
A Direct Õ(1/ε) Iteration Parallel Algorithm for
Optimal Transport

Arun Jambulapati, Aaron Sidford, and Kevin Tian
Stanford University

{jmblpati,sidford,kjtian}@stanford.edu

Abstract

Optimal transportation, or computing the Wasserstein or “earth mover’s” distance
between two n-dimensional distributions, is a fundamental primitive which arises
in many learning and statistical settings. We give an algorithm which solves the
problem to additive ε accuracy with Õ(1/ε) parallel depth and Õ

(
n2/ε

)
work.

[BJKS18, Qua19] obtained this runtime through reductions to positive linear pro-
gramming and matrix scaling. However, these reduction-based algorithms use
subroutines which may be impractical due to requiring solvers for second-order
iterations (matrix scaling) or non-parallelizability (positive LP). Our methods
match the previous-best work bounds by [BJKS18, Qua19] while either improv-
ing parallelization or removing the need for linear system solves, and improve
upon the previous best first-order methods running in time Õ(min(n2/ε2, n2.5/ε))
[DGK18, LHJ19]. We obtain our results by a primal-dual extragradient method,
motivated by recent theoretical improvements to maximum flow [She17].

1 Introduction

Optimal transport is playing an increasingly important role as a subroutine in tasks arising
in machine learning [ACB17], computer vision [BvdPPH11, SdGP+15], robust optimization
[EK18, BK17], and statistics [PZ16]. Given these applications for large scale learning, design-
ing algorithms for efficiently approximately solving the problem has been the subject of extensive
recent research [Cut13, AWR17, GCPB16, CK18, DGK18, LHJ19, BJKS18, Qua19].

Given two vectors r and c in the n-dimensional probability simplex ∆n and a cost matrix C ∈
Rn×n≥0

1, the optimal transportation problem is

min
X∈Ur,c

〈C,X〉, where Ur,c
def
=
{
X ∈ Rn×n≥0 , X1 = r, X>1 = c

}
. (1)

This problem arises from defining the Wasserstein or Earth mover’s distance between discrete prob-
ability measures r and c, as the cheapest coupling between the distributions, where the cost of the
coupling X ∈ Ur,c is 〈C,X〉. If r and c are viewed as distributions of masses placed on n points in
some space (typically metric), the Wasserstein distance is the cheapest way to move mass to trans-
form r into c. In (1), X represents the transport plan (Xij is the amount moved from ri to cj) and
C represents the cost of movement (Cij is the cost of moving mass from ri to cj).

Throughout, the value of (1) is denoted OPT. We call X̂ ∈ Ur,c an ε-approximate transportation
plan if 〈C, X̂〉 ≤ OPT + ε. Our goal is to design an efficient algorithm to produce such a X̂ .

1Similarly to earlier works, we focus on square matrices; generalizations to rectangular matrices are straight-
forward.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

1.1 Our Contributions

Our main contribution is an algorithm running in Õ(‖C‖max/ε) parallelelizable iterations2 and
Õ(n2‖C‖max/ε) total work producing an ε-approximate transport plan.

Matching runtimes were given in the recent work of [BJKS18, Qua19]. Their runtimes were ob-
tained via reductions to matrix scaling and positive linear programming, each well-studied problems
in theoretical computer science. However, the matrix scaling algorithm is a second-order Newton-
type method which makes calls to structured linear system solvers, and the positive LP algorithm
is not parallelizable (i.e. has depth polynomial in dimension). These features potentially limit the
practicality of these algorithms. The key remaining open question this paper addresses is, is there an
efficient first-order, parallelizable algorithm for approximating optimal transport? We answer this
affirmatively and give an efficient, parallelizable primal-dual first-order method; the only additional
overhead is a scheme for implementing steps, incurring roughly an additional log ε−1 factor.

Our approach heavily leverages the recent improvement to the maximum flow problem, and more
broadly two-player games on a simplex (`1 ball) and a box (`∞ ball), due to the breakthrough
work of [She17]. First, we recast (1) as a minimax game between a box and a simplex, proving
correctness via a rounding procedure known in the optimal transport literature. Second, we show
how to adapt the dual extrapolation scheme under the weaker convergence requirements of area-
convexity, following [She17], to obtain an approximate minimizer to our primal-dual objective in
the stated runtime. En route, we slightly simplify analysis in [She17] and relate it more closely to
the existing extragradient literature.

Finally, we give preliminary experimental evidence showing our algorithm can be practical, and
highlight some open directions in bridging the gap between theory and practice of our method, as
well as accelerated gradient schemes [DGK18, LHJ19] and Sinkhorn iteration.

1.2 Previous Work

Optimal Transport. The problem of giving efficient algorithms to find ε-approximate transport
plans X̂ which run in nearly linear time3 has been addressed by a line of recent work, starting with
[Cut13] and improved upon in [GCPB16, AWR17, DGK18, LHJ19, BJKS18, Qua19]. We briefly
discuss their approaches here.

Works by [Cut13, AWR17] studied the Sinkhorn algorithm, an alternating minimization scheme.
Regularizing (1) with an η−1 multiple of entropy and computing the dual, we arrive at the problem

min
x,y∈Rn

1>BηC(x, y)1− r>x− c>y where BηC(x, y)ij = exi+yj−ηCij .

This problem is equivalent to computing diagonal scalings X and Y for M = exp(−ηC) such that
XMY has row sums r and column sums c. The Sinkhorn iteration alternates fixing the row sums
and the column sums by left and right scaling by diagonal matrices until an approximation of such
scalings is found, or equivalently until XMY is close to being in Ur,c.
As shown in [AWR17], we can round the resulting almost-transportation plan to a transportation
plan which lies in Ur,c in linear time, losing at most 2‖C‖max(‖X1− r‖1 +

∥∥X>1− c∥∥
1
) in

the objective. Further, [AWR17] showed that Õ(‖C‖3max/ε
3) iterations of this scheme sufficed

to obtain a matrix which ε/‖C‖max-approximately meets the demands in `1 with good objective
value, by analyzing it as an instance of mirror descent with an entropic regularizer. The same
work proposed an alternative algorithm, Greenkhorn, based on greedy coordinate descent. [DGK18,
LHJ19] showed that Õ

(
‖C‖2max/ε

2
)

iterations, corresponding to Õ
(
n2‖C‖2max/ε

2
)

work, suffice
for both Sinkhorn and Greenkhorn, the current state-of-the-art for this line of analysis.

An alternative approach based on first-order methods was studied by [DGK18, LHJ19]. These works
considered minimizing an entropy-regularized Equation 1; the resulting weighted softmax function
is prevalent in the literature on approximate linear programming [Nes05], and has found similar

2Our iterations consist of vector operations and matrix-vector products, which are easily parallelizable.
Throughout ‖C‖max is the largest entry of C.

3We use “nearly linear” to describe complexities which have an n2polylog(n) dependence on the dimension
(where the size of input C is n2), and polynomial dependence on ‖C‖max , ε

−1.

2

applications in near-linear algorithms for maximum flow [She13, KLOS14, ST18] and positive linear
programming [You01, AO15]. An unaccelerated algorithm, viewable as `∞ gradient descent, was
analyzed in [DGK18] and ran in Õ(‖C‖max/ε

2) iterations. Further, an accelerated algorithm was
discussed, for which the authors claimed an Õ(n1/4‖C‖0.5max/ε) iteration count. [LHJ19] showed
that the algorithm had an additional dependence on a parameter as bad as n1/4, roughly due to a
gap between the `2 and `∞ norms. Thus, the state of the art runtime in this line is the better of
Õ
(
n2.5‖C‖0.5max/ε

)
, Õ

(
n2‖C‖max/ε

2
)

operations. The dependence on dimension of the former
of these runtimes matches that of the linear programming solver of [LS14, LS15], which obtain
a polylogarithmic dependence on ε−1, rather than a polynomial dependence; thus, the question of
obtaining an accelerated ε−1 dependence without worse dimension dependence remained open.

