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Abstract

Despite the non-convex nature of their loss functions, deep neural networks are1

known to generalize well when optimized with stochastic gradient descent (SGD).2

Recent work conjectures that SGD with proper configuration is able to find wide3

and flat local minima, which are correlated with good generalization performance.4

In this paper, we observe that local minima of modern deep networks are more5

than being flat or sharp. Instead, at a local minimum there exist many asymmetric6

directions such that the loss increases abruptly along one side, and slowly along7

the opposite side – we formally define such minima as asymmetric valleys. Under8

mild assumptions, we first prove that for asymmetric valleys, a solution biased9

towards the flat side generalizes better than the exact empirical minimizer. Then,10

we show that performing weight averaging along the SGD trajectory implicitly11

induces such biased solutions. This provides theoretical explanations for a series12

of intriguing phenomena observed in recent work [25, 5, 51]. Finally, extensive13

empirical experiments with modern deep networks are conducted to validate our14

assumptions and analyze the intriguing properties of asymmetric valleys.15

1 Introduction16

The loss landscape of neural networks has attracted great research interests in the deep learning17

community [9, 10, 32, 12, 15, 43, 36]. A deeper understanding of the loss landscape is important for18

designing better optimization algorithms, and helps to answer the question of when and how a deep19

network can achieve good generalization performance. One hypothesis that draws attention recently20

is that the local minima of neural networks can be characterized by their flatness, and it is conjectured21

that sharp minima tend to generalize worse than the flat ones [32]. A plausible explanation is that22

a flat minimizer of the training loss can achieve lower generalization error if the test loss is shifted23

from the training loss due to random perturbations. Figure 1(a) gives an illustration for this argument.24

Although being supported by plenty of empirical observations [32, 25, 34], the definition of flatness25

was recently challenged in [11], which shows that one can construct arbitrarily sharp minima through26

weight re-parameterization without affecting the generalization performance. Moreover, recent27

evidences suggest that the minima of modern deep networks are connected with simple paths with28

low generalization error [12, 13]. It is empirically found that the minima found by large batch training29

and small batch training are shown to be connected by a path without any “bumps” [43]. In other30

words, a “sharp minimum” and a “flat minimum” may in fact belong to a same minimum in high31

dimensional space. Therefore, the notion of flat and sharp minima seems to be an oversimplification32

of the empirical loss surface.33

In this paper, we expand the notion of flat and sharp minima by introducing the concept of asymmetric34

valleys. We observe that the loss surfaces of many neural networks are locally asymmetric. In specific,35

there exist many directions such that the loss increases abruptly along one side, and grows rather36

slowly along the opposite side (see Figure 1(b) as an illustration). We formally define this kind of37

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Flat
minimum

Asymmetric
minimum

Sharp
minimum

Empirical loss
Population loss
Empirical minimizer w
Population minimizer w *

(a)

Empirical loss
Population loss 1
Population loss 2
Empirical minimizer w
Biased solution w

(b)

SGD update

Empirical loss
SGD Iter
Empirical minimizer w
SGD average w

(c)
Figure 1: (a) An illustration of sharp, flat and asymmetric minima. If there exists a shift from empirical
loss to population loss, flat minimum is more robust than sharp minimum. (b) For asymmetric valleys,
if there exists a random shift, the solution w̃ biased towards the flat side is more robust than the
minimizer ŵ∗. (c) SGD tends to stay longer on the flat side of asymmetric valleys, therefore SGD
averaging automatically produces a bias towards the flat side.
local minima as asymmetric valleys. As we will show in Section 6, asymmetric valleys generate38

interesting illusions in high dimensional space. For example, located in the same valley shown in39

Figure 1(b), w̃ may appear to be a wider and flatter minimum than ŵ as the former is farther away40

from the sharp side.41

Asymmetric valleys also introduce novel insights to generalization. Folklore says when the exact42

minimizer is flat, it tends to generalize better as it is more stable with respect to loss surface43

perturbations [32]. Instead of following this argument, we show that in asymmetric valleys, the44

solution biased towards the flat side of the valley generalizes better than the exact minimizer, under45

mild assumptions. This result has at least two interesting implications: (1) converging to which local46

minimum (if there are many) may not be critical for modern deep networks. However, it matters a47

lot where the solution locates; and (2) the solution with lowest a priori generalization error is not48

necessarily the minimizer of the training loss.49

Given that a biased solution is preferred for asymmetric valleys, an immediate question is how we can50

find such solutions in practice. It turns out that simply averaging the weights along the SGD trajectory,51

naturally leads to the desired solutions. We give a theoretical analysis to support this argument, see52

Figure 1(c) for an illustration. Our result nicely complements a series of recent empirical observations,53

which demonstrated that averaged SGD has better performance over plain SGD, for various scenarios54

including supervised/unsupervised/low-precision training [25, 5, 51].55

In addition, we provide empirical analysis to verify our theoretical results and support our claims.56

For example, we show that asymmetric valleys are indeed prevalent in modern deep networks, and57

solutions with lower generalization error has bias towards the flat side of the valley.58

2 Related Work59

Neural network landscape. Neural network landscape analysis is an active and exciting area60

[16, 34, 15, 40, 49, 10, 43]. For example, [12, 13] observed that essentially all local minima are61

connected together with simple paths. In [22], cyclic learning rate was used to explore multiple local62

optima along the training trajectory for model ensembling. There are also appealing visualizations63

for the neural network landscape [34].64

Sharp and flat minima. The discussion of sharp and flat local minima dates back to [20], and65

recently regains its popularity. For example, Keskar et al. [32] proposed that large batch SGD finds66

sharp minima, which leads to poor generalization. In [8], an entropy regularized SGD was introduced67

to explicitly searching for flat minima. It was later pointed out that large batch SGD can yield68

comparable performance when the learning rate or the number of training iterations are properly set69

[21, 17, 47, 35, 46, 26]. Moreover, [11] showed that from a given flat minimum, one could construct70

another minimum with arbitrarily sharp directions but equally good performance. In this paper, we71

argue that the description of sharp or flat minima is an oversimplification. There may simultaneously72

exist steep directions, flat directions, and asymmetric directions for the same minimum.73

SGD optimization and generalization. As the de facto optimization tool for deep networks, SGD74

and its variants are extensively studied in the literature. For example, it is shown that they could75

escape saddle points or sharp local minima under reasonable assumptions [14, 28–30, 50, 1–3, 33].76

For convex functions [41] or strongly convex but non-smooth functions [42], SGD averaging is shown77

to give better convergence rate. In addition, it can also achieve higher generalization performance for78
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Lipschitz functions in theory [44, 7], or for deep networks in practice [22, 25, 5, 51]. Discussions on79

the generalization bound of neural networks can be found in [6, 39, 37, 31, 38, 4, 52]. We show that80

