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Abstract

We consider evidence integration from potentially dependent observation processes
under varying spatio-temporal sampling resolutions and noise levels. We offer a
multi-resolution multi-task (MRGP) framework that allows for both inter-task and
intra-task multi-resolution and multi-fidelity. We develop shallow Gaussian Process
(GP) mixtures that approximate the difficult to estimate joint likelihood with a
composite one and deep GP constructions that learn mappings between resolutions
and naturally handle biases. In doing so, we generalize existing approaches and
offer information-theoretic corrections and efficient variational approximations.
We demonstrate the competitiveness of MRGPs on synthetic settings and on the
challenging problem of hyper-local estimation of air pollution levels across London
from multiple sensing modalities operating at disparate spatio-temporal resolutions.

1 Introduction

The increased availability of ground and remote sensing networks coupled with new modalities,
arising from e.g. citizen science initiatives and mobile platforms, is creating new challenges for
performing formal evidence integration. These multiple observation processes and sensing modalities
can be dependent, with different signal-to-noise ratios and varying sampling resolutions across
space and time. In our motivating application, London authorities measure air pollution from
multiple sensor networks; high-fidelity ground sensors that provide frequent multi-pollutant readings,
low fidelity diffusion tubes that only provide monthly single-pollutant readings, hourly satellite-
derived information at large spatial scales, and high frequency medium-fidelity multi-pollutant sensor
networks. Such a multi-sensor multi-resolution multi-task evidence integration setting is becoming
prevalent across many real world applications of spatio-temporal problems.

The current state of the art, see also Section 5, is assuming independent and unbiased observation
processes and cannot handle the challenges of real world settings that are jointly non-stationary,
multi-task, multi-fidelity, and multi-resolution [2, 7, 15, 23, 24, 29, 30]. The latter challenge has
recently attracted the interest of the machine learning community under the context of working
with aggregate, binned observations [2, 15, 30] or the special case of natural language generation at
multiple levels of abstraction [29]. When the independence and unbiasedness assumptions are not
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satisfied they lead to posterior contraction, degradation of predictive performance and insufficient
uncertainty quantification.

In this paper we introduce a multi-resolution multi-task GP framework that can integrate evidence
from observation processes with varying support (e.g. partially overlapping in time and space),
that can be dependent and biased while allowing for both inter-task and intra-task multi-resolution
and multi-fidelity. Our first contribution is a shallow GP mixture, MR-GPRN, that corrects for the
dependency between observation processes through composite likelihoods and extends the Gaussian
aggregation model of Law et al. [15], the multi-task GP model of Wilson et al. [36], and the variational
lower bound of Nguyen and Bonilla [20]. Our second contribution is a multi-resolution deep GP
composition that can additionally handle biases in the observation processes and extends the deep GP
models and variational lower bounds of Damianou and Lawrence [5] and Salimbeni and Deisenroth
[28] to varying support, multi-resolution data. Lastly, we demonstrate the superiority of our models
on synthetic problems and on the challenging spatio-temporal setting of predicting air pollution in
London at hyper-local resolution.

Sections 3 and 4 introduce our shallow GP mixtures and deep GP constructions, with associated
variational approximations, respectively. In Section 6 we demonstrate the empirical advantages
of our framework versus the prior art followed by additional related work in Section 5 and our
concluding remarks. Further analysis is provided in the Appendix and code is available at https:
//github.com/ohamelijnck/multi_res_gps.

2 Multi-resolution Multi-task Learning

Consider A ∈ N observation processes Ya ∈ IRNa×P across P tasks with Na observations. Each
process may be observed at varying resolutions that arises as the volume average over a sampling area
Sa. Typically we discretise the area Sa with a uniform grid and so we overload Sa to denote these
points. We construct A datasets {(Xa,Ya)}Aa=1, ordered by resolution size (Y1 is the highest, YA
is the lowest), where Xa ∈ IRNa×|Sa|×Da and Da is the input dimension. For notational simplicity
we assume that all tasks are observed across all processes, although this need not be the case.