This was partially settled in [BJKS18, Qua19], which studied the relationship of optimal trans-
port to fundamental algorithmic problems in theoretical computer science, namely positive linear
programming and matrix scaling, for which significantly-improved runtimes have been recently ob-
tained [AO15, ZLdOW17, CMTV17]. In particular, they showed that optimal transport could be
reduced to instances of either of these objectives, for which Õ (‖C‖max/ε) iterations, each of which
required linear O(n2) work, sufficed. However, both of these reductions are based on black-box
methods for which practical implementations are not known; furthermore, in the case of positive
linear programming a parallel Õ(1/ε)-iteration algorithm is not known. [BJKS18] also showed any
polynomial improvement to the runtime of our paper in the dependence on either ε or n would result
in maximum-cardinality bipartite matching in dense graphs faster than Õ(n2.5) without fast matrix
multiplication [San09], a fundamental open problem unresolved for almost 50 years [HK73].

Year Author Complexity Approach 1st-order Parallel

2015 [LS15] Õ(n2.5) Interior point No No
2017-19 [AWR17] Õ(n2‖C‖2max/ε

2) Sink/Greenkhorn Yes Yes
2018 [DGK18] Õ(n2‖C‖2max/ε

2) Gradient descent Yes Yes
2018-19 [LHJ19] Õ(n2.5‖C‖max/ε) Acceleration Yes Yes

2018 [BJKS18] Õ(n2‖C‖max/ε) Matrix scaling No Yes
2018-19 [BJKS18, Qua19] Õ(n2‖C‖max/ε) Positive LP Yes No

2019 This work Õ(n2‖C‖max/ε) Dual extrapolation Yes Yes
Table 1: Optimal transport algorithms. Algorithms using second-order information use potentially-
expensive SDD system solvers; the runtime analysis of Sink/Greenkhorn is due to [DGK18, LHJ19].

Specializations of the transportation problem to `p metric spaces or arising from geometric settings
have been studied [SA12, AS14, ANOY14]. These specialized approaches seem fundamentally
different than those concerning the more general transportation problem.

Finally, we note recent work [ABRW18] showed the promise of using the Nyström method for low-
rank approximations to achieve speedup in theory and practice for transport problems arising from
specific metrics. As our method is based on matrix-vector operations, where low-rank approxima-
tions may be applicable, we find it interesting to see if our method can be combined with these
improvements.

Remark. During the revision process for this work, an independent result [LMR19] was published
to arXiv, obtaining improved runtimes for optimal transport via a combinatorial algorithm. The
work obtains a runtime of Õ(n2‖C‖max/ε + n‖C‖2max/ε

2), which is worse than our runtime by a
low-order term. Furthermore, it does not appear to be parallelizable.

Box-simplex objectives. Our main result follows from improved algorithms for bilinear minimax
problems over one simplex domain and one box domain developed in [She17]. This fundamental
minimax problem captures `1 and `∞ regression over a simplex and box respectively, and inspired
the development of conjugate smoothing [Nes05] as well as mirror prox / dual extrapolation [Nem04,
Nes07]. These latter two approaches are extragradient methods (using two gradient operations per
iteration rather than one) for approximately solving a family of problems, which includes convex
minimization and finding a saddle point to a convex-concave function. These methods simulate
backwards Euler discretization of the gradient flow, similar to how mirror descent simulates forwards

3

Euler discretization [DO19]. The role of the extragradient step is a fixed point iteration (of two steps)
which is a good approximation of the backwards Euler step when the operator is Lipschitz.

Nonetheless, the analysis of [Nem04, Nes07] fell short in obtaining a 1/T rate of convergence
without worse dependence on dimension for these domains, where T is the iteration count (which
would correspond to a Õ (1/ε) runtime for approximate minimization). The fundamental barrier was
that over a box, any strongly-convex regularizer in the `∞ norm has a dimension-dependent domain
size (shown in [ST18]). This barrier can also be viewed as the reason for the worse dimension
dependence in the accelerated scheme of [DGK18, LHJ19].

The primary insight of [She17] was that previous approaches attempted to regularize the schemes of
[Nem04, Nes07] with separable regularizers, i.e. the sum of a regularizer which depends only on the
primal block and one which depends only on the dual. If, say, the domain of the primal block was a
box, then such a regularization scheme would run into the `∞ barrier and incur a worse dependence
on dimension. However, by more carefully analyzing the requirements of these algorithms, [She17]
constructed a non-separable regularizer with small domain size, satisfying a property termed area-
convexity which sufficed for provable convergence of dual extrapolation [Nes07]. Interestingly, the
property seems specialized to dual extrapolation and not mirror prox [Nem04].

2 Overview

First, in Section 2.1 we first describe a reformulation of (1) as a primal-dual objective, which we
solve approximately in Section 3. Then in Section 2.2 we give additional notation critical for our
analysis4. In Section 3 we leverage this to give an overview of our main algorithm.

2.1 `1-regression formulation

We adapt the view of [BJKS18, Qua19] of the objective (1) as a positive linear program. Let d be the
(vectorized) cost matrix C associated with the instance and let ∆n2

be the n2 dimensional simplex5.
We recall r, c are specified row and column sums with 1>r = 1>c = 1. The optimal transport
problem can be written as, for m = n2, and A ∈ {0, 1}2n×m, b ∈ R2n

≥0, for A the (unsigned)
edge-incidence matrix of the underlying bipartite graph and b the concatenation of r and c.

min
x∈∆m,Ax=b

d>x. (2)

A =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 , b =

1/3
1/3
1/3
1/3
1/3
1/3

 .

Figure 1: Edge-incidence matrix A of a 3× 3 bipartite graph and uniform demands.

In particular, A is the 0-1 matrix on V × E such that Ave = 1 iff v is an endpoint of edge e. We
summarize some additional properties of the constraint matrix A and vector b.

Fact 2.1. A, b have the following properties.

1. A ∈ {0, 1}2n×m has 2-sparse columns and n-sparse rows. Thus ‖A‖1→1 = 2.

2. b> =
(
r> c>

)
, so that ‖b‖1 = 2.

3. A has 2n2 nonzero entries.
4Because many of the objects defined in Section 2.2 are developed in Section 2.1, we postpone their state-

ment, but refer the reader to Section 2.2 for any ambiguous definitions.
5We use d because C often arises from distances in a metric space, and to avoid overloading c.

4

Section 4 recalls the proof of the following theorem, which first appeared in [AWR17].

Theorem 2.2 (Rounding guarantee, Lemma 7 in [AWR17]). There is an algorithm which takes x̃
with ‖Ax̃− b‖1 ≤ δ and produces x̂ in O(n2) time, with

Ax̂ = b, ‖x̃− x̂‖1 ≤ 2δ.

We now show how the rounding procedure gives a roadmap for our approach. Consider the following
`1 regression objective over the simplex (a similar penalized objective appeared in [She13]):

min
x∈∆m

d>x+ 2 ‖d‖∞ ‖Ax− b‖1 . (3)

We show that the penalized objective value is still OPT, and furthermore any approximate minimizer
yields an approximate transport plan.

Lemma 2.3 (Penalized `1 regression). The value of (3) is OPT. Also, given x̃, an ε-approximate
minimizer to (3), we can find ε-approximate transportation plan x̂ in O(n2) time.

Proof. Recall OPT = minx∈∆m,Ax=b d
>x. Let x̃ be the minimizing argument in (3). We claim

there is some optimal x̃ with Ax̃ = b; clearly, the first claim is then true. Suppose otherwise, and let
‖Ax̃− b‖1 = δ > 0. Then, let x̂ be the result of the algorithm in Theorem 2.2, applied to x̃, so that
Ax̂ = b, ‖x̃− x̂‖1 ≤ 2δ. We then have

d>x̂+ 2 ‖d‖∞ ‖Ax̂− b‖1 = d>(x̂− x̃) + d>x̃ ≤ d>x̃+ ‖d‖∞ ‖x̂− x̃‖1 ≤ d
>x̃+ 2 ‖d‖∞ δ.

The objective value of x̂ is no more than of x̃, a contradiction. By this discussion, we can take any
approximate minimizer to (3) and round it to a transport plan without increasing the objective.

Section 3 proves Theorem 2.4, which says we can efficiently find an approximate minimizer to (3).