SGD averaging has implicit bias on the flat sides of the minima. Previously, it was shown that SGD81

has other kinds of implicit bias as well [48, 27, 18].82

3 Asymmetric Valleys83

In this section, we give a formal definition of asymmetric valley, and empirically show that it is84

prevalent in the loss landscape of modern deep neural networks.85

Preliminaries. In supervised learning, we seek to optimize w∗ , arg minw∈Rd L(w), where86

L(w) , Ex∼D[f(x;w)] ∈ Rd → R is the population loss, x ∈ Rm is the input sampled from87

distribution D, w ∈ Rd denotes the model parameter, and f ∈ Rm × Rd → R is the loss function.88

Since the data distribution D is usually unknown, instead of optimizing L directly, we often use SGD89

to find the empirical risk minimizer ŵ∗ for a set of random samples {xi}ni=1 from D (a.k.a. training90

set): ŵ∗ , arg minw∈Rd L̂(w), where L̂(w) , 1
n

∑n
i=1 f(xi;w).91

In practice, it is numerically infeasible to find or test the exact local minimizer ŵ∗. Fortunately, our92

theoretical results only depend on a good enough solution rather than an exact local minimum, as we93

will formally define in Section 4. For simplicity, we still refer to such solutions as “local minima”,94

although our analysis generalizes to “solutions found by SGD”.95

3.1 Definition of asymmetric valley96

Before formally introducing asymmetric valleys, we first define asymmetric directions.97

Definition 1 (Asymmetric direction). Given constants p > 0, r > r > 0, c > 1, a direction u is98

(r, r, p, c)-asymmetric with respect to point w ∈ Rd and loss function L̂, if ∇lL̂(w + lu) < p, and99

∇lL̂(w − lu) > cp for l ∈ (r, r).100

In the above definition, u ∈ Rd is a unit vector representing a direction such that the points on this101

direction passing w ∈ Rd can be written as w + lu for l ∈ (−∞,∞). Intuitively, the loss landscape102

in the interval (−r,−r) is “sharp”, while it is "flat" in the region (r, r). Note that we purposely leave103

out the region (−r, r) without making further assumptions on it to comply with the fact that the104

second order derivatives of the loss function is usually continuous. It is impractical to assume the105

slope of the loss function change abruptly at the point l = 0.106

Figure 2: An asymmetric direction of a
solution on the loss landscape of ResNet-
110 trained on CIFAR-10.

As a concrete example, Figure 2 shows an asymmetric107

direction for a local minimum in ResNet-110 trained108

on the CIFAR-10 dataset. We verified that it is a109

(2.0, 0.6, 0.03, 15)-asymmetric direction, which means in110

the region (−2.0,−0.6)∪(0.6, 2.0) the gradients are asym-111

metric with a relative ratio of c = 15.112

With this Definition 1, we now formally define the asym-113

metric valley1.114

Definition 2 (Asymmetric valley). Given constants p, r >115

r > 0, c > 1, a solution ŵ∗ of L̂ ∈ Rd → R is a116

(r, r, p, c)-asymmetric valley, if there exists at least one117

direction u such that u is (r, r, p, c)-asymmetric with re-118

spect to ŵ∗ and L̂.119

3.2 Asymmetric valleys in deep networks120

Empirically, by taking random directions with value (0, 1) in each dimension, we can find an121

asymmetric direction for a given solution w∗ with decent probability. We perform experiments122

with widely used deep networks, i.e.,ResNet-56, ResNet-110, ResNet-164 [19], VGG-16 [45] and123

DenseNet-100 [23], on the CIFAR-10, CIFAR-100, SVHN and STL-10 image classification datasets.124

For each model on each dataset, we conduct 5 independent runs. The results show that we can always125

find asymmetric directions with certain specification (r, r, p, c) with c > 2, which means all the126

1Here we abuse the name “valley”, since ŵ∗ is essentially a point at the center of a valley.
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solutions that SGD found are located in asymmetric valleys. Asymmetric valleys widely exist in both127

simple and complex models, see Appendix A, Appendix E and Appendix F.128

4 Bias and Generalization129

As we show in the previous section, in the context of deep learning most local minima in practice are130

asymmetric, i.e., they might be sharp on one direction, but flat on the opposite direction. Therefore, it131

is interesting to investigate the generalization ability of a solution w in this scenario, which may lead132

to different results as those obtained under the common symmetric assumption. In this section, we133

prove that a biased solution on the flat side of an asymmetric valley yields lower generalization error134

than the exact empirical minimizer ŵ∗ in that valley.135

4.1 Theoretical analysis136

Before presenting our theorem, we first introduce two mild assumptions. We will show that they137

empirically hold on modern deep networks in Section 4.2.138

The first assumption (Assumption 1) states that there exists a shift between the empirical loss and139

true population loss. This is a common assumption in the previous works, e.g., [32], but was usually140

presented in an informal way. Here we define the “shift” in formally. Without loss of generality, we141

will compare the empirical loss L̂ with L′ , L−minw L(w)+minw L̂(w) to remove the “vertical142

difference” between L̂ and L. Notice that minw L(w) and minw L̂(w) are constants and do not affect143

our generalization guarantee.144

Definition 3 ((δ, R)-shift gap). For ξ ≥ 0, δ ∈ Rd, and fixed functions L and L̂, we define the145

(δ, R)-shift gap between L and L̂ with respect to a point w as146

ξδ(w) = max
v∈B(R)

|L′(w + v + δ)− L̂(w + v)|

where L′(w) , L(w)−minw L(w) + minw L̂(w), and B(R) is the d-dimensional ball with radius147

R centered at 0.148

From the above definition, we know that the two functions match well after the shift δ if ξδ(w) is149

very small. For example, ξδ(w) = 0 means L is locally identical to L̂ after the shift δ. Since L̂ is150

computed on a set of random samples fromD, the actual shift δ between L̂ and L is a random variable,151

ideally with zero expectation2.152

Assumption 1 (Random shift assumption). For a given population loss L and a random empirical153

loss L̂, constants R > 0, r ≥ r > 0, ξ ≥ 0, a vector δ̄ ∈ Rd with r ≥ δ̄i ≥ r for all i ∈ [d], a154

minimizer ŵ∗, we assume that there exists a random variable δ ∈ Rd correlated with L̂ such that155

Pr(δi = δ̄i) = Pr(δi = −δ̄i) = 1
2 for all i ∈ [d], and the (δ, R)-shift gap between L and L̂ with156

respect to ŵ∗ is bounded by ξ.157

Clearly, δ has 2d possible values for a given shift vector δ̄, each with probability 2−d. Notice that158

Assumption 1 does not say that the difference between L and L̂ can only be one of the 2d possible159