In our motivating application there are multiple sensor networks (observation processes) measuring
multiple air pollutants (tasks) such as CO2, NO2, PM10, PM2.5 at different sampling resolutions.
These multi-resolution observations exist both within tasks, (intra-task multi-resolution) when
different sensor networks measure the same pollutant, and across tasks (inter-task multi-resolution)
when different sensor networks measure different but potentially correlated pollutants due to e.g.
common emission sources. Our goal is to develop scalable, non-stationary non-parametric models for
air pollution while delivering accurate estimation and uncertainty quantification.

3 Multi-Resolution Gaussian Process Regression Networks (MR-GPRN)

We first introduce a shallow instantiation of the multi-resolution multi-task framework. MR-GPRN
is a shallow GP mixture, Fig. 1, that extends the Gaussian process regression network (GPRN)
[36]. Briefly, the GPRN jointly models all P tasks as a linear combination of Q ∈ N GPs. These
GPs are combined using task specific weights, that are themselves GPs, resulting in PQ ∈ N latent
weights Wp,q. More formally, fq ∼ GP(0,Kf

q ), Wp,q ∼ GP(0,Kw
p,q) and each task p is modelled

as Yp =
∑Q
q=1 Wp,q � fq + εp where � is the Hadamard product and ε ∼ N (0, σ2

pI). The GPRN
is an extension of the Linear Coregionalization Model (LCM) [3] and can enable the learning of
non-stationary processes through input dependent weights [1].

3.1 Model Specification

We extend the GPRN model to handle multi-resolution observations by integrating the latent process
over the sampling area for each observation. Apart from the standard inter-task dependency we would
ideally want to be able to model additional dependencies between observation processes such as,
for example, correlated noises. Directly modelling this additional dependency can quickly become
intractable, due to the fact that it can vary in input space. If one ignores this dependency by assuming
a product likelihood, as in [15, 19], then the misspecification results in severe posterior contractions
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Algorithm 1 Inference of MR-GPRN

Input: A multi-resolution datasets
{(Xa,Ya)}Aa=1, initial parameters θ,
θ̂ ← arg maxθ

∑A
a=1 `(Ya|θ)

H←
∑A
a=1∇`(Ya|θ̂)∇`(Ya|θ̂)T

J← ∇2`(Y|θ̂)

φ←


|θ̂|

Tr[H(θ̂)−1J(θ̂)]
Tr[H(θ̂)J(θ̂)−1H(θ̂)]

Tr[H(θ̂)]

θ ← arg minθ

(∑A
a=1 φEq [`(Ya|θ)] +KL

)
Figure 1: Left: Graphical model of MR-GPRN for A observation processes each with P tasks. This
allows multi-resolution learning between and across tasks. Right: Inference for MR-GPRN.

(see Fig. 2). To circumvent these extremes we approximate the full likelihood using a multi-resolution
composite likelihood that attempts to correct for this misspecification [33]. The posterior over the
latent functions is now:

p(W, f |Y) ∝
A∏
a=1

P∏
p=1

Na∏
n=1

N (Ya,p,n|
1

|Sa,n|

∫
Sa,n

Q∑
q=1

Wp,q(x)� fq(x) dx, σ2
a,pI)φ︸ ︷︷ ︸

MR-GPRN Composite Likelihood

p(W, f)︸ ︷︷ ︸
GPRN Prior

(1)

where φ ∈ IR>0 are the composite weights that are important for inference. The integral within the
multi-resolution likelihood links the underlying latent process to each of the resolutions; in general
this is not available in closed form and so we approximate it by discretizing over a uniform grid.
When we only have one task and W is set to a vector of constants we denote the model as MR-GP.