Theorem 2.4 (Approximate `1 regression over the simplex). There is an algorithm (Algorithm 1)
taking input ε, which has O((‖d‖∞ log n log γ)/ε) parallel depth for γ = log n · ‖d‖∞ /ε, and total
work O(n2(‖d‖∞ log n log γ)/ε), and obtains x̃ an ε-additive approximation to the objective in (3).

We will approach proving Theorem 2.4 through a primal-dual viewpoint, in light of the following
(based on the definition of the `1 norm):

min
x∈∆m

d>x+ 2 ‖d‖∞ ‖Ax− b‖1 = min
x∈∆m

max
y∈[−1,1]2n

d>x+ 2 ‖d‖∞
(
y>Ax− b>y

)
. (4)

Further, a low-duality gap pair to (4) yields an approximate minimizer to (3).

Lemma 2.5 (Duality gap to error). Suppose x, y is feasible (x ∈ ∆m, y ∈ [−1, 1]2n), and for any
feasible u, v,(

d>x+ 2 ‖d‖∞
(
v>Ax− b>v

))
−
(
d>u+ 2 ‖d‖∞

(
y>Au− b>y

))
≤ δ.

Then, we have d>x+ 2 ‖d‖∞ ‖Ax− b‖1 ≤ δ + OPT.

Proof. The result follows from maximizing over v, and noting that for the minimizing u,

d>u+ 2 ‖d‖∞
(
y>Au− b>y

)
≤ d>u+ 2 ‖d‖∞ ‖Au− b‖1 = OPT.

Correspondingly, Section 3 gives an algorithm which obtains (x, y) with bounded duality gap within
the runtime of Theorem 2.4.

5

2.2 Notation

R≥0 is the nonnegative reals. 1 is the all-ones vector of appropriate dimension when clear. The
probability simplex is ∆d def

= {v | v ∈ Rd≥0,1
>v = 1}. We say matrix X is in the simplex of

appropriate dimensions when its (nonnegative) entries sum to one.

‖·‖1 and ‖·‖∞ are the `1 and `∞ norms, i.e. ‖v‖1 =
∑
i |vi| and ‖v‖∞ = maxi |vi|. When A is

a matrix, we let ‖A‖p→q be the matrix operator norm, i.e. sup‖v‖p=1 ‖Av‖q , where ‖·‖p is the `p
norm. In particular, ‖A‖1→1 is the largest `1 norm of a column of A.

Throughout log is the natural logarithm. For x ∈ ∆d, h(x) =
∑
i∈[d] xi log xi is (negative) entropy

where 0 log 0 = 0 by convention. It is well-known that maxx∈∆d h(x)−minx∈∆d h(x) = log d.

We also use the Bregman divergence of a regularizer and the proximal operator of a divergence.
Definition 2.6 (Bregman divergence). For (differentiable) regularizer r and z, w in its domain, the
Bregman divergence from z to w is

V rz (w)
def
= r(w)− r(z)− 〈∇r(z), w − z〉.

When r is convex, the divergence is nonnegative and convex in the argument (w in the definition).
Definition 2.7 (Proximal operator). For (differentiable) regularizer r, z in its domain, and g in the
dual space (when the domain is in Rd, so is the dual space), we define the proximal operator as

Proxrz(g)
def
= argminw {〈g, w〉+ V rz (w)} .

Several variables have specialized meaning throughout. All graphs considered will be on 2n vertices
with m edges, i.e. m = n2. A ∈ R2n×m is the edge-incidence matrix. d is the vectorized cost
matrix C. b is the constraint vector, concatenating row and column constraints r, c. In algorithms
for solving (4), x and y are primal (in a simplex) and dual (in a box) variables respectively. In
Section 3, we adopt the linear programming perspective where the decision variable x ∈ ∆m is
a vector. In Section 4, for convenience we take the perspective where X is an unflattened n × n
matrix. Ur,c is the feasible polytope: when the domain is vectors, Ur,c is x | Ax = b, and when it is
matrices, Ur,c is X | X1 = r,X>1 = c (by flattening X this is consistent).

3 Main Algorithm

This section describes our algorithm for finding a primal-dual pair (x, y) with a small duality gap,
with respect to the objective in (4), which we restate here for convenience:

min
x∈X

max
y∈Y

d>x+ 2 ‖d‖∞
(
y>Ax− b>y

)
, X def

= ∆m, Y def
= [−1, 1]2n. (Restatement of (4))

Our algorithm is a specialization of the algorithm in [She17]. One of our technical contributions in
this regard is an analysis of the algorithm which more closely relates it to the analysis of dual extrap-
olation [Nes07], an algorithm for finding approximate saddle points with a more standard analysis.
In Section 3.1, we give the algorithmic framework and convergence analysis. In Section B.1, we
provide analysis of an alternating minimization scheme for implementing steps of the procedure.
The same procedure was used in [She17] which claimed without proof the linear convergence rate
of the alternating minimization; we hope the analysis will make the method more broadly accessible
to the optimization community. We defer many proofs to Appendix B.

3.1 Dual Extrapolation Framework

For an objective F (x, y) convex in x and concave in y, the standard way to measure the duality gap is
to define the gradient operator g(x, y) = (∇xF (x, y),−∇yF (x, y)), and show that for z = (x, y)
and any u on the product space, the regret, 〈g(z), z − u〉, is small. Correspondingly, we define

g(x, y)
def
=
(
d+ 2 ‖d‖∞A>y, 2 ‖d‖∞ (b−Ax)

)
.

The dual extrapolation framework [Nes07] requires a regularizer on the product space. The algo-
rithm is simple to state; it takes two “mirror descent-like” steps each iteration, maintaining a state

6

st in the dual space6. A typical setup is a Lipschitz gradient operator and a regularizer which is
the sum of canonical strongly-convex regularizers in the norms corresponding to the product space
X ,Y . However, recent works have shown that this setup can be greatly relaxed and still obtain
similar rates of convergence. In particular, [She17] introduced the following definition.

Definition 3.1 (Area-convexity). Regularizer r is κ-area-convex with respect to operator g if for
any points a, b, c in its domain,

κ

(
r(a) + r(b) + r(c)− 3r

(
a+ b+ c

3

))
≥ 〈g(b)− g(a), b− c〉. (5)

Area-convexity is so named because 〈g(b)−g(a), b−c〉 can be viewed as measuring the “area” of the
triangle with vertices a, b, c with respect to some Jacobian matrix. In the case of bilinear objectives,
the left hand side in the definition of area-convexity is invariant to permuting a, b, c, whereas the
sign of the right hand side can be flipped by interchanging a, c, so area-convexity implies convexity.
However, it does not even imply the regularizer r is strongly-convex, a typical assumption for the
convergence of mirror descent methods.

We state the algorithm for time horizon T ; the only difference from [Nes07] is a factor of 2 in
defining st+1, i.e. adding a 1/2κ multiple rather than 1/κ. We find it of interest to explore whether
this change is necessary or specific to the analysis of [She17].

Algorithm 1 w̄ = Dual-Extrapolation(κ, r, g, T): Dual extrapolation with area-convex r.

Initialize s0 = 0, let z̄ be the minimizer of r.
for t < T do
zt ← Proxrz̄(st).
wt ← Proxrz̄

(
st + 1

κg(zt)
)
.

st+1 ← st + 1
2κg(wt).

t← t+ 1.
end for
return w̄ def

= 1
T

∑
t∈[T] wt.

Lemma 3.2 (Dual extrapolation convergence). Suppose r is κ-area-convex with respect to g. Fur-
ther, suppose for some u, Θ ≥ r(u)− r(z̄). Then, the output w̄ to Algorithm 1 satisfies

〈g(w̄), w̄ − u〉 ≤ 2κΘ

T
.

In fact, by more carefully analyzing the requirements of dual extrapolation we have the following.

Corollary 3.3. Suppose in Algorithm 1, the proximal steps are implemented with ε′/4κ additive
error. Then, the upper bound of the regret in Lemma 3.2 is 2κΘ/T + ε′.

We now state a useful second-order characterization of area-convexity involving a relationship be-
tween the Jacobian of g and the Hessian of r, which was proved in [She17].

Theorem 3.4 (Second-order area-convexity, Theorem 1.6 in [She17]). For bilinear minimax objec-
tives, i.e. whose associated operator g has Jacobian

J =

(
0 M>

−M 0

)
,

and for twice-differentiable r, if for all z in the domain,(
κ∇2r(z) −J

J κ∇2r(z)

)
� 0,

then r is 3κ-area-convex with respect to g.