δ. Instead, it says after applying the shift δ, the two functions have bounded L∞ distance, which160

is a much milder assumption. It is also worth noting that our Definition 1 can mask out the central161

interval (−r, r) because we have r ≥ δ̄i ≥ r in Assumption 1. Therefore, r cannot be arbitrarily162

large, otherwise Assumption 1 does not hold. Our second assumption stated below can be seen as an163

extension of Definition 2.164

Assumption 2 (Locally asymmetric). For a given population loss L̂, and a minimizer ŵ∗, there165

exist orthogonal directions u1, · · · ,uk ∈ Rd s.t. ui is (r, r, pi, ci)-asymmetric with respect to166

ŵ∗ + v − 〈v,ui〉ui for all v ∈ B(R′) and i ∈ [k].167

Assumption 2 states that if ui is an asymmetric direction at ŵ∗, then the point ŵ∗+v−〈v,ui〉ui168

that deviates from ŵ∗ along the perpendicular direction of ui, is also asymmetric along the direction169

of ui. In other words, the neighborhood around ŵ∗ is an asymmetric valley.170

2It may not be zero, as we are talking about the shift between two loss functions, rather than the difference
between empirical/population loss values.
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Under the above assumptions, we are ready to state our theorem, which says the empirical minimizer171

is not necessarily the optimal solution, and a biased solution leads to better generalization. We defer172

the proof to Appendix B.173

Theorem 1 (Bias leads to better generalization). For any l ∈ Rk, if Assumption 1 holds for R = ‖l‖2,174

Assumption 2 holds for R′ = ‖δ̄‖2 + ‖l‖2, and 4ξ
(ci−1)pi < li ≤ max{r− δ̄i, δ̄i − r}, then we have175

EδL(ŵ∗)− EδL

(
ŵ∗ +

k∑
i=1

liu
i

)
≥

k∑
i=1

(ci − 1)lipi/2− 2kξ > 0

Remark on Theorem 1. It is widely known that the empirical minimizer is usually different from176

the true optimum. However, in practice it is difficult to know how the training loss shifts from the177

population loss. Therefore, the best we could it to minimize the empirical loss function (with some178

regularizers). However, Theorem 1 states that in the asymmetric case, we should pick a biased179

solution even if the shift is unknown. This insight can be distilled into practical algorithms to achieve180

better generalization, as we will discuss in Section 5.181

4.2 Validating assumptions182

We conducted a series of experiments with modern deep networks to show that the two assumptions183

introduced above are generally valid.184
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Figure 3: Shift exists between empirical loss and population loss for ResNet-110 on CIFAR-10.

Verification of Assumption 1. We show that a shift between L and L̂ is quite common in practice,185

by taking a ResNet-110 trained on CIFAR-10 as an example. Notice that we use test loss to represent186

L in practice. Since we could not visualize a shift in a high dimensional space, we randomly sample187

an asymmetric direction u (more results are shown Appendix C) at the SGD solution ŵ∗. The blue188

and red curves shown in Figure 3(a) are obtained by calculating L̂(ŵ∗ + lu) and L′(ŵ∗ + lu) for189

l ∈ [−3, 3], which correspond to the training and test loss, respectively.190

We then try different shift values of δ to “match” the two curves. As shown in Figure 3(a), after191

applying a horizontal shift δ=0.4 to the test loss, the two curves overlap almost perfectly. Quantita-192

tively, we can use the shift gap defined in Definition 3 to evaluate how well the two curves match193

each other after shifting. It turns out that ξδ=0.4 =0.03, which is much lower than ξδ=0 =0.22 before194

shifting (δ has only one dimension here). In Figure 3(b), we plot ξδ/ξ0 as a function of δ. Clearly,195

there exists a δ that minimizes this ratio, indicating a good match.196

We conducted the same experiments for different directions, models and datasets, and similar197

observations were made. Please refer to Appendix C for more results.198

Verification of Assumption 2. This is a mild assumption that can be verified empirically. For199

example, we take a SGD solution of ResNet-110 on CIFAR-10 as ŵ∗, and specify an asymmetric200

direction u for ŵ∗. We then randomly sample 100 different local adjustments for v ∈ B(25). Based201

on these adjustments, we present the mean loss curves and standard variance zone on the asymmetric202

direction u for all the points ŵ∗ + v − 〈v,u〉u in Figure 4. As we can see, the variance of these203

curves are very small, which means all of them are similar to each other. Moreover, we verified that204

u is (4, 2, 0.1, 5.22)-asymmetric with respect to all neighboring points.205
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5 Averaging Generates Good Bias206

In the previous section, we show that when the loss landscape of a local minimum is asymmetric,207

a solution with bias towards the flat side of the valley has better generalization performance. One208

immediate question is that how can we obtain such a solution via practical algorithms? Below we209

show that it can be achieved by simply taking the average of SGD iterates during the course of210

training. We first analyze the one dimensional case in Section 5.1, and then extend the analysis to the211

high dimensional case in Section 5.2.212

Note that weight averaging is a classical algorithm in optimization [41], and recently regained its213

popularity in the context of deep learning [25, 5, 51]. Our following analysis can be viewed as a214

theoretical justification of recent algorithms that based on SGD iterates averaging.215

5.1 One dimensional case216

For asymmetric functions, as long as the learning rate is not too small, SGD will oscillate between the217

flat side and the sharp side. Below we focus on one round of oscillation, and show that the average218

of the iterates in each round has a bias on the flat side. Consequently, by aggregating all rounds of219

oscillation, averaging SGD iterates leads to a bias as well.220

For each individual round i, we assume that it starts from the iteration when SGD goes from sharp221

side to flat side (denoted as wi0), and ends at the iteration exactly before the iteration that SGD goes222

from sharp side to flat side again (denoted as wiTi). Here Ti denotes the number of iterations in the223

i-th rounds. The average iterate in the i-th round can be written as w̄ , 1
Ti

∑Ti
j=0 w

i
j . For notational224

simplicity, we will omit the super script i on wij .225

The following theorem shows that the expectation of the average has bias on the flat side. To get a226

formal lower bound on w̄, we consider the asymmetric case where r = 0, and also assume lower227

bounds for the gradients on the function. We defer the proof to Appendix D.228

Theorem 2 (SGD averaging generates a bias). Assume that a local minimizerw∗ = 0 is a (r, 0, a+, c)-229

asymmetric valley, where b− ≤ ∇L(w) ≤ a− < 0 for w < 0, and 0 < b+ ≤ ∇L(w) ≤ a+ for230

w ≥ 0. Assume −a− = ca+ for a large constant c, and −(b−−ν)b+
= c′ < ec/3

6 . The SGD updating231

rule is wt+1 = wt − η(∇L(w) + ωt) where ωt is the noise and |ωt| < ν, and assume ν ≤ a+. Then232

we have233

E[w̄] > c0 > 0,

where c0 is a constant that only depends on η, a+, a−, b+, b− and ν.234

Theorem 2 can be intuitively explained by Figure 5. If we run SGD on this one dimensional function,235

it will stay at the flat side for more iterations as the magnitude of the gradient on this side is much236

smaller. Therefore, the average of the locations is biased towards the flat side.237
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Figure 5: SGD iterates and their average on
an asymmetric function.

