A Proof of Theorem 1

First, we present an easy lemma that uses our topological conditions on the neighborhood function.

Definition 1. A binary relation R ⊂ X ×Y , or equivalently a set-valued function X → 2Y , is upper
hemicontinuous if it has the following property. For all open sets V ⊆ Y and points x ∈ X such that
R(x) ⊆ S, x has an open neighborhood U such that R(U) ⊆ V . Equivalently, RT (Y \ V ) is closed.

Lemma 1. Suppose that the adversarial constraint function N is upper hemicontinuous, and N(x)
is nonempty and closed for all x ∈ X . Then the cost function cN ◦ cTN is lower semicontinuous.

Proof. For each point (x, x′) such that (cN ◦ cTN )(x, x′) = 1, we will find an open neighborhood
with the same cost. Thus cN ◦ cTN is the indicator function of an open set and is lower semicontinuous.

The sets N(x) and N(x′) must be disjoint because (cN ◦ cTN )(x, x′) = 1. They are closed, and
X ′ is a normal space, so they have disjoint open neighborhoods V and V ′. Because N is upper
hemicontinuous, x and x′ have open neighborhoods U and U ′ such that R(U) ⊆ V and R(U ′) ⊆ V ′.
Because V and V ′ are disjoint, cN ◦ cTN is one everywhere in U × U ′.

For the proof of Theorem 1 we need to use the concept of a cyclically monotone set [1].

Definition 2. A subset Γ ⊆ X × Y is said to be c-cyclically monotone if, for all n ∈ N and all
families of points (x, y) ∈ Γn ⊆ Xn × Yn,

n−1∑
i=0

c(xi, yi) ≤
n−1∑
i=0

c(xi, yi+1)

(with the convention yn = y0 ).

Proof of Theorem 1. Abbreviate cN ◦ cTN as c. From Lemma 1, the cost function c is lower-
semicontinuous. From Theorem 5.10 (ii), there is a set Γ ⊆ X ×X that is measureable, is c-cyclically
monotone, and such that every optimal coupling is concentrated on it.

We need to find f, g : X → R such that c(x, y) ≥ g(y)−f(x) everywhere and c(x, y) ≤ g(y)−f(x)
for (x, y) ∈ Γ. The former property means that f and g are admissible potentials and the latter means
that they are optimal in the dual transportation problem. A classifier h can be constructed from any
pair of admissible {0, 1}-valued potentials.
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For all i ≥ 0, let

A0 = {x ∈ X : ∃y′ ∈ X s.t. c(x, y′) = 1, (x, y′) ∈ Γ}
A′i+1 = {y′ ∈ X : ∃x ∈ Ai s.t. c(x, y′) = 0}
Ai+1 = {x ∈ X : ∃y′ ∈ A′i+1 s.t. c(x, y′) = 0, (x, y′) ∈ Γ}
B0 = {y ∈ X : ∃x′ ∈ X s.t. c(x′, y) = 1, (x′, y) ∈ Γ}

B′i+1 = {x′ ∈ X : ∃y ∈ Bi s.t. c(x′, y) = 0}
Bi+1 = {y ∈ X : ∃x′ ∈ B′i+1 s.t. c(x′, y) = 0, (x′, y) ∈ Γ}

Further define A = ∪i≥0Ai, A′ = ∪i≥1A
′
i, B = ∪i≥0Bi, and B′ = ∪i≥1B

′
i. Observe that

A′ = {y ∈ X : ∃x ∈ A s.t. c(x, y) = 0} and B′ = {x ∈ X : ∃y ∈ B s.t. c(x, y) = 0}. If we
let g(y) = 1(B), then f(x) = 1(B′) = supy g(y) − c(x, y), i.e. the largest function such that
g(y)− f(x) ≤ c(x, y) everywhere. Alternative choices for f and g come from A and A′. If we let
f(x) = 1− 1(A), then g(y) = 1− 1(A′) = infx f(x) + c(x, y).