3.2 Composite Likelihood Weights

Under a misspecified model the asymptotic distribution of the MLE estimate con-
verges to N (θ0,

1
nH(θ0)J(θ0)−1H(θ0)) where θ0 are the true parameters and H(θ0) =

1
n

∑N
n=1∇`(Y|θ0)∇`(Y|θ0)T , J(θ0) = 1

n

∑N
n=1∇2`(Y|θ0) are the Hessian and Jacobian re-

spectively. The form of the asymptotic variance is the sandwich information matrix and it represents
the loss of information in the MLE estimate due to the failure of Bartletts second identity [33].

Following Lyddon et al. [17] and Ribatet [27] we write down the asymptotic posterior of MR-GPRN
as N (θ0, n

−1φ−1H(θ0)). In practise we only consider a subset of parameters that are present in all
likelihood terms, such as the kernel parameters. Asymptotically one would expect the contribution
of the prior to vanish causing the asymptotic posterior to match the limiting MLE. The composite
weights φ can be used to bring these distributions as close together as possible. Approximating θ0

with the MLE estimate θ̂ and setting φ−1H(θ̂) = H(θ̂)J(θ̂)−1H(θ̂) we can rearrange to find φ and
recover the magnitude correction of Ribatet [27]. Instead if we take traces and then rearrange we
recover the correction of Lyddon et al. [17]:

φRibatet =
|θ̂|

Tr[H(θ̂)−1J(θ̂)]
, φLyddon =

Tr[H(θ̂)J(θ̂)−1H(θ̂)]

Tr[H(θ̂)]
. (2)

3.3 Inference

In this section we derive a closed form variational lower bound for MR-GPRN, the full details can
be found in the Appendix. For computational efficiency we introduce inducing points (see [10, 32])
U = {uq}Qq=1 and V = {vp,q}P,Qp,q=1, for the latent GPs f and W respectively, where uq ∈ IRM

and vp,q ∈ IRM . The inducing points are at the corresponding locations Z(u) = {Z(u)
q }Qq=1,Z

(v) =
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Figure 2: Left: MR-GPRN recovers the true predictive variance whereas assuming a product likelihood
assumption leads to posterior contraction. Right: MR-DGP recovers the true predictive mean under
a multi-resolution setting with scaling biases. Both VBAGG-NORMAL and MR-GPRN fail as they
propagate the bias. Black crosses and lines denote observed values. Grey crosses denote observations
removed for testing.

{Z(v)
p,q}P,Qp,q=1 for Z

(·)
· ∈ IRM,D. We construct the augmented posterior and use the approximate

posterior q(u,v, f ,W) = p(f ,W|u,v)q(u,v) where

q(u,v) =

K∑
k=1

πk

Q∏
j=1

N (m
(u)
k,j ,S

(u)
k,j ) ·

P,Q∏
i,j=1

N (m
(v)
k,i,j ,S

(v)
k,i,j) (3)

is a free form mixture of Gaussians with K components. We follow the variational derivation of
[14, 22] and derive our expected log-likelihood ELL =

∑A
a=1

∑P
p=1

∑Na

n=1

∑K
k=1 ELLa,p,n,k,

ELLa,p,n,k = πk logN

Ya,p,n | 1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

µ
(w)
k,p,q(x)µ

(f)
k,q(x), σ2

a,p


− πk

2σ2
a,p

1

|Sa,n|2
Q∑
q=1

∑
x1,x2

Σ
(w)
k,p,qΣ

(f)
k,q + µ

(f)
k,q(x1)Σ

(w)
k,p,qµ

(f)
k,q(x2)µ

(w)
k,p,q(x1)Σ

(f)
k,qµ

(w)
k,p,q(x2)

(4)

where Σ(·)
·,·,· is evaluated at the points x1, x2. and µ

(f)
k , µ(w)

k,p , Σ
(f)
k , Σ

(w)
k,p are respectively the mean

and variance of qk(Wp), qk(f). To infer the composite weights we follow [17, 27] and first obtain
the MLE estimate of θ by maximizing the likelihood in Eq. 1. The weights can then be calculated and
the variational lowerbound optimised as in Alg. 1 with O(E · (PQ+Q)NM2) for E optimization
steps until convergence. Our closed form ELBO generalizes prior state of the art of the GPRN
([1, 14, 20]) by extending to the multi-resolution setting and allowing for a free form mixture of
Gaussians variational posterior. In the Appendix we also provide variational lower bounds for the
positively-restricted GPRN form Yp =

∑Q
q=1 exp(Wp,q)� fq + ε that improves identifiability and

predictive performance.