5.2 High dimensional case238

For high dimensional functions, the analysis on averaging SGD iterates would be more complicated239

compared to that given in the previous subsection. However, if we only care about the bias on a240

specific direction u, we could directly apply Theorem 2 with one additional assumption. Specifically,241

if the projections of the loss function onto u along the SGD trajectory satisfy the assumptions in242

Theorem 2, i.e., being asymmetric and the gradient on both sides have upper and lower bounds, then243

the claim of Theorem 2 directly applies. This is because only the gradient along the direction u will244

affect the SGD trajectory projected onto u, and we could safely omit all other directions.245
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We find that this assumption holds empirically. For a given SGD solution, we fix a random asymmetric246

direction u ∈ Rd, and sample the loss surface on direction u that passes the t-th epoch of SGD247

trajectory (denoted aswt), i.e., evaluate L̂(wt+ lu), for 0 ≤ t ≤ 200 and l ∈ [−15, 15]. As shown in248

the Figure 6, after the first 40 epochs, the projected loss surfaces becomes relatively stable. Therefore,249

we can directly apply Theorem 2 to the direction u.250

As we will see in Section 6.1, compared with SGD solutions, SGD averaging indeed creates bias251

along different asymmetric directions, as predicted by our theory.252

6 Experimental Observations253
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Figure 6: Projection of the training loss
surface onto an asymmetric direction u

In this section, we empirically show that asym-254

metric valleys create interesting illusions when vi-255

sualizing high dimensional loss landscape in low256

dimensional space. In addition, as a refinement257

of judging the generalization performance by the258

sharpness/flatness of a local minimum, we show259

that where the solution locates at a local minimum260

basin is important. We also find that batch normal-261

ization [24] seems to be a major cause for asym-262

metric valleys in deep networks, but the results are263

deferred to Appendix H due to space limit.264

6.1 Experiments with weight averaging265

Recently, Izmailov et al. [25] proposed the stochastic weight averaging (SWA) algorithm, which266

explicitly takes the average of SGD iterates to achieve better generalization. Inspired by their267

observation that “SWA leads to solutions corresponding to wider optima than SGD”, we provide a268

more refined explanation in this subsection. That is, averaging weights leads to “biased” solutions in269

an asymmetric valley, which correspond to better generalization.
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Figure 7: SWA solution and SGD solution
interpolation (ResNet-164 on CIFAR-100)
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Figure 8: The average of SGD has a bias on
flat side (ResNet-110 on CIFAR-100)

270

Specifically, we run the SWA algorithm (with deceasing learning rate) with popular deep networks,271

including ResNet-56, ResNet-110, ResNet-164, VGG-16, and DenseNet-100, on various datasets272

including CIFAR-10, CIFAR-100, SVHN and STL-10, following the configurations in [25]. Then we273

run SGD with small learning rate from the SWA solutions to find a solution located in the same basin274

(denoted as SGD).275

Table 1: Training and test accuracy on CIFAR-100.

Network CIFAR-100
train test

ResNet-110-SWA 94.98% 78.94%
ResNet-110-SGD 97.52% 78.29%
ResNet-164-SWA 97.48% 80.69%
ResNet-164-SGD 99.12% 76.56%

In Figure 7, We draw an interpolation between276

the solutions obtained by SWA and SGD3. One277

can observe that there is no “bump” between278

these two solutions, meaning they are located279

in the same basin. Clearly, the SWA solution is280

biased towards the flat side, which verifies our281

theoretical analysis in Section 5. Further, we282

notice that although the biased SWA solution283

has higher training loss than the solution found by SGD, it indeed yields lower test loss. This verifies284

our analysis in Section 4. Similar observations are made on other networks and other datasets, which285

we present in Appendix E.286

3Izmailov et al. [25] have done a similar experiment.
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To further support our claim, we list our result in Table 1, from which we can observe that SGD287

solutions always have higher training accuracy, but worse test accuracy, compared to SWA solutions.288

This supports our claim in Theorem 1, which states that a bias towards the flat sides of asymmetric289

valleys could help improve generalization, although it yields higher training error.290

Verifying Theorem 2. We further verify that averaging SGD solutions creates a bias towards the291

flat side in expectation for many other asymmetric directions, not just for the specific direction we292

discussed above.293

We take a ResNet-110 trained on CIFAR-100 as an example. Denote uinter as the unit vector pointing294

from the SGD solution to the SWA solution, urand as another unit random direction, and the direction295

uinter + urand is used to explore the asymmetric landscape.296

The results are shown in Figure 8, from which we can observe that SWA has a bias on the flat side297

compared with the SGD solution. We create 10 different random vectors for each network and each298

dataset, and similar observations can be made (see more examples in Appendix F).299

Batch size effect In addition to SWA algorithm, we also observe similar trend when training with300

different batch sizes. The results are deferred to Appendix G.301

6.2 Illusions created by asymmetric valleys302

We further point out that visualizing the “width” of a given solutionw in a low-dimensional space303

may lead to illusive results. For example, one visualization technique used in [25] is to show how the304

loss changes along many random directions vi’s drawn from the d-dimensional Gaussian distribution.305

We take the large batch and small batch solutions from the previous subsection as an example.306

Figure 9 visualizes the “width” of the two solutions using the method described above. From the307

figure, one may draw the conclusion that small batch training leads to a wider minimum compared to308

large batch training. However, these two solutions are in fact from the same basin (see the discussion309

in Appendix G). In other words, the loss curvature near the two solutions looks different because they310

are located at different locations in a same asymmetric valley, instead of being located at different311

local minima. Similar observation holds for SWA and SGD solutions, see Figure 104 .312
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Figure 9: Random ray of large batch and
small batch solution.
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Figure 10: Random ray of SGD and SWA
solution

7 Conclusion313

In this paper, we introduced the notion of asymmetric valley to characterize the loss landscape of deep314

networks, expanding the current research that simply categorizes local minima by sharpness/flatness.315

This notion allowed us to analyze and understand the geometry of loss landscape from a new316

perspective. For example, based on a formal definition of asymmetric valley, we showed that a biased317

solution lying on the flat side of the valley generalizes better than the exact empirical minimizer.318

Further, it is proved that by averaging the weights obtained along the SGD trajectory naturally leads319

to such biased solution. We also conducted extensive experiments with state-of-the-art deep models320

to analyze the properties of asymmetric valleys. It is showed that due to the existence of asymmetric321

valleys, intriguing illustions can be created when visualizing high dimensional loss surface in the322

1D space. We hope this work will deepen our understanding on the loss landscape of deep neural323

networks, and inspire new theories and algorithms that further improve generalization.324

4Similar observations were made by Izmailov et al. [25] as well.
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A Additional Figures for Section 3.2: Asymmetric Directions446

To show that asymmetric valley can be commonly observed, we conduct experiments ranging from447

the simplest network to modern deep neural networks.448

A simple case First, we will show that asymmetric valley can be observed on a simple MLP (one449

hidden layer with 10 hidden neurons) on a logistic regression task in Figure 11450
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Figure 11: Asymmetric direction for a
solution of MLP on logistic regression.
(r, r, p, c) = (10.0, 5.0, 0.11, 6.0).
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Figure 12: Asymmetric direction for
a solution of ResNet-164 on CIFAR-10.
(r, r, p, c) = (4.0, 2.5, 0.033, 4.8).