6In this regard, it is more similar to the “dual averaging” or “lazy” mirror descent setup [Bub15].

7

Finally, we complete the outline of the algorithm by stating the specific regularizer we use, which
first appeared in [She17]. We then prove its 3-area-convexity with respect to g by using Theorem 3.4.

r(x, y) = 2 ‖d‖∞

10
∑
j∈[n]

xj log xj + x>A>(y2)

 , (6)

where (y2) is entry-wise. To give some motivation for this regularizer, one `∞-strongly convex
regularizer is 1

2 ‖y‖
2
2, but over the `∞ ball, this regularizer has large range. The term x>A>(y2) in

(6) captures the curvature required for strong-convexity locally, but has a smaller range due to the
restrictions on x,A. The constants chosen were the smallest which satisfy the assumptions of the
following Lemma 3.5.

Lemma 3.5 (Area-convexity of the Sherman regularizer). For the Jacobian J associated with the
objective in (4) and the regularizer r defined in (6), we have(

∇2r(z) −J
J ∇2r(z)

)
� 0.

We now give the proof of Theorem 2.4, requiring some claims in Appendix B.1 for the complexity
of Algorithm 1. In particular, Appendix B.1 implies that although the minimizer to the proximal
steps cannot be computed in closed form because of non-separability, a simple alternating scheme
converges to an approximate-minimizer in near-constant time.

Proof of Theorem 2.4. The algorithm is Algorithm 1, using the regularizer r in (6). Clearly, in
the feasible region the range of the regularizer is at most 20 ‖d‖∞ log n + 4 ‖d‖∞, where the for-
mer summand comes from the range of entropy and the latter

∥∥A>∥∥∞ = 2. We may choose
Θ = O(‖d‖∞ log n) to be the range of r to satisfy the assumptions of Lemma 3.2, since for all u,
〈∇r(z̄), z̄ − u〉 ≤ 0⇒ V rz̄ (u) ≤ r(u)− r(z̄).

By Theorem 3.4 and Lemma 3.5, r is 3-area-convex with respect to g. By Corollary 3.3, T =
12Θ/ε iterations suffice, implementing each proximal step to ε/12-additive accuracy. Finally, using
Theorem B.5 to bound this implementation runtime concludes the proof.

4 Rounding to Ur,c

We state the rounding procedure in [AWR17] for completeness here, which takes a transport plan X̃
close to Ur,c and transforms it into a plan which exactly meets the constraints and is close to X̃ in
`1, and then prove its correctness in Appendix C. Throughout r(X)

def
= X1, c(X)

def
= X>1.

Algorithm 2 X̂ = Rounding(X̃, r, c): Rounding to feasible polytope

X ′ ← diag
(

min
(

r
r(X̃)

, 1
))

X̃ .

X ′′ ← X ′diag
(

min
(

c
c(X′) , 1

))
.

er ← r − 1>r(X ′′), ec ← c− 1>c(X ′′), E ← 1>er.
X̂ ← X ′′ + 1

E ere
>
c .

return X̂ .

5 Experiments

We show experiments illustrating the potential of our algorithm to be useful in practice, by consider-
ing its performance on computing optimal transport distances on the MNIST dataset and comparing
against algorithms in the literature including APDAMD [LHJ19] and Sinkhorn iteration. All com-
parisons are based on the number of matrix-vector multiplications (rather than iterations, due to our
algorithm’s alternating subroutine), the main computational component of all algorithms considered.

8

(a) Comparison with Sinkhorn iteration with different
parameters.

(b) Comparison with APDAMD [LHJ19] with differ-
ent parameters.

(a) Comparison with Sinkhorn iteration on 20 ran-
domly chosen MNIST digit pairs.

(b) Comparison with APDAMD [LHJ19] on 20 ran-
domly chosen MNIST digit pairs.

While our unoptimized algorithm performs poorly, slightly optimizing the size of the regularizer and
step sizes used results in an algorithm with competitive performance to APDAMD, the first-order
method with the best provable guarantees and observed practical performance. Sinkhorn iteration
outperformed all first-order methods experimentally; however, an optimized version of our algorithm
performed better than conservatively-regularized Sinkhorn iteration, and was more competitive with
variants of Sinkhorn found in practice than other first-order methods.

As we discuss in our implementation details (Appendix D), we acknowledge that implementations
of our algorithm illustrated are not the same as those with provable guarantees in our paper. How-
ever, we believe that our modifications are justifiable in theory, and consistent with those made in
practice to existing algorithms. Further, we hope that studying the modifications we made (step
size, using mirror prox [Nem04] for stability considerations), as well as the consideration of other
numerical speedups such as greedy updates [AWR17] or kernel approximations [ABRW18], will
become fruitful for understanding the potential of accelerated first-order methods in both the theory
and practice of computational optimal transport.

9

Acknowledgements

We thank Jose Blanchet and Carson Kent for helpful conversations. AJ was sup-
ported by NSF Graduate Fellowship DGE-114747. AS was supported by NSF CA-
REER Award CCF-1844855. KT was supported by NSF Graduate Fellowship DGE-
1656518.

References
[ABRW18] Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Weed. Approximating

the quadratic transportation metric in near-linear time. CoRR, abs/1810.10046, 2018.
1.2, 5, D

[ACB17] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-
sarial networks. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 214–223,
2017. 1

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.
Parallel algorithms for geometric graph problems. In Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583,
2014. 1.2

[AO15] Zeyuan Allen Zhu and Lorenzo Orecchia. Nearly-linear time positive LP solver with
faster convergence rate. In Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 229–236, 2015. 1.2

[AS14] Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite
matching with metric and geometric costs. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 555–564, 2014. 1.2

[AWR17] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approxima-
tion algorithms for optimal transport via sinkhorn iteration. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 1961–1971,
2017. 1, 1.2, ??, 2.1, 2.2, 4, 5, 2.2, D

[BJKS18] Jose Blanchet, Arun Jambulapati, Carson Kent, and Aaron Sidford. Towards optimal
running times for optimal transport. CoRR, abs/1810.07717, 2018. (document), 1,
1.1, 1.2, ??, ??, 2.1

[BK17] Jose H. Blanchet and Yang Kang. Distributionally robust groupwise regularization
estimator. In Proceedings of The 9th Asian Conference on Machine Learning, ACML
2017, Seoul, Korea, November 15-17, 2017., pages 97–112, 2017. 1

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends in Machine Learning, 8(3-4):231–357, 2015. 6

[BvdPPH11] Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich.
Displacement interpolation using lagrangian mass transport. ACM Trans. Graph.,
30(6):158:1–158:12, 2011. 1

[CK18] Deeparnab Chakrabarty and Sanjeev Khanna. Better and simpler error analysis of
the sinkhorn-knopp algorithm for matrix scaling. In 1st Symposium on Simplicity in
Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 4:1–4:11,
2018. 1

[CMTV17] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix
scaling and balancing via box constrained newton’s method and interior point meth-
ods. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 902–913, 2017. 1.2

10

[Cut13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
Advances in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States., pages 2292–2300, 2013. 1, 1.2

[DGK18] Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational opti-
mal transport: Complexity by accelerated gradient descent is better than by sinkhorn’s
algorithm. In Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages
1366–1375, 2018. (document), 1, 1.1, 1.2, ??, 1, 1.2

[DO19] Jelena Diakonikolas and Lorenzo Orecchia. The approximate duality gap technique:
A unified theory of first-order methods. SIAM Journal on Optimization, 29(1):660–
689, 2019. 1.2

[EK18] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust
optimization using the wasserstein metric: performance guarantees and tractable re-
formulations. Math. Program., 171(1-2):115–166, 2018. 1

[GCPB16] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis R. Bach. Stochastic opti-
mization for large-scale optimal transport. In Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 3432–3440, 2016. 1, 1.2

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. 1.2

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 217–226, 2014. 1.2

[LHJ19] Tianyi Lin, Nhat Ho, and Michael I. Jordan. On efficient optimal transport: An anal-
ysis of greedy and accelerated mirror descent algorithms. CoRR, abs/1901.06482,
2019. (document), 1, 1.1, 1.2, ??, 1, 1.2, 5, 2b, 3b, D

[LMR19] Nathaniel Lahn, Deepika Mulchandani, and Sharath Raghvendra. A graph theoretic
additive approximation of optimal transport. CoRR, abs/1905.11830, 2019. 1.2

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(vrank) iterations and faster algorithms for maximum flow. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages 424–433, 2014. 1.2

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms
for linear programming. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 230–249,
2015. 1.2, ??