For all x ∈ A, there is some j and sequences (x0, · · · , xj−1) and (y′0, · · · , y′j−1) such that xj−1 = x,
xi ∈ Ai, and y′i+1 ∈ A′i+1 that witness this. Similarly, for all y ∈ B, there is some k and sequences
(x′0, · · · , x′k−1) and (y0, · · · , yk−1) such that yk−1 = y, yi ∈ Bi, and x′i ∈ B′i. Now we have

j−1∑
i=0

c(xi, y
′
i) +

k−1∑
i=0

c(x′i, yi) = 2

and
j−1∑
i=1

c(xi−1, y
′
i) +

k−1∑
i=1

c(x′i−1, yi) + c(x′0, y
′
0) + c(xj−1, yk−1) = c(x′0, y

′
0) + c(xj−1, yk−1).

From the cyclic monotonicity of Γ and the fact that c is always at most 1, c(x′0, y
′
0) = c(xj−1, yk−1) =

1. Thus c(x, y) = 1 for all (x, y) ∈ A×B. This means that A and B′ are disjoint and B and A′ are
disjoint.

Now consider some (x, y) ∈ Γ. If c(x, y) = 1, then x ∈ A0, y ∈ B0, so (x, y) ∈ A × B. If
c(x, y) = 0, (x, y) is in one of A × A′, B′ × B, or (X \ A \ B′) × (X \ A′ \ B). We can now
easily check that for g(y) = 1(B) and f(x) = 1(B′), g(y)− f(x) = c(x, y) everywhere in Γ. The
choices g(y) = 1(X \A′) and f(x) = 1(X \A) work similarly.

Finally, we have

E[g(X−1)− f(X1)]

= Pr[h̃(X−1) = −1]− Pr[h̃(X1) 6= 1]

= 1− Pr[h̃(X1) 6= 1]− Pr[h̃(X−1) 6= −1]

= 1− Pr[h(X̃1) 6= 1]− Pr[h(X̃−1) 6= −1]

= 1− 2L(N,h, P ).

B Full Proof of Theorem 2

For a closed convex ball B ⊆ Rd, define the cone CB ⊆ Rd+1, CB = {(z, α) : α ≥ 0, z ∈ αB}.
Observe that CB is convex and for c ≥ 0, (z, α) ∈ CB implies (cz, cα) ∈ CB. Thus CB is indeed a
cone. From this, define the norm ‖z‖B = min{α : (z, α) ∈ CB}. Thus CB = {(z, α) : ‖z‖B ≤ α}.

For a cone C ⊆ Rd, the definition of the dual cone is C∗ = {y ∈ Rd : y>x ≥ 0 ∀x ∈ C}. A
pair (w, γ) ∈ C∗B if and only if w>z + αγ ≥ 0 for all (z, α) ∈ CB. It is enough to check the pairs
(z, ‖z‖B), which gives the condition −w>z ≤ ‖z‖γ.
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This is very close to the ordinary definition of the dual norm. However, when B is not symmetric, the
minus sign matters. If 0 ∈ B, then (0, 1) ∈ CB and the constraint γ ≥ 0 applies to C∗B. However, if
0 6∈ B, C∗B with contain points with negative γ components. In this case, there is no interpretation as
a norm.

B.1 Proof of Lemma 1

Consider the following convex program:

(z, α, y, β) ∈ Rd+1+d+1

min aα+ bβ

(z, α, y, β) ∈ CB × CΣ
z + y = µ

The cone constraint is equivalent to ‖z‖B ≤ α and ‖y‖Σ ≤ β. The equality condition is equivalent
to µ− z − y ∈ {0}, the trivial cone.

The Lagrangian is

L = aα+ bβ − w>(z + y − µ)

=
(
0> a 0> b

)zαy
β

− w> (I 0 I 0)

zαy
β

+ w>µ

The dual is

w ∈ Rd

maxµTw

(−w, a,−w, b) ∈ C∗B × C∗Σ

The cone constraint on w is trivial because the dual of {0} is all of Rd.