Other datasets and networks See Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16.451

8 6 4 2 0 2 4 6 8
A random direction generated from (0,1)-uniform distribution

0.0

0.5

1.0

1.5

2.0

Lo
ss

Training loss
SGD solution

Figure 13: Asymmetric direction for a
solution of DenseNet-100 on CIFAR-10.
(r, r, p, c) = (7.0, 5.0, 0.030, 4.8).
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Figure 14: Asymmetric direction for a
solution of ResNet-110 on CIFAR-100.
(r, r, p, c) = (7.0, 5.0, 0.039, 2.7).
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Figure 15: Asymmetric direction for a
solution of ResNet-164 on CIFAR-100.
(r, r, p, c) = (7.0, 5.0, 0.031, 2.5).
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Figure 16: Asymmetric direction for a
solution of DenseNet-100 on CIFAR-100.
(r, r, p, c) = (8.5, 6.5, 0.087, 2.1).

B Proof for Theorem 1452

Proof. Since δ has 2d possible value for a given δ̄, we can use an integer j ∈ {0, · · · , 2d − 1} to453

represent each value. When writing j in binary, its i-th digit represents whether δi = δ̄i (equal to 1)454

or δi = −δ̄i (equal to 0). We use j ∧ 2i to represent the bitwise AND operator between j and 2i,455

which equals 0 if the i-th digit of j is 0.456
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To prove our theorem, it suffices to show that for any i ∈ [k],457

EδL

(
ŵ∗ +

i−1∑
i0=1

li0ui0

)
− EδL

(
ŵ∗ +

i∑
i0=1

li0ui0

)
≥ (ci − 1)lipi/2− 2ξ > 0 (1)

If (1) is true, it suffices to take summation over i on both sides, and we will get our conclusion.458

Therefore, below we will prove (1).459

EδL

(
ŵ∗ +

i−1∑
i0=1

li0ui0

)
−min

w
L(w) + min

w
L̂(w)

=EδL
′

(
ŵ∗ +

i−1∑
i0=1

li0ui0

)
1
≥ 1

2d

2d−1∑
j=0

L̂

(
ŵ∗ +

i−1∑
i0=1

li0ui0 + δj

)
− ξ

=
1

2d

2d−1∑
j=0

j∧2i=0

[
L̂

(
ŵ∗ +

i−1∑
i0=1

li0ui0 + δj

)
+ L̂

(
ŵ∗ +

i−1∑
i0=1

li0ui0 + δj+2i

)]
− ξ (2)

Where 1 holds by Assumption 1, and the fact that ‖
∑i−1
i0=1 li0ui0‖2 ≤ ‖l‖2 = R. For every j s.t.460

j ∧ 2i = 0,461

ŵ∗ +

i∑
i0=1

li0ui0 + δj

=ŵ∗ +

i∑
i0=1

li0ui0 + δj + 〈δj ,ui〉ui − 〈δj ,ui〉ui

=ŵ∗ +

i−1∑
i0=1

li0ui0 + δj − δ̄iui − 〈δj ,ui〉ui + liu
i

=ŵ∗ +

i−1∑
i0=1

li0ui0 + δj − 〈δj ,ui〉ui + (li − δ̄i)ui

Since ‖
∑i−1
i0=1 li0ui0‖2 ≤ ‖l‖2, ‖δj‖2 = ‖δ̄‖2, we know that ∀j,

∑i−1
i0=1 li0ui0 + δj ∈ B(R′). By462

Assumption 2, for every i ∈ [k],ui is asymmetric with respect to ŵ∗+
∑i−1
i0=1 li0ui0+δj−〈δj ,ui〉ui.463

Since li ≤ δ̄i − r, we have li − δ̄i < −r. By the definition of asymmetric direction, we know464

L̂

(
ŵ∗ +

i−1∑
i0=1

li0ui0 + δj

)
≥ L̂

(
ŵ∗ +

i∑
i0=1

li0ui0 + δj

)
+ cilipi (3)

Similarly,465

ŵ∗ +

i∑
i0=1

li0ui0 + δj+2i

=ŵ∗ +

i−1∑
i0=1

li0ui0 + δj+2i + 〈δj+2i ,ui〉ui − 〈δj+2i ,ui〉ui + liu
i

=ŵ∗ +

i−1∑
i0=1

li0ui0 + δj+2i − 〈δj+2i ,ui〉ui + (δ̄i + li)u
i

Since li ≤ r − δ̄i, we have δ̄i + li ≤ r. Therefore,466

L̂

(
ŵ∗ +

i−1∑
i0=1

li0ui0 + δj+2i

)
≥ L̂

(
ŵ∗ +

i∑
i0=1

li0ui0 + δj+2i

)
− lipi (4)
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Combining (3) and (4), we have,467

(2) ≥ 1

2d

2d−1∑
j=0

j∧2i=0

[
L̂

(
ŵ∗ +

i∑
i0=1

li0ui0 + δj

)
+ cilipi + L̂

(
ŵ∗ +

i∑
i0=1

li0ui0 + δj+2i

)
− lipi

]
− ξ

=
1

2d

2d−1∑
j=0

[
L̂

(
ŵ∗ +

i∑
i0=1

liui0 + δj

)]
+ (ci − 1)lipi/2− ξ

2
≥EδL

′

(
ŵ∗ +

i∑
i0=1

li0ui0

)
+ (ci − 1)lipi/2− 2ξ

=EδL

(
ŵ∗ +

i∑
i0=1

li0ui0

)
−min

w
L(w) + min

w
L̂(w) + (ci − 1)lipi/2− 2ξ

Where 2 holds by Assumption 1 and the fact that ‖
∑i
i0=1 li0ui0‖2 ≤ ‖l‖2 = R. That means,468