[Nem04] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004. 1.2, 5,
D

[Nes05] Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, 2005. 1.2, 1.2

[Nes07] Yurii Nesterov. Dual extrapolation and its applications to solving variational inequal-
ities and related problems. Math. Program., 109(2-3):319–344, 2007. 1.2, 3, 3.1,
3.1

11

[PZ16] Victor M. Panaretos and Yoav Zemel. Amplitude and phase variation of point pro-
cesses. Annals of Statistics, 44(2):771–812, 2016. 1

[Qua19] Kent Quanrud. Approximating optimal transport with linear programs. In 2nd Sym-
posium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9, 2019 - San
Diego, CA, USA, pages 6:1–6:9, 2019. (document), 1, 1.1, 1.2, ??, 2.1

[SA12] R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algo-
rithm for geometric bipartite matching. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 385–394, 2012. 1.2

[San09] Piotr Sankowski. Maximum weight bipartite matching in matrix multiplication time.
Theor. Comput. Sci., 410(44):4480–4488, 2009. 1.2

[SdGP+15] Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher,
Andy Nguyen, Tao Du, and Leonidas J. Guibas. Convolutional wasserstein dis-
tances: efficient optimal transportation on geometric domains. ACM Trans. Graph.,
34(4):66:1–66:11, 2015. 1

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 263–269, 2013. 1.2, 2.1

[She17] Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity
flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 452–460,
2017. (document), 1.1, 1.2, 3, 3.1, 3.1, 3.1, 3.4, 3.1

[ST18] Aaron Sidford and Kevin Tian. Coordinate methods for accelerating `∞ regression
and faster approximate maximum flow. In 59th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2018, 7-9 October, 2018, Paris, France, 2018. 1.2,
1.2

[You01] Neal E. Young. Sequential and parallel algorithms for mixed packing and covering.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA, pages 538–546, 2001. 1.2

[ZLdOW17] Zeyuan Allen Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi Wigderson. Much
faster algorithms for matrix scaling. In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
890–901, 2017. 1.2

12

A Algorithm

We give the complete algorithm for approximating optimal transport distance to additive ε here. We
assume C ∈ Rn×n≥0 and r, c ∈ ∆n. Finally, we refer to blocks of variable z on a product space as

zx, zy , i.e. z = (zx, zy). Again r(X)
def
= X1, c(X)

def
= X>1.

Algorithm 3 X̂ = Optimal-Transport(C, ε, r, c): Produces ε-approximate transportation plan

Vectorize C to produce d.
Let b be r, c concatenated; let A be the incidence matrix of a complete n× n bipartite graph.
t← 0.
x0 ← 1

n21, y0 ← 02n.
sx0 ← 0n2 , sy0 ← 02n.
Θ← 20 ‖d‖∞ log n+ 4 ‖d‖∞.

while d>xt+ 1
2
+2 ‖d‖∞

∥∥∥Axt+ 1
2
− b
∥∥∥

1
≤ −2 ‖d‖∞ b>yt+ 1

2
+maxj

[
d+ 2 ‖d‖∞A>yt+ 1

2

]
j
+ε

do
t← t+ 1.
k ← 0.
x′0 ← xt− 1

2
, y′0 ← yt− 1

2
.

for 0 ≤ k <
⌈
24 log

((
88‖d‖∞
ε2 + 2

ε

)
Θ
)⌉

do

x′k ← exp
(

1
20‖d‖∞

sxt + 1
10A

>(y′k−1)2
)

, x′k ← x′k/ ‖x′k‖1.

y′k ← min
(

1,max
(
−1,

−syt
4‖d‖∞Ax′k

))
. Operations are element-wise.

end for
xt ← x′k, yt ← y′k.
sx
t+ 1

2

← sxt + 1
3

(
d+ 2 ‖d‖∞A>yt

)
.

sy
t+ 1

2

← syt + 1
3 (2 ‖d‖∞ (b−Axt)).

k ← 0.
x′0 ← xt, y′0 ← yt.
for 0 ≤ k <

⌈
24 log

((
88‖d‖∞
ε2 + 2

ε

)
Θ
)⌉

do

x′k ← exp
(

1
20‖d‖∞

sx
t+ 1

2

+ 1
10A

>(y′k−1)2
)

, x′k ← x′k/ ‖x′k‖1.

y′k ← min

(
1,max

(
−1,

−sy
t+1

2

4‖d‖∞Ax′k

))
. Operations are element-wise.

end for
xt+ 1

2
← x′k, yt+ 1

2
← y′k.

sxt+1 ← sxt + 1
6

(
d+ 2 ‖d‖∞A>yt+ 1

2

)
.

syt+1 ← syt + 1
6

(
2 ‖d‖∞ (b−Axt+ 1

2
)
)

.
end while
Un-vectorize x to produce X̃ .
X ′ ← diag

(
min

(
r

r(X̃)
, 1
))

X̃ .

X ′′ ← X ′diag
(

min
(

c
c(X′) , 1

))
.

er ← r − 1>r(X ′′), ec ← c− 1>c(X ′′), E ← 1>er.
X̂ ← X ′′ + 1

E ere
>
c .

return X̂ .

We remark that there are a variety of termination conditions that can be useful in practice for the
alternating minimization procedure. For example, a standard early-stopping condition based on the
observed movement of consecutive iterates was very successful in practice (Appendix D).

13

B Missing proofs from Section 3

In this section, we state missing proofs from Section 3. We provide the efficient implementation of
the proximal steps required by Algorithm 1 in Appendix B.1.

Proof of Lemma 3.2. Our first step is to prove the following inequality:

1

2κ
〈g(wt), wt − z̄〉 ≤ 〈st+1, zt+1 − z̄〉+ V rz̄ (zt+1)− 〈st, zt − z̄〉 − V rz̄ (zt). (7)

Let ct = zt+wt+zt+1

3 . The proof follows from minimality of zt with respect to ct, minimality of wt
with respect to zt+1, and area-convexity (5) with respect to zt, wt, and zt+1. Respectively,

〈st, zt〉+ r(zt) ≤ 〈st, ct〉+ r(ct)

〈st, wt〉+
1

κ
〈g(zt), wt〉+ r(wt) ≤ 〈st, zt+1〉+

1

κ
〈g(zt), zt+1〉+ r(zt+1)

1

κ
〈g(wt)− g(zt), wt − zt+1〉 ≤ r(zt) + r(wt) + r(zt+1)− 3r (ct) .

(8)

Adding three times the first equation to the third, rearranging, and using the definition of ct, we have

1

κ
〈g(wt)− g(zt), wt − zt+1〉 ≤ r(wt) + r(zt+1)− 2r(zt) + 〈st, wt + zt+1 − 2zt〉.

Rearranging the second equation, we have

1

κ
〈g(zt), wt − zt+1〉 ≤ r(zt+1)− r(wt) + 〈st, zt+1 − wt〉.

Adding these two equations, we have

1

κ
〈g(wt), wt − zt+1〉 ≤ 2r(zt+1)− 2r(zt) + 〈st, 2zt+1 − 2zt〉.

Dividing by 2 and adding 1
2κ 〈g(wt), zt+1 − z̄〉 to both sides, we obtain the desired (7). Now, define

the potential function

Φk =
1

2κ

k−1∑
t=0

〈g(wt), wt − z̄〉 − 〈sk, zk − z̄〉 − V rz̄ (zk)

Then, by (7), Φk is nonincreasing in k. Therefore for any u, by the definition of Θ,

1

T

T−1∑
t=0

〈g(wt), wt − u〉 ≤
1

T

T−1∑
t=0

〈g(wt), wt − z̄〉+
1

T

T−1∑
t=0

〈g(wt), z̄ − u〉+

(
2κΘ

T
− 2κVz̄(u)

T

)

≤ 1

T

T−1∑
t=0

〈g(wt), wt − z̄〉+
1

T

T−1∑
t=0

〈g(wt), z̄ − zT 〉+

(
2κΘ

T
− 2κVz̄(zT)

T

)
=

2κ

T
ΦT +

2κΘ

T
≤ 2κ

T
Φ0 +

2κΘ

T
=

2κΘ

T
.