3.4 Prediction

Although the full predictive distribution of a specific observation process is not available in closed
form, using the variational posterior we derive the predictive mean and variance, avoiding Monte
Carlo estimates. The mean is simply E[Y∗a,p] =

∑K
k πkEk

[
W∗

k,p

]
Ek [̂f∗k ], where K is the number

of components in the mixture of Gaussians variational posterior and πk is the k’th weight. We provide
the predictive variance and full derivations in the appendix .
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Figure 3: Left: General plate diagram of MR-DGP for A observation processes across P tasks with
noise variances omitted. For notational simplicity we have assumed that the target resolution is
a = 1 and we use �p to depict each of the sub-plate diagrams defined on the LHS. Right: A specific
instantiation of an MR-DGP for 2 tasks and 2 observation processes (resolutions) with a target process
Y1,1 as in the inter-task multi-resolution PM10, PM25 experiment in Section 4.

4 Multi-Resolution Deep Gaussian Processes (MR-DGP)

We now introduce MR-DGP, a deep instantiation of the framework which extends the deep GP (DGP)
model of Damianou and Lawrence [5] into a tree-structured multi-resolution construction, Fig. 3.
For notational convenience henceforth we assume that p = 1 is the target task and that a = 1 is the
highest resolution and the one of primary interest. We note that this need not be the case and the
relevant expressions can be trivially updated accordingly.

4.1 Model Specification

First we focus on the case when P = 1 and then generalize to an arbitrary number of tasks. We
place A independent “Base" GPs {fa,p}Aa=1 on each of the A datasets within task p that model their
corresponding resolution independently. Taking a = 1 to be the target observation process we now
construct A− 1 two-layer DGPs that map from these base GPs {fa,p}Aa=2 to the target process a = 1
while learning an input-dependent mapping between observation processes. These DGPs are local
experts that capture the information contained in each resolution for the target observation process.
Every GP has an explicit likelihood which enables us to estimate and predict at every resolution and
task while allowing for biases between observation processes to be corrected, see Fig. 2.

More formally, the joint distribution p(Yp,Fp) is given by:

A∏
a=2

N (Y1,p|
1

|Sa|

∫
Sa

f (2)
a,p(x) dx, σ2

a,p)p(f
(2)
a,p |fa,p)︸ ︷︷ ︸

Deep GPs

A∏
a=1

N ((Ya,p|
1

|Sa|

∫
Sa

fa,p(x) dx, σ2
a,p)p(fa,p)︸ ︷︷ ︸

Base GPs
(5)

where fa,p ∼ GP(0,Ka,p) and we have stacked all the observations and latent GPs into Yp and Fp
respectively. Each of the likelihood components is a special case of the multi-resolution likelihood in
Eq. 1 (where Q = 1 and the latent GPs W are constant) and we discretize the integral in the same
fashion. Similarly to the deep multi-fidelity model of [4] we define each DGP as:

p(f (2)
a,p |fa,p) = N (0,K(2)

a,p((fa,p,X1), (fa,p,X1))) (6)

where X1 are the covariates of the resolution of interest in our running example and allow each
DGP to learn a mapping, between any observation process a and the target one, that varies across
X1. We now have A independent DGPs modelling Y1,p with separable spatio-temporal kernels at
each layer. The observation processes are not only at varying resolutions, but could also be partially
overlapping or disjoint. This motivates treating each GP as a local model in a mixture of GP experts
[38]. Mixture of GP experts typically combine the local GPs in two ways: either through a gating
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network [25] or through weighing the local GPs [6, 21]. We employ the mixing weight approach
in order to avoid the computational burden of learning the gating work. We define the mixture
mp = β1 � f1,p +

∑A
a=1 βa � f

(2)
a,p where the weight captures the reliability of the local GPs (or

is set to 1 if the mixture is a singleton). The reliability is defined by the resolution and support of
the base GPs and is naturally achieved by utilising the normalised log variances of the base GPs
as βa = (1−Va)

∑a
i Vi. We provide the full justification and derivation for these weights in the

appendix.