EδL

(
ŵ∗ +

i−1∑
i0=1

li0ui0

)
≥ EδL

(
ŵ∗ +

i∑
i0=1

li0ui0

)
+ (ci − 1)lipi/2− 2ξ > 0

Where the last inequality holds as li > 4ξ
(ci−1)pi .469

470

C Additional Figures for Section 4.2: Shift Exists Empirically471

See Figure 17, Figure 18, and Figure 19.472
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Figure 17: Shift on asym-
metric direction (DenseNet-
100 on CIFAR-100), ξδ=1 =
0.119, ξδ=0 =0.439
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Figure 18: Shift on asymmet-
ric direction (ResNet-164 on
CIFAR-10), ξδ=0.5 =0.0699,
ξδ=0 =0.189
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Figure 19: Shift on symmet-
ric direction (ResNet-110 on
CIFAR-100), ξδ=1 =0.0197,
ξδ=0 =0.0431

D Proof for Theorem 2473

To prove Theorem 2, we will need the following concentration bound.474

Lemma 3 (Azuma’s inequality). Let X1, X2, X3, ...Xn be independent random variables satisfying
|Xi − E[Xi]| ≤ ci, for 1 ≤ i ≤ n. We have the following bound for X =

∑n
i=1Xi:

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
∑n
i=1

c2
i

Let pmin , −η(a− + a+ + 2ν), pmax , −η(b− − ν). Since −a− = ca+, we know pmin >475

(c− 1)ηa+ − 2ην. First, we have the following bounds on the first step w0.476

Lemma 4. For every i ∈ [h], w0 ∈ [pmin, pmax].477
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Proof. Since w0 is the first step that SGD jumps from the flat side to the sharp side, denote the478

previous location as w−1 < 0. Since w−1 is at the sharp side, we know that the gradient is479

∇L(w−1) ≤ a−. Therefore, we have480

w0 = w−1 − η(∇L(w−1) + ω−1)

Where ω−1 is the noise bounded by ν.481

At the time when SGD jump from the flat side to sharp side, denote the target position as w′−1. We482

know that w′−1 ∈ [−η(a+ + ν), 0]. Since the gradient on the sharp side is at most a−, we know the483

next step is lower bounded by −η(a+ + 2ν + a−) = pmin > 0. In other words, SGD stays at the484

sharp side for only 1 iterations (this matches with our empirical observation, see e.g. Figure 5).485

That means, the bound on w′−1 can be applied to w−1 as well, because they are the same iterate. By486

applying the upper and lower bound on∇L(w−1), we get:487

w0 ≥ −η(a+ + ν)− η(a− + ν) = pmin

and also488

w0 ≤ 0− η(b− − ν) = pmax

489

Below we first define Tmin ,

(
−
√
2ν log1/2(2τ)+

√
2ν2 log(2τ)−4a+(a−+a++2ν)

2a+

)2

, where τ is a con-490

stant with value to be set later. Tmin satisfies the following inequality.491

Lemma 5. ∀t ≤ Tmin, pmin − tηa+ −
√

2tην log1/2(2τ) ≥ 0.492

Proof. By the definition of pmin, we have493

− η(a− + a+ + 2ν)− tηa+ −
√

2tην log1/2(2τ) ≥ 0

⇐(a− + a+ + 2ν) + ta+ +
√

2tν log1/2(2τ) ≤ 0

⇐(a− + a+ + 2ν) + ∆2a+ +
√

2∆r log1/2(2τ) ≤ 0 (∆ ,
√

t)

⇐∆ ∈

[
0,
−
√

2ν log1/2(2τ) +
√

2ν2 log(2τ)− 4a+(a− + a+ + 2ν)

2a+

]

⇐t ≤

(
−
√

2ν log1/2(2τ) +
√

2ν2 log(2τ)− 4a+(a− + a+ + 2ν)

2a+

)2

Now, we have the following theorem that says with decent probability, the minimum number of494

iterates on the flat side in i-th round is at least Tmin.495

Theorem 6. If we start at w0 ≥ pmin, for every fixed τ > Tmin, with probability at least 1− Tmin

τ ,496

we have ∀t ≤ Tmin, wt > w0 − tηa+ −
√

2tην log1/2(2τ) ≥ 0.497

Proof. Define filtration Ft = σ{ω0, · · · , ωt−1}, where σ{·} denotes the sigma field. Define the498

event ET = {∀t ≤ T,wt > w0− tηa+−
√

2tην log1/2(2τ)} and defineGt = w0−wt− tηa+ +M ,499

where M , (Tmin + 1)(w0 + ν + 2ηa+). Since we only consider the case t ≤ Tmin, we have500

Gt = w0 − wt − tηa+ + (Tmin + 1)(w0 + ν + 2ηa+) > w0 − wt − tηa+ + wt + tηa+ > 0

Therefore, Gt is always positive. By SGD updating rule, we have501

E[Gt+11Et |Ft] = E[(w0 − wt+1 − (t+ 1)ηa+ +M)1Et |Ft]
≤E[(w0 − wt + ηωt − tηa+ +M)1Et |Ft] = w0 − wt − tηa+ +M = Gt1Et (5)

Since 1Et ≤ 1Et−1
, and Gt is always positive, we have502

Gt1Et ≤ Gt1Et−1
(6)
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Combining (5) and (6) together, we know Gt1Et−1 is a supermartingale.503

We can also bound the absolute value of the difference in every iteration:504

|Gt+11Et − E[Gt+11Et |Ft]|
=|(w0 − wt+1 − (t+ 1)ηa+ +M)− (w0 − wt −∇L(wt)− (t+ 1)ηa+ +M)|Ft]
≤ην

By Azuma’s inequality, we get:505

Pr
(
Gt1Et−1

−G0 ≥ λ
)
≤ 2e

− λ2

2tη2ν2

That gives,506

Pr
(
Gt1Et−1 −G0 ≥

√
2tην log1/2(2τ)

)
≤ 1/τ

That means, if 1Et−1 holds, with probability at least 1− 1/τ ,507

w0 − wt − tηa+ +M <
√

2tην log1/2(2τ) +G0 =
√

2tην log1/2(2τ) +M

Which gives508

wt > w0 − tηa+ −
√

2tην log1/2(2τ)

In other words, that means if 1Et−1
holds, then 1Et also holds with probability at least 1− 1/τ .509

Therefore, if we are running Tmin steps, we know that with probability at least 1 − Tmin

τ , 1ETmin
510

holds. Therefore, by Lemma 5,511

∀t ≤ Tmin, wt > w0 − tηa+ −
√

2tην log1/2(2τ) ≥ pmin − tηa+ −
√

2tην log1/2(2τ) ≥ 0

Similarly, we define Tmax ,

(
−
√
2ν log1/2(2τ)+

√
2ν2 log(2τ)−4(b−−ν)b+
2b+

)2

, which satisfies the fol-512

lowing inequality.513

Lemma 7. pmax − Tmaxηb+ −
√

2Tmaxην log1/2(2τ) < 0.514

Proof. By the definition of pmax, we want to show that515

(b− − ν) + Tmaxb+ +
√

2Tmaxr log1/2(2τ) ≥ 0

Which holds by the definition of Tmax.516

The Theorem below shows with decent probability, Tmax − 1 is an upper bound on the total number517

of iterates on the flat side in the i-th round.518

Theorem 8. If w0 ≤ pmax, with probability at least 1− Tmax

τ , wTmax
< 0.519

Proof. Define event E′T = {∀t ≤ T,wt < w0− tηb+ +
√

2tην log1/2(2τ)}, andG′t = wt+ tηb+ >520

0.521

We have522

E[G′t+11E′t
|Ft]