The inequality on the second line used the definition of zT = Proxrz̄
(

1
2κ

∑
t∈[T−1] g(wt)

)
, and

the last inequality is ΦT ≤ Φ0. The conclusion follows from the definition of g (because it is
linear).

Proof of Corollary 3.3. We see that (7) now holds up to ε′

2κ additive error, so that Φk is increasing
by at most ε′

2κ each step. Thus, we obtain ΦT ≤ Φ0 + Tε′

2κ , yielding the conclusion.

Proof of Lemma 3.5. We scale both r and J down by 2 ‖d‖∞, which does not affect positive-
semidefiniteness. By computation we have (recalling all columns of A have `1 norm of 2)

∇2r(x, y) =

(
5 ‖A:j‖1 diag

(
1
xj

)
2A>diag (yi)

2diag (yi)A 2diag
(
A>i x

)) .
14

It suffices to show that for any vector (a b c d) we have

(a b c d)

5 ‖A:j‖1 diag

(
1
xj

)
2A>diag (yi) 0 −A>

2diag (yi)A 2diag
(
A>i x

)
A 0

0 A> 5 ‖A:j‖1 diag
(

1
xj

)
2A>diag (yi)

−A 0 2diag (yi)A 2diag
(
A>i x

)

abc
d

is nonnegative. Upon simplifying and gathering like terms, it suffices to show∑

i,j

Aij

(
5a2
j

xj
+ 4ajbiyi + 2b2ixj − 2ajdi + 2cjbi +

5c2j
xj

+ 4cjdiyi + 2d2
ixj

)
≥ 0.

However, this is true for yi ∈ [−1, 1], since each coefficient groups into clearly nonnegative terms,(
4a2
j

xj
+ 4ajbiyi + b2ixj

)
+

(
a2
j

xj
− 2ajdi + d2

ixj

)

+

(
4c2j
xj

+ 4cjdiyi + d2
ixj

)
+

(
c2j
xj

+ 2cjbi + b2ixj

)
.

B.1 Alternating Minimization Analysis

In this section, we give the convergence analysis of an alternating minimization procedure for mini-
mizing a function of the form (throughout this section, r(x, y) is as in (6))

f(x, y)
def
= 〈ξ, x〉+ 〈η, y〉+ r(x, y) (9)

which is the type of minimization problem arising from steps of the form Proxrz̄(g). As we will
see, f(x, y) is jointly convex. Throughout this section, let xOPT, yOPT be the minimizer to f . Corol-
lary 3.3 states that O(ε) additive error to f gives the same asymptotic convergence rate in Algo-
rithm 1. We will show that a simple alternating minimization scheme enjoys a linear rate of conver-
gence in our setting; thus, roughly O(log ε−1) iterations suffice. We first give a proof of a general
condition which suffices for linear convergence.
Lemma B.1. Suppose f(x, y) is twice-differentiable and jointly convex, over the product space
X × Y . Consider the alternating minimization scheme,

1. xk+1
def
= argminx∈X f(x, yk)

2. yk+1
def
= argminy∈Yf(xk+1, y)

Further, suppose there are convex regions Xk+1 ⊆ X , Yk ⊆ Y which contain xk+1, yk respectively,
such that for any x′ ∈ Xk+1, y′, y′′ ∈ Yk, and for some σ ≥ 1,

∇2f(x′, y′) � 1

σ
∇2
yyf(xk+1, y

′′), (10)

where∇2
yy is the Hessian with all but the yy block zeroed out. Then, for any x∗ ∈ Xk+1, y∗ ∈ Yk,

f(xk+1, yk)− f(xk+1, yk+1) ≥ 1

σ
(f(xk+1, yk)− f(x∗, y∗)) .

Proof. Let ỹ =
(
1− 1

σ

)
yk + 1

σy
∗. We will prove instead that

f(xk+1, yk)− f(xk+1, ỹ) ≥ 1

σ
(f(xk+1, yk)− f(x∗, y∗)) ,

from which the conclusion will follow since f(xk+1, yk+1) ≤ f(xk+1, ỹ). Note by definition of ỹ,
as well as optimality of xk+1 which implies 0 ≥ 〈∇xf(xk+1, yk), xk+1 − x∗〉,

〈∇yf(xk+1, yk), yk − ỹ〉 =
1

σ
〈∇yf(xk+1, yk), yk − y∗〉 ≥

1

σ
〈∇f(xk+1, yk), zk+ 1

2
− z∗〉 (11)

15

where zk+ 1
2

def
= (xk+1, yk) and z∗ def

= (x∗, y∗). Further, let yα
def
= (1−α)yk+αy∗, ỹα

def
= (1−α)yk+

αỹ, and xα
def
= (1− α)xk+1 + αx∗. Then, by Taylor expansion we have f(xk+1, yk)− f(xk+1, ỹ)

equals

〈∇yf(xk+1, yk), yk − ỹ〉 −
∫ 1

0

∫ β

0

(ỹ − yk)>∇2
yyf(xk+1, ỹα)(ỹ − yk)dαdβ

≥ 1

σ
〈∇f(xk+1, yk), zk+ 1

2
− z∗〉 − 1

σ2

∫ 1

0

∫ β

0

(y∗ − yk)>∇2
yyf(xk+1, ỹα)(y∗ − yk)dαdβ

≥ 1

σ

(
〈∇f(xk+1, yk), zk+ 1

2
− z∗〉 −

∫ 1

0

∫ β

0

(z∗ − zk+ 1
2
)>∇2f(xα, yα)(z∗ − zk+ 1

2
)dαdβ

)

=
1

σ
(f(xk+1, yk)− f(x∗, y∗)) .

In the first inequality, we used (11) and the definition of ỹ, and in the second we used (10) (since
xα ∈ Xk+1, yα, ỹα ∈ Yk by convexity).

We now give a helper lemma specialized to the particular f in (9), which will be used in the proof
of convergence.
Lemma B.2. For some xk+1, yk, let Xk+1 =

{
x | x ≥ 1

2xk+1

}
where the inequality is entrywise,

and let Yk be the entire domain of y (i.e. Y). Then for any x′ ∈ Xk+1, y
′, y′′ ∈ Yk,

∇2r(x′, y′) � 1

12
∇2
yyr(xk+1, y

′′).

Proof. Recall that (since ‖A:j‖1 = 2)

∇2r(x, y) = 2 ‖d‖∞

(
5 ‖A:j‖1 diag

(
1
xj

)
2A>diag (yi)

2diag (yi)A 2diag
(
A>i x

)) .
Consider the diagonal approximation

D(x) = 2 ‖d‖∞

(
‖A:j‖1 diag

(
1
xj

)
0

0 diag
(
A>i x

)) .
We claim for any y,

D(x) � ∇2r(x, y) � 6D(x). (12)
To see this, consider the quadratic forms with respect to some vector (u v):

(u v)∇2r(x, y)

(
u
v

)
= 2 ‖d‖∞

∑
i,j

Aij

(
5u2

j

xj
+ 4ujviyi + 2v2

i xj

)
,

(u v)D(x)

(
u
v

)
= 2 ‖d‖∞

∑
i,j

Aij

(
u2
j

xj
+ v2

i xj

)
.

Now (12) follows because for any yi ∈ [−1, 1], it’s easy to verify

u2
j

xj
+ v2

i xj ≤
5u2

j

xj
+ 4ujviyi + 2v2

i xj ≤ 6

(
u2
j

xj
+ v2

i xj

)
.

Therefore, to prove the lemma statement we can use

∇2r(x′, y′) � D(x′) � 1

2
D(xk+1) � 1

12
∇2
yyr(xk+1, y

′′).

The inequality D(x′) � 1
2D(xk+1) followed from the definition of Xk+1, and the last inequality

followed from D(xk+1) spectrally dominating 1
6∇

2r(xk+1, y
′′), and restrictions of D(xk+1) to the

yy block can only decrease the quadratic form.