We can now generalize to an arbitrary number of tasks. For each task we construct a mixture of experts
mp as described above. For tasks p > 1 we learn the mapping from mp to the target observation
process Y1,1. This defines another set of local GP experts that is combined into a mixture with DGP
experts. In our experiments we set mp for p > 1 to be a simple average and for m1 we use our
variance derived weights. This formulation naturally handles biases between the mean of different
observations processes and each layer of the DGPs has a meaningful interpretation as it is modelling
a specific observation process.

4.2 Augmented Posterior

Due to the non-linear forms of the parent GPs within the DGPs, marginalising out the parent GPs
is generally analytically intractable. Following [28] we introduce inducing points U = {up}Pp=2 ∪
{u(2)

a,p,ua,p}P,Aa,p=1 where each u
(·)
·,· ∈ IRM and inducing locations Z = {Zp}Pp=2∪{Z

(2)
a,p,Za,p}P,Aa,p=1

where Zp,Z
(2)
a,p ∈ IRM×(D+1) and Za,p ∈ IRM×D. The augmented posterior is now simply

p(Y,F,M,U) = p(Y|F)p(F,M|U)p(U) where each p(u(·)
·,· ) = N (0,K

(·)
·,· ). Full details are

provided in the appendix.

4.3 Inference

Following [28] we construct an approximate augmented posterior that maintains the dependency
structure between layers:

q(M,F,U) = p(M,F|U)

P∏
p=2

q(up) ·
P∏
p=1

A∏
a=1

q(u(2)
a,p)q(ua,p) (7)

where each q(u(·)
·,· ) are independent free-form Gaussians N (m

(·)
·,· ,S

(·)
·,· ) and the conditional is

p(F,M|U) =

P∏
p=2

p(fp|mp,up)p(mp|Pa(mp)) ·
P∏
p=1

p(f1,p|u1,p)

A∏
a=2

p(f (2)
a,p |fa,p,u(2)

a,p)p(fa,p|ua,p).

(8)
We use Pa(·) to denote the set of parent GPs of a given GP and L(f) to denote the depth of
DGP f , p(mp|Pa(mp)) = N (

∑A
a wa,pµa,p,

∑A
a wa,pΣa,pwa,p) and µa,p,Σa,p are the means and

variances of the relevant DGPs. Note that the mixture m1 combines all the DGPs at the top layer of
the tree-hierarchy and hence it only appears in the predictive distribution of MR-DGP. All other terms
are standard sparse GP conditionals and are provided in the Appendix. The ELBO is then simply
derived as

LMR-DGP = Eq(M,F,U) [log p(Y|F)]︸ ︷︷ ︸
ELL

+Eq(U)

[
log

P (U)

q(U)

]
︸ ︷︷ ︸

KL

(9)

where the KL term is decomposed into a sum over all inducing variables u
(·)
·,· . The expected log

likelihood (ELL) term decomposes across all Y:
P∑
p=2

Eq(fp) [log p(Y1,1|fp)] +

P∑
p=1

A∑
a

[
E
q(f

(2)
a,1)

[
log p(Y1,p|f (2)

a,1)
]

+ Eq(fa,p) [log p(Ya,p|fa,p)]
]
.