=E[(wt+1 + (t+ 1)ηb+)1E′t
|Ft]

≤E[(wt − ηωt + tηb+)1E′t
|Ft]

=(wt + tηb+)1E′t

=G′t1E′t

Moreover, we know 1E′t
≤ 1E′t−1

, which meansG′t1E′t
≤ G′t1E′t−1

. SoG′t1E′t−1
is a supermartingale.523
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We can also bound the absolute value of the difference in every iteration:524

|G′t+11E′t
− E[G′t+11E′t

|Ft]|
=|(wt+1 + (t+ 1)ηb+)− (wt − η∇L(wt) + (t+ 1)ηb+)|Ft]|
≤ην

Using Azuma inequality, we get525

Pr
(
G′t1E′t−1

−G′0 ≥
√

2tην log1/2(2τ)
)
≤ 2e

− tη
2ν2 log(2τ)

tη2ν2 =
1

τ

That means, if 1E′t−1
holds, with probability at least 1− 1/τ ,526

wt < w0 − tηb+ +
√

2tην log1/2(2τ)

In other words, 1E′t
also holds. Therefore, if we are running Tmax steps, we know that with probability527

at least 1− Tmax

τ , 1E′Tmax
holds. Therefore, by Lemma 7, we know528

wTmax
< w0 − Tmaxηb+ −

√
2Tmaxην log1/2(2τ) < 0

Remark. To make sure Theorem 6 is not vacuous, we need to make sure that Tmin ≥ 1. If we want529

to make Tmin, say, at least 2, by Lemma 5, we have:530

pmin − 2ηa+ − 2ην log1/2(2τ) ≥ 0

Notice that pmin > (c− 1)ηa+ − 2ην, so we could solve the above inequality and get531

(c− 1)ηa+ − 2ην − 2ηa+ − 2ην log1/2(2τ) ≥ 0

⇒ (c− 3)a+ − 2ν

2ν
≥ log1/2(2τ)

⇒τ ≤ e

(
(c−3)a+

2ν −1
)2

2

Since we assume that c is a large constant and a+ ≥ ν, so τ can be fairly large in order to make sure532

Tmin ≥ 2. We also know that Tmin ≤ −(a−+a++2ν)
a+

< c.533

On the other hand, by simple calculation, we know Tmax ≤ −(b−−ν)b+
< c′ < ec/3

6 . Therefore, we534

can always pick a τ such that Tmin+Tmax

τ ≤ 1
2 . So finally, we are ready to prove Theorem 2.535

Proof of Theorem 2. By Lemma 4 and Theorem 8, Tmax is an upper bound on the length of the i-th536

round. By Theorem 6, we know that SGD will stay at flat side for at least Tmin steps, and each step is537

lower bounded by wt > w0 − tηa+ −
√

2tην log1/2(2τ), therefore we know that with probability538

1− Tmin+Tmax

τ :539

1

Ti

Ti∑
j=0

wij ≥
1

Tmax

(
Tmin∑
t=0

[w0 − tηa+ −
√

2tην log1/2(2τ)]− η(a+ + ν)

)

≥ 1

Tmax

(
ηa+

(Tmin + 1)Tmin

2
+
√

2Tminην log1/2(2τ)− η(a+ + ν)

)
≥ T 2

min

Tmax
ηa+

The above inequality discussed the scenario when Theorem 6 and Theorem 8 hold. If they do not hold,540

which happens with probability at most Tmin+Tmax

τ , we need to get lower bound for 1
Ti

∑Ti
j=0 w

i
j .541
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Notice that by Lemma 4, we know that SGD stays at the sharp side for at most 1 iterate in each round,542

and also the iterates on the flat sides are always positive with w0 ≥ pmin > η(a+ + ν). Therefore,543

we have the following trivial bound:544

1

Ti

Ti∑
j=0

wij ≥
−η(a+ + ν) + w0

2
> 0

Combining two cases together we get545

E

 1

Ti

Ti∑
j=0

wij

 ≥ (1− Tmin + Tmax

τ

)
T 2
min

Tmax
ηa+ + 0

Since we can pick τ s.t. Tmin+Tmax

τ ≤ 1
2 , we have546

E

 1

Ti

Ti∑
j=0

wij

 ≥ T 2
min

2Tmax
ηa+ , c0 > 0

E Additional Figures in Section 6.1: No Bumps Between SGD and SWA547

Solutions548

Asymmetric valley of ResNet-56 on CIFAR-10, (r, r, p, c) = (3.7, 3.0, 0.016, 10). See Figure 20.549

Asymmetric valley of ResNet-110 on CIFAR-10, (r, r, p, c) = (5.3, 3.5, 0.0050, 11). See Figure 21.550

Asymmetric valley of ResNet-164 on CIFAR-10, (r, r, p, c) = (2.5, 2.0, 0.027, 4.3). See Figure 22.551

Asymmetric valley of VGG-16 on CIFAR-10, (r, r, p, c) = (5.6, 4.0, 0.0033, 30). See Figure 23.552

Asymmetric valley of DenseNet-100 on CIFAR-10, (r, r, p, c) = (13.0, 8.0, 0.0029, 7.4). See Figure553

24554

Asymmetric valley of ResNet-56 on CIFAR-100, (r, r, p, c) = (11.0, 6.0, 0.034, 15). See Figure 25.555

Asymmetric valley of ResNet-110 on CIFAR-100, (r, r, p, c) = (7.5, 4.5, 0.053, 6.3). See Figure 26.556

Asymmetric valley of ResNet-164 on CIFAR-100, (r, r, p, c) = (11.0, 6.0, 0.012, 18). See Figure557

27.558

Asymmetric valley of VGG-16 on CIFAR-100, (r, r, p, c) = (9.0, 6.0, 0.0084, 17). See Figure 28.559

Asymmetric valley of ResNet-56 on SVHN, (r, r, p, c) = (5.0, 4.0, 0.018, 15). See Figure 29.560

Asymmetric valley of ResNet-110 on SVHN, (r, r, p, c) = (4.5, 2.5, 0.010, 11). See Figure 30.561

Asymmetric valley of ResNet-164 on SVHN, (r, r, p, c) = (4.5, 2.5, 0.033, 7.0). See Figure 31.562

Asymmetric valley of VGG-16 on SVHN, (r, r, p, c) = (4.5, 2.5, 0.0043, 43). See Figure 32.563