16

We now give the proof of the linear rate of convergence.

Lemma B.3. For f(x, y) defined in (9), the alternating minimization scheme

1. xk+1
def
= argminx∈X f(x, yk).

2. yk+1
def
= argminy∈Yf(xk+1, y).

decreases the function error f(xk, yk)−f(xOPT, yOPT) by a factor of at least 1/24 in each iteration.

Proof. We can apply Lemma B.1 with the sets defined in Lemma B.2, with σ = 12. On iteration k,
consider picking the points x∗, y∗ = 1

2 (xk+1+xOPT), 1
2 (yk+yOPT). Evidently, x∗ ∈ Xk+1, y

∗ ∈ Yk.
Therefore, since f(xk+1, yk+1) ≥ f(xk+2, yk+1),

f(xk+1, yk)− f(xk+2, yk+1) ≥ f(xk+1, yk)− f(xk+1, yk+1) ≥ 1

12
(f(xk+1, yk)− f(x∗, y∗)).

Furthermore, by convexity, we have

f(xk+1, yk)− f(x∗, y∗) ≥ 1

2
(f(xk+1, yk)− f(xOPT, yOPT)).

Finally, combining these two inequalities and rearranging,

23

24
(f(xk+1, yk)− f(xOPT, yOPT)) ≥ f(xk+2, yk+1)− f(xOPT, yOPT).

Thus, by taking a y step and then an x step, we decrease the function error by a 1/24 factor.

Finally, we show that steps of the alternating minimization can be implemented in linear time.

Lemma B.4. For f(x, y) defined in (9), we can implement the steps

1. xk+1
def
= argminxf(x, yk).

2. yk+1
def
= argminyf(xk+1, y).

restricted to the relevant domains, in time O(n2).

Proof. Recall A has n2 nonzero entries, so a matrix-vector multiplication can be performed in this
time. Computing x in linear time is straightforward: it is defined by

argminx 〈γ, x〉+
∑
j∈[n]

xj log xj such that x ∈ ∆m, γ
def
=

1

20 ‖d‖∞
ξ +

1

10
A>(y2).

By examining the KKT conditions, it is clear that the minimizing x is proportional to exp(−γ);
computing γ takes O(n2) time, as does the simplex projection. Similarly, computing y in linear
time is simple for fixed x: it is

argminy〈η, y〉+ 〈2 ‖d‖∞Ax, y2〉 such that y ∈ [−1, 1]2n,

which is coordinate-wise decomposable as minimizing a quadratic over an interval.

Theorem B.5 (Complexity of alternating minimization). We can obtain an ε/2-approximate mini-
mizer to the proximal steps required by Algorithm 1 to ε/2 accuracy, with the regularizer of (6) and
κ = 3, in O(log γ) parallelizable iterations for γ = log n · ‖d‖∞ · ε−1, and O(n2 log γ) total work.

Proof. By Lemmas B.3 and B.4, we can spend O(n2) parallelizable work to decrease the
suboptimality gap by a 1/24 factor, so it remains to argue that the initial error is at most
poly(log n, ‖d‖∞ , ε−1) to show that implementing the proximal steps to additive error ε/2 can be
done in O(log γ) iterations. We show that this is true for implementing the proximal step for zt; a

17

similar argument holds for wt. To this end, note that by our setting of κ, for any z where we let
g(z) = (gx(z), gy(z)),

1

2κ
‖gx(z)‖∞ =

1

6

∥∥d+ 2 ‖d‖∞A>y
∥∥
∞ ≤

‖d‖∞
2

,

1

2κ
‖gy(z)‖1 =

1

6
‖2 ‖d‖∞ (b−Ax)‖

1
≤

4 ‖d‖∞
3

.

Therefore, for st = (sxt , s
y
t), by the triangle inequality, and t ≤ 12Θ/ε the bound on the number of

steps required where Θ is the range of r, we have

‖sxt ‖∞ ≤ t ·
1

2κ
‖gx(z)‖∞ ≤

6 ‖d‖∞Θ

ε
,

‖syt ‖1 ≤ t ·
1

2κ
‖gy(z)‖1 ≤

16 ‖d‖∞Θ

ε
.

A simple calculation yields Θ = 20 ‖d‖∞ log n+ 4 ‖d‖∞ upper bounds the range of r. Finally, let
x∗t , y

∗
t be the minimizer of the proximal objective,

〈sxt , x〉+ 〈syt , y〉+ r(x, y).

For any initialization xinit, yinit to the alternating minimization, the suboptimality gap is given by

〈sxt , xinit − x∗t 〉+ 〈syt , yinit − y∗t 〉+ r(xinit, yinit)− r(x∗t , y∗t)

≤ ‖xinit − x∗t ‖1 ‖s
x
t ‖∞ + ‖yinit − y∗t ‖∞ ‖s

y
t ‖1 + Θ ≤

(
44 ‖d‖∞

ε
+ 1

)
Θ.

Therefore, the total number of iterations required is bounded by 24 log
((

88‖d‖∞
ε2 + 2

ε

)
Θ
)

as de-
sired.

Numerical precision. We also make a brief comment on bit-complexity issues which may arise
when scaling exponentials. In particular, each of our alternating minimization steps of the form

〈g, x〉+
∑
j

xj log xj (13)

require exponentiating a potentially large vector log x − g, and rescaling the vector to be on the
simplex. The following lemma shows that we can implement this step withO(log n) bit-complexity,
with a small polynomial (say n−90) loss in the objective value. Because we may assume that ε−1 is
bounded by say, n2, else an interior point method achieves our stated runtime, the cumulative loss
in objective value over all iterations due to limited precision is significantly less than ε, and does not
affect our asymptotic convergence rate. More precisely, we maintain x implicitly through a vector v
which is log x up to a scaling, and show that by truncating v to have its range of coordinates bounded
by O(log n), the resulting simplex variable remains a high-precision minimizer to (13).
Lemma B.6. Let v ∈ Rm, and let x ∈ ∆m be such that x ∝ exp(v). Consider the following
operation: let j∗ = argminjvj , and j′ be such that vj′ < vj∗ − 100 log n. Set v̂ = v in every
coordinate, except v̂j′ ← vj∗ − 100 log n. Then, for x̂ ∝ exp(v̂) in the simplex,∑

j

x̂j log x̂j −
∑
j

xj log xj < n−95, 〈g, x̂− x〉 < ‖g‖∞ n−95.

Proof. Clearly, ‖exp(v)‖1 < ‖exp(v̂)‖1, since exp is monotone. Moreover,

‖exp(v̂)‖1−‖exp(v)‖1 = exp(vj∗−100 log n)−exp(vj′) < n−100 exp(vj∗) < n−100 ‖exp(v)‖1 .

Now, for every coordinate j 6= j′, this implies that (1− n−100)xj < x̂j < xj . Thus,

x̂j log x̂j − xj log xj < −n−100xj log xj .

Furthermore, we have

x̂j′ log x̂j′ − xj′ log xj′ < −xj′ log xj′ < 100n−100,

18

by −x log x is increasing for small x and xj′ is bounded by n−100. Combining these estimates,∑
j

x̂j log x̂j −
∑
j

xj log xj < (100 + log n)n−100 < n−95

for n > 10. Similarly,

〈g, x̂− x〉 ≤ ‖g‖∞

x̂j′ +
∑
j 6=j′

n−100xj

 ≤ ‖g‖∞ n−95

for n > 10.

Thus, repeatedly applying Lemma B.6 every time we need to truncate a coordinate of v due to finite
bit precision, over the course of all iterations of the algorithm and all alternating minimization steps,
the error incurred is negligible compared to the desired accuracy ε (where we also note ‖g‖∞ for all
g we encounter is bounded by a small polynomial in n).

C Missing proofs from Section 4

In this section, we give the proof to Theorem 2.2.

Theorem 2.2 (Rounding guarantee, Lemma 7 in [AWR17]). There is an algorithm which takes x̃
with ‖Ax̃− b‖1 ≤ δ and produces x̂ in O(n2) time, with

Ax̂ = b, ‖x̃− x̂‖1 ≤ 2δ.