(10)
For each ELL component the marginal q(f (·)

·,· ) is required. Because the base GPs are Gaussian,
sampling is straightforward and the samples can be propagated through the layers, allowing the
marginalization integral to be approximated by Monte Carlo samples. We use the reparametization
trick to draw samples from the variational posteriors [11]. The inference procedure is given in Alg. 2.
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Algorithm 2 Inference procedure for MR-DGP

Input: P multi-resolution datasets {(Xp,Yp)}Pp=1, initial parameters θ0,
procedure MARGINAL(f ,X, l, L)

if l = L then
return q(f |X)

end if
q(P(f)|X)← MARGINAL (P(f), X, l + 1, L(P(f)))

return 1
S

∑S
s=1 p(f |f (s),X)) where f (s) ∼ q(P(f)|X)

end procedure
θ ← arg min

θ

[
E{MARGINAL(fp,Xa,0,L(fp))}Pp=1

[log p(Y|F,X, θ)] +KL(q(U)||p(U))
]

4.4 Prediction

Predictive Density. To predict at x∗ ∈ IRD in the target resolution a = 1 we simply approximate
the predictive density q(m∗1) by sampling from the variational posteriors and propagating the samples
f (s) through all the layers of the MR-DGP structure:

q(m∗1) =

∫
q(m∗1|Pa(m∗1))

∏
f∈Pa(m∗1)

q(f) dPa(m∗1) ≈ 1

S

S∑
s=1

q(m∗1|{f (s)}f∈Pa(m∗1)) (11)

In fact while propagating the samples through the tree structure the model naturally predicts at every
resolution a and task p for the corresponding input location.

5 Related Work

Gaussian processes (GPs) are the workhorse for spatio-temporal modelling in spatial statistics [9]
and in machine learning [26] with the direct link between multi-task GPs and Linear Models of
Coregionalisation (LCM) reviewed by Alvarez et al. [3]. Heteroscedastic GPs [16] and recently
proposed deeper compositions of GPs for the multi-fidelity setting [4, 23, 24] assume that all
observations are of the same resolution. In spatial statistics the related change of support problem
has been approached through Markov Chain Monte Carlo approximations and domain discretizations
[8, 9]. Concurrently to our work [39] has explored the change of support problem under the setting of
multi-variate areal data. They do not consider sparse GPs and hence can derive the true GP posterior,
that is then approximated through an integral discretisation. A recent exception to discretising
the multi-resolution integral is the work by Smith et al. [30] that solves the integral for squared
exponential kernels but only considers observations from one resolution and cannot handle additional
input features. Independently, and concurrently, [37] have recently proposed a multi-resolution
LCM model that is similar to our MR-GPRN model without dependent observation processes and
composite likelihood corrections. Instead they focus on improved estimation of the area integral and
non-Gaussian likelihoods. Finally, we note that the multi-resolution GP work by Fox and Dunson [7]
defines a DGP construction for non-stationary models that is more akin to multi-scale modelling [35].
This line of research typically focuses on learning multiple kernel lengthscales to explain both broad
and fine variations in the underlying process and hence cannot handle multi-resolution observations .

6 Experiments

We demonstrate and evaluate the MRGPs on synthetic experiments and the challenging problem of
estimating and forecasting air pollution in the city of London. We compare against VBAGG-NORMAL
[15] and two additional baselines. The first, CENTER-POINT , is a GPRN modified to support multi-
resolution data by representing each aggregation region through its centre point only. The second,
MR-CASCADE is an instance of MR-DGP but, to illustrate the benefits of the tree composition and
the mixture of experts approach of MR-DGP, instead of a tree structured DGP (as in Fig. 3) we
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MR-DGP VBAGG-NORMAL CENTER-POINT

Figure 4: Spatio-temporal estimation and forecasting of NO2 levels in London. Top Row: Spatial
slices from MR-GPRN, VBAGG-NORMAL and CENTER-POINT respectively at 19/02/2019 11:00:00
using observations from both LAQN and the satellite model (low spatial resolution). Bottom Row:
Spatial slices at the base resolution from the same models at 19/02/2019 17:00:00 where only
observations from the satellite model are present.

construct a cascade. Experiments are coded1 in TensorFlow and we provide additional analysis in the
Appendix.