If we change the objective of the first program to use a hard constraint on α instead of including it in
the objective, the new primal is

(z, α, y, β) ∈ Rd+1+d+1

min bβ

(z, α, y, β) ∈ CB × CΣ
z + y = µ

α ≤ α′

the new Lagrangian is
L = bβ − w>(z + y − µ)− η(α′ − α).

The new dual is

(w, η) ∈ Rd+1

maxµTw − α′η
η ≥ 0

(−w, η,−w, b) ∈ C∗B × C∗Σ.

Rewriting without any cone notation, combining α with α′, and specializing to b = 1, we have

(z, y, β) ∈ Rd+d+1

minβ

‖z‖B ≤ α
‖y‖Σ ≤ β
z + y = µ
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and
(w, η) ∈ Rd+1

maxµTw − αη
η ≥ 0

‖−w‖∗B ≤ η
‖−w‖∗Σ ≤ 1

From complementary slackness we have−w>z+ηα = 0 and−w>y+bβ = 0. From the constraints,
we have ‖z‖B ≤ α, ‖y‖B ≤ β, ‖−w‖∗B ≤ η, and ‖−w‖∗Σ ≤ b. We have w>z ≤ ‖w‖∗B‖z‖B and
w>y ≤ ‖w‖∗Σ‖y‖Σ. Combining these, all six inequalities are actually equalities.

B.2 Simplification of transportation problem

From Theorem1,
CN ◦ C>N (PX1

, PX−1
) ≤ inf

z∈βB
CTV (P̃X1

, P̃X−1
), (1)

= inf
z∈βB

sup
A
P̃X1

(A)− P̃X−1
(A), (2)

= inf
z∈βB

sup
w

Ex∼N (µ−z,Σ) [1(wᵀx > 0)]− Ex∼N (−µ+z,Σ) [1(wᵀx > 0)]

(3)

= inf
z∈βB

sup
w
Q

(
wᵀz − wᵀµ√

wᵀΣw

)
−Q

(
wᵀµ− wᵀz√

wᵀΣw

)
, (4)

= inf
z∈βB

sup
w

2Q

(
wᵀz − wᵀµ√

wᵀΣw

)
− 1. (5)

As before, since the Q-function decreases monotonically, its supremum is obtained by find-
ing infw

wᵀz−wᵀµ√
wᵀΣw

. The infimum is attained at w∗ = 2Σ−1(z − µ) and its value is√
(z − µ)ᵀΣ−1(z − µ), which implies that

CN ◦ C>N (PX1
, PX−1

) ≤ inf
z∈βB

2Q
(√

(z − µ)ᵀΣ−1(z − µ)
)
− 1. (6)

B.3 Connection to the classification problem

We consider the linear classification function fw(x) = sgn (wᵀx).

Classification accuracy: We define the classification problem with respect to the classification
accuracy E(x,y)∼P [1(fw(x) = y)] = P(x,y)∼P [fw(x) = y], which also equals the standard 0 − 1
loss subtracted from 1. The aim of the learner is to maximize the classification accuracy, i.e. the
classification problem is to find w∗ which is the solution of maxw P(x,y)∼P [fw(x) = y].

Performance with adversary: In the presence of an adversary, the classification problem becomes
max
w

P(x,y)∼P [fw(x+ h(x, y, w)) = y]

= max
w

1

2
Px∼N (µ,Σ) [fw(x+ h(x, 1, w)) = 1] +

1

2
Px∼N (−µ,Σ) [fw(x+ h(x,−1, w)) = −1] .

We will focus on the case with y = 1 for ease of exposition since the analysis is identical. The correct
classification event is then

fw(x+ h(x, 1, w)) = 1,

⇒wᵀ(x+ h(x, 1, w)) > 0,

⇒wᵀx− wᵀ argmax
z∈βB

wᵀz > 0,

⇒wᵀx− max
z∈βB

wᵀz > 0

⇒wᵀx− β‖w‖∗ > 0,
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(a) MNIST
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(b) Fashion MNIST
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(c) CIFAR-10