Asymmetric valley of ResNet-56 on STL-10, (r, r, p, c) = (8.0, 5.0, 0.33, 2.4). See Figure 33.564

Asymmetric valley of ResNet-110 on STL-10, (r, r, p, c) = (11.0, 6.0, 0.51, 3.5). See Figure 34.565

Asymmetric valley of ResNet-164 on STL-10, (r, r, p, c) = (12.0, 7.0, 0.092, 16). See Figure 35.566

Asymmetric valley of VGG-16 on STL-10, (r, r, p, c) = (5.0, 3.0, 0.11, 12). See Figure 36.567
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Figure 20: SWA and SGD interpolation
(ResNet-56 on CIFAR-10)
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Figure 21: SWA and SGD interpolation
(ResNet-110 on CIFAR-10)
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Figure 22: SWA and SGD interpolation
(ResNet-164 on CIFAR-10)
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Figure 23: SWA and SGD interpolation
(VGG-16 on CIFAR-10)
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Figure 24: SWA and SGD interpolation
(DenseNet-100 on CIFAR-10)
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Figure 25: SWA and SGD interpolation
(ResNet-56 on CIFAR-100)
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Figure 26: SWA and SGD interpolation
(ResNet-110 on CIFAR-100)

0 5 10 15 20 25 30 35
A direction pointing from SWA solution to SGD solution

0

1

2

3

4

Lo
ss

Train loss
Test loss
SWA solution
SGD solution

Figure 27: SWA and SGD interpolation
(ResNet-164 on CIFAR-100)
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Figure 28: SWA and SGD interpolation
(VGG-16 on CIFAR-100)
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Figure 29: SWA and SGD interpolation
(ResNet-56 on SVHN)
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Figure 30: SWA and SGD interpolation
(ResNet-110 on SVHN)
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Figure 31: SWA and SGD interpolation
(ResNet-164 on SVHN)
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Figure 32: SWA and SGD interpolation
(VGG-16 on SVHN)
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Figure 33: SWA and SGD interpolation
(ResNet-56 on STL-10)
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Figure 34: SWA and SGD interpolation
(ResNet-110 on STL-10)
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Figure 35: SWA and SGD interpolation
(ResNet-164 on STL-10)
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Figure 36: SWA and SGD interpolation (VGG-16 on STL-10)

F Additional Figures in Section 6.1: SGD Averaging Generates Good Bias568

Examples for asymmetric directions of ResNet-110 on CIFAR-100 in Figure 37.
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Figure 37: The average of SGD has a bias on flat side (ResNet-110 on CIFAR-100).

569

Examples for asymmetric directions of ResNet-164 on CIFAR-100 in Figure 38,570
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Figure 38: The average of SGD has a bias on flat side (ResNet-164 on CIFAR-100).

Examples for asymmetric directions of ResNet-110 on CIFAR-10 in Figure 39.571
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Figure 39: The average of SGD has a bias on flat side (ResNet-110 on CIFAR-10).
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G Batch size effect572

Keskar et al. [32] observed that training with small batch size using SGD algorithm generalizes better573

than training with large batch size. They argue that it is because large batch SGD tends to converge to574

sharp minima, while small batch SGD generally converges to flat minima. Here we present a slightly575

different view that batch size has an influence on choosing sides of an asymmetric valley.576

We use a PreResNet-164 trained on CIFAR-100 as an example. We first running SGD with a batch577

size of 128 for 200 epochs to find a solution (denoted as Large batch solution), and then contintue the578

training with batch size 32 for another 80 epoch to find a nearby solution (denoted as Small batch579

solution). The reason for fine-tune is that we hope the two solutions are not far from each other, and580

we want to show that small batch size ensures a bias towards flat side.581

From the results shown in Figure 40, it is clear that the small batch solution has worse training582

accuracy but better test accuracy. Meanwhile, there is no ’bump’ between these solutions which583

suggests they are in the same basin. Therefore, small batch SGD generalizes better because it could584

find a better biased solution in the asymmetric valley under our training scheme, not because it finds585

a different wider or flatter minimum.586
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Figure 40: Large and small minibatch interpolation(batch size 128 to 32 of PreResNet-164 on
CIFAR-100)

H Batch Norm and Asymmetric Valleys587

In this section, we present empirical evidences that the Batch Normalization (BN) [24] adopted by588

modern neural networks seems to be a major cause for asymmetric valleys.589

Directions on BN parameters are more asymmetric. For a given SGD solution, if we take a590

random direction where only the BN parameters have non-zero entries, and compare it with a random591

direction where only the non-BN parameters have non-zero entries, we observe that those BN-related592

directions are usually more asymmetric. The result with ResNet-110 on CIFAR-10 is shown in593

Figure 41, . As we can see, the Non-BN direction is sharp on both sides, but BN direction is flat on594

one side, and sharp on the other side. We also conducted trials with different networks and datasets,595

and obtained similar results (see Figure 42, 43 and 44).596
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Figure 41: BN and Non-BN directions
through a local minimum of ResNet-110
on CIFAR-10.
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Figure 42: BN and Non-BN directions
through a local minimum of of ResNet-
164 on CIFAR-10.
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Figure 43: BN and Non-BN directions com-
parison of ResNet-110 on CIFAR-100
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Figure 44: BN and Non-BN directions com-
parison of DenseNet-100 on CIFAR-100
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Figure 45: SGD averaging on BN parame-
ters give better test accuracy compared with
SGD averaging on non-BN parameters.
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Figure 46: Test accuracy of ResNet-8 with
and without BN layers, after running weight
averaging (SWA).

SGD averaging is more effective on BN parameters. By Theorem 1 and 2, we know that SGD597

averaging could lead to biased solutions on asymmetric directions with better generalization. If598

BN indeed creates many asymmetric directions, can we improve the model performance by only599

averaging the weights of BN layers?600

Note that BN parameters only constitute a small fraction of the total model parameters, e.g., 1.41% in a601

ResNet-110. In the follow experiment on ResNet-110 for CIFAR-10, we perform SGD averaging only602

on BN parameters, denoted as SWA-BN; and also averaging randomly selected non-BN parameters603

of the same amount (1.41% of the total parameters), denoted as SWA-Non-BN. The results are shown604

in Figure 45. It can be observed that averaging only BN parameters (blue curve) is more effective605

than averaging non-BN parameters (green curve), although there is still a gap comparing to averaging606

all the weights (yellow curve).607

Moreover, we also conduct experiments with two 8-layer ResNets on CIFAR-10, one with BN608

layers and one without. We choose shallow networks here as deeper models without BN can not be609

effectively trained.610

As shown in figure 46, we start weight averaging at the 126-th epoch. Although in both networks, we611

observe an improvement in test accuracy after averaging, it is clear that the network with BN layers612

have larger improvement compared with the network without BN layers. This again indicates that613

SGD averaging is more effective on BN parameters.614
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