Proof. The algorithm is Algorithm 2. We adopt the alternative view of x̃ as a n×n matrix X̃ in the
simplex, and define operations r(X) = X1, c(X) = X>1, recalling the first and last n entries of b
are r, c, i.e. the row and column constraints. Recall we assume we have∥∥∥r(X̃)− r

∥∥∥
1

+
∥∥∥c(X̃)− c

∥∥∥
1
≤ δ.

Clearly all operations in Algorithm 2 take O(n2) time. To explain briefly, X ′ is fixed so that its
row sums are feasible (i.e. X ′1 ≤ r) and X ′′ is fixed so that its column sums are feasible. Further,
entrywise X ′′ ≤ X ′ ≤ X̃ , so X ′′ is feasible. We first bound

d
def
=
∥∥∥X ′′ − X̃∥∥∥

1
=

 ∑
i:ri(X̃)>ri

ri(X̃)− ri

+

 ∑
j:cj(X′)>cj

cj(X
′)− cj

 .

Note
∥∥∥r(X̃)− r

∥∥∥
1
≥
∑
i:ri(X̃)>ri

ri(X̃)− ri. Further, by X ′ ≤ X̃ entrywise,

∑
j:cj(X′)>cj

cj(X
′)− cj ≤

∥∥∥c(X̃)− c
∥∥∥

1
.

Thus d ≤ δ. X̂ ∈ Ur,c, since er, ec ≥ 0 and 1>er = 1>ec = e, so X̂1 = r, X̂>1 = c. Also,∥∥∥X̂ − X̃∥∥∥
1
≤
∥∥∥X ′′ − X̃∥∥∥

1
+
∥∥∥X̂ −X ′′∥∥∥

1
≤ δ + e.

Finally,

e = 1− 1>X ′′1 = 1−
(
1>X̃1− d

)
= d.

Thus using d ≤ δ proves the claim.

19

D Experiment details

Here, we give the implementation details for the experimental results discussed in Section 5, and a
brief justification of experimental decisions we made.

Dataset. For the first two figures in Section 5, we had the following experimental setup. We ran-
domly sampled a pair of digits from the MNIST dataset corresponding to the digit 1, and added a
small amount of background noise for numerical stability, as is standard in the literature [AWR17].
We downsampled the 28 × 28 pixel images to size 14 × 14 by skipping every other pixel to speed
up experiments. Similar performances were observed across multiple random instances. Finally, the
cost metric used was by Manhattan distance on the 2-dimensional grid.

For the second pair of figures, we randomly sampled 20 pairs of digits from the MNIST dataset
where each pair corresponds to the same digit. As before we added a small amount of background
noise for stability. As opposed to the previous comparison we ran all three algorithms on the true
28× 28 pixel images. For each of the digit pairs we ran the Sinkhorn algorithm to high precision to
obtain a baseline solution for comparison, and for each of the three algorithms tested we compared
the value of the solutions obtained to this baseline. The plots compare the number of matrix-vector
multiplies to the objective value error averaged over all 20 digit pairs. The metric is again the
Manhattan distance over the 2-dimensional grid.

Objective value. For simplicity, in all cases we measured objective value by the overestimate pre-
sented in (4). By the proof of Lemma 2.3, this is an overestimate to the true objective after per-
forming the rounding procedure in Algorithm 2. In practice, we observed that this overestimate was
negligibly different from the objective after rounding.

Sinkhorn implementation details. We implemented the standard Sinkhorn algorithm, using differ-
ent settings of η−1. Sinkhorn iteration converges to an ε-approximate transportation plan in theory
when η is very large, roughly log n/ε. However, in practice, it is observed that much smaller values
of η suffice for rapid convergence. We tracked the convergence of Sinkhorn iteration for η = 70 and
η = 5, which we considered close to a theoretically guaranteed parameter and a much less conser-
vative practical parameter, respectively. The optimized Sinkhorn algorithm converged at rates much
faster than the predicted ε−2 rate on all experiments, outperforming all other methods, which we
believe merits further investigation. Significantly larger values of η led to numerical stability issues
when computing exp(−ηC).

APDAMD implementation details. We implemented the APDAMD algorithm (Algorithm 4 in
[LHJ19]), with the quadratic regularizer (i.e. 1

2γ ‖λ‖
2
2). We observed that the amount of the quadratic

regularizer added did not affect the practical convergence of the algorithm. A simple reason for this
is because the algorithm builds in a more aggressive step-size strategy, because the pessimistic γ =
O(n) is often too conservative to be necessary in practice. The figure tracks APDAMD convergence
with η = 10−2, ε = 10−3.

Mirror prox. For numerical stability considerations, we implemented our algorithm as an instance
of mirror prox [Nem04], another extragradient method which takes local iterations rather than accu-
mulating a dual operator and taking steps with respect to some z̄ (i.e. dual extrapolation). Although
there is not a known proof of mirror prox convergence with an area-convex regularizer, we find this
decision reasonable for several reasons. In general, variations of entropic mirror descent are well-
known to be equivalent to their dual averaging versions; it is likely that a similar equivalence can be
drawn between mirror prox and extragradient dual averaging, i.e. dual extrapolation. Furthermore,
the standard proofs of dual extrapolation and mirror prox are quite similar; we believe it is likely
that area-convexity results in convergence for mirror prox, although this merits further investigation.

Termination. We terminated our alternating minimization procedure when the movement of itera-
tions in `1 was negligible. Typically, we observed that 3-5 alternating steps sufficed for convergence.

Step sizes. We varied two parameters in our experiments: the step size 1
κ used in our extragradient

algorithm, and the amount of entropy used in our regularizer (in the paper, we used 10 times entropy
compared to the quadratic component x>A>(y2)). One reason this may be reasonable in practice is
similar to the observed behavior of the Sinkhorn iteration tuning the η−1 parameter, and APDAMD
performing a more-aggressive line search for the observed amount of regularizer necessary. We
note that the need to tune the amount of entropy used in the regularizer is likely due to the analysis

20

not being tight in the constants, and with a tighter analysis, it may not be necessary to tune this
parameter. To this end, we plotted the performance of three algorithm settings.

• In the “unoptimized constants”, we set the constants to roughly those with theoretical guar-
antees, i.e. 10 times entropy and step size 1.

• In the “reasonably optimized constants”, we set the amount of entropy to be 4, and the step
size to be ‖d‖∞ /3, to offset the ‖d‖∞ multiple of the regularizer used in our iterations.
For smaller values of ε, these settings compared favorably with APDAMD.

• In the “optimized constants”, we set the amount of entropy at 3, and the step size at ‖d‖∞.
This setting outperformed APDAMD and was more competitive with Sinkhorn iteration.

Discussion. We believe multiple interesting avenues of exploration arise from our experiments.

• Sinkhorn with aggressively chosen η outperformed all other methods we benchmarked
against, and converged at rates faster than suggested by its known analyses. It may prove
fruitful to study if further assumptions about practical instances explain this discrepancy.

• Directly accelerated methods such as APDAMD also exhibit ε−1 convergence rates, at the
cost of a worse dependence on dimension. However, this worst-case dependence can be
mitigated if the instance is favorable in practice, i.e. by choosing γ ≈ O(1). This was
observed to be the case in our experiments for the MNIST dataset. It is interesting to see if
a similar adaptive tuning applies to our method with provable guarantees.

• Our method did not exhibit instability when changing the amount of entropy in the reg-
ularizer, but it did exhibit vastly-improved convergence. It is possible that the amount of
regularizer needed is not quite so large, perhaps through a more careful analysis.

• We did not benchmark against the greedy Sinkhorn method of [AWR17], or consider nu-
merical speedups such as those in [ABRW18]. It remains open to explore if these practical
speedups are applicable to first-order methods such as ours as well.

21

	1 Introduction
	1.1 Our Contributions
	1.2 Previous Work

	2 Overview
	2.1 1-regression formulation
	2.2 Notation

	3 Main Algorithm
	3.1 Dual Extrapolation Framework

	4 Rounding to Ur, c
	5 Experiments
	A Algorithm
	B Missing proofs from Section 3
	B.1 Alternating Minimization Analysis

	C Missing proofs from Section 4
	D Experiment details