Figure 1: Variation in minimum 0 − 1 loss (adversarial robustness) as β is varied for ‘3 vs. 7’.
For MNIST and Fashion-MNIST, the loss of a robustly classifier (trained with iterative adversarial
training) is also shown for a PGD adversary with an `∞ constraint.

where ‖ · ‖∗ is the dual norm for the norm associated with B. This gives us the classification
accuracy for the case with y = 1 as maxw Ex∼N (µ,Σ) [1(wᵀx− β‖w‖∗ > 0)]. We now perform a
few changes of variables to obtain an expression in terms of the standard normal distribution. For
the first, we do x′ = x− µ, which gives us maxw Ex′∼N (0,Σ) [1(wᵀx′ + wᵀµ− β‖w‖∗ > 0)]. The
second is x′′ = wᵀx′, which results in maxw Ex′′∼N (0,σ2) [1(x′′ + wᵀµ− β‖w‖∗ > 0)], where σ =
√
wᵀΣw. Finally, we set x′′′ = x′′

σ , leading to maxw Ex′′′∼N (0,1)

[
1(x′′′ + wᵀµ

σ −
β‖w‖∗
σ > 0)

]
.

The classification problem is then

max
w

1

2
Px∼N (µ,Σ) [fw(x+ h(x, 1, w)) = 1] +

1

2
Px∼N (−µ,Σ) [fw(x+ h(x,−1, w)) = −1] ,

(7)

= max
w

Q

(
β‖w‖∗ − wᵀµ√

wᵀΣw

)
. (8)

Since Q(·) is a monotonically decreasing function, it achieves its maximum at w∗ =

minw
β‖w‖∗−wᵀµ√

wᵀΣw
. This is the dual problem to the one described in the previous section.

C Proof of Theorem 3

The proof of Theorem 3 is below. The assumptions and setup are in Section 5 of the main paper.

Proof. Let µ̂ = E[µ|((X1, Y1), . . . , (Xn, Yn)]. A straightforward computation using Bayes rule
shows that Xn+1 ·Yn+1|((X1, Y1), . . . , (Xn, Yn)) ∼ N (µ̂, I). Thus after observing n examples, the
learner is faced with a hypothesis testing problem between two Gaussian distributions with known
parameters. From Theorem 2, the optimal loss for this problem is Q(α∗(β, µ̂)).

Furthermore, µ̂ = 1
m+n

∑n
i=1Xi and µ̂ ∼ N (0, n

m(m+n)I). Averaging over the training examples,
we see that the expected loss is

E[Q(α∗(β, µ̂))] = Pr[T ≥ α∗(β, µ̂)] = Pr[(µ̂, T ) ∈ S(1, β)] = Pr[Y ∈ S(ρ, ρβ)]

where T ∈ R, T ∼ N(0, 1) and V ∈ Rd+1, V ∼ N(0, I).

D Results for an `∞ adversary

In Figures 1a and 1b, we see that the lower bound in the case of `∞ adversaries is not very informative
for checking if a robust classifier has good adversarial robustness since the bound is almost always 0,
except at β = 0.5, in which any two samples can be reached from one another with zero adversarial
cost, reducing the maximum possible classification accuracy to 0.5. This implies that in the `∞
distance, these image datasets are very well separated even with an adversary and there exist good
hypotheses h. For MNIST (till β = 0.4) and Fashion MNIST (β = 0.3), we find that iterative
adversarial training is effective.

For the CIFAR-10 dataset 1c, non-zero adversarial robustness occurs after β = 0.2. However, current
defense methods have only shown robust classification with β up to 0.1, where the lower bound is 0.
In future work, we will explore the limits of β till which robust classification is possible with neural
networks.
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