Dependent observation processes: We provide details of the dependent observation processes
experiment in the left of Fig. 2 in the Appendix.

Biased observation processes:. To demonstrate the ability of MR-DGP in handling biases across
observation processes we construct 3 datasets from the function y = s · 5 sin(x)2 + 0.1ε where
ε ∼ N (0, 1). The first X1,Y1 is at resolution S1 = 1 in the range x=[7,12] with a scale s = 1. The
second is at resolution of S2 = 5 between x=[-10, 10] with a scale s = 0.5 and lastly the third is at
resolution of S3 = 5 x=[10, 20] with a scale s = 0.3. The aim is to predict y across the range [-10,
20] and the results are shown in Table 2 and Fig. 2. MR-DGP significantly outperforms all of the four
alternative approaches as it is learning a forward mapping between observations.

Training. When training both MR-GPRN and VBAGG-NORMAL we first jointly optimize the varia-
tional and hyper parameters while keeping the likelihood variances fixed and then jointly optimize
all parameters together. For MR-DGP we first optimize layer by layer and then jointly optimize all
parameters together, see appendix, as we find that this helps to avoid early local optima.

Inter-task multi-resolution: modelling of PM10 and PM25 in London: In this experiment we
consider multiple tasks with different resolutions. We jointly model PM10 and PM25 at a specific
LAQN location in London. The site we consider is RB7 in the date range 18/06/2018 to 28/06/2018.
At this location we have hourly data from both PM10 and PM25. To simulate having multiple
resolutions we construct 2, 5, 10 and 24 hour aggregations of PM10 and remove a 2 day region of

1Codebase and datasets to reproduce results are available at https://github.com/ohamelijnck/multi_
res_gps
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Table 1: Inter-task multi-resolution. Missing data predictive MSE on PM25 from MR-GPRN, MR-DGP
and baseline CENTER-POINT for 4 different aggregation levels of PM10. VBAGG-NORMAL is
inapplicable in this experiment as it is a single-task approach.

Model PM10 Resolution

2 Hours 5 Hours 10 Hours 24 Hours
CENTER-POINT 4.67 ± 0.74 5.04 ± 0.45 5.26 ± 0.91 5.72 ± 0.91
MR-GPRN 4.54 ± 0.93 5.09 ± 1.04 4.96 ± 1.07 5.32 ± 1.14
MR-DGP 5.14 ± 1.28 4.81 ± 1.06 4.61 ± 1.43 5.42 ± 1.15

Table 2: Intra-task multi-resolution. Left: Predicting NO2 across London (Fig. 4). Right: Synthetic
experiment results (Fig. 2) with three observations processes and scaling bias.

Model RMSE MAPE
Single GP 20.55 ± 9.44 0.8 ± 0.16

CENTER-POINT 18.74 ± 12.65 0.65 ± 0.21
VBAGG-NORMAL 16.16 ± 9.44 0.69 ± 0.37
MR-GPRN w/o CL 12.97 ± 9.22 0.56 ± 0.32
MR-GPRN w CL 11.92 ± 6.8 0.45 ± 0.17

MR-DGP 6.27 ± 2.77 0.38 ± 0.32

Model RMSE MAPE
MR-CASCADE 2.12 0.16

VBAGG-NORMAL 1.68 0.14
MR-GPRN 1.6 0.14
MR-DGP 0.19 0.02

PM25 which is the test region. The results from all of our models in Table 1 demonstrate the ability
to successfully learn the multi-task dependencies. Note that CENTER-POINT fails, e.g. Table 2, when
the sampling area cannot be approximated by a single center point due to the scale of the underlying
process.

Intra-task multi-resolution: spatio-temporal modelling of NO2 in London: In this experiment
we consider the case of a single task but with multiple multi-resolution observation processes. First we
use observations coming from ground point sensors from the London Air Quality Network (LAQN).
These sensors provide hourly readings of NO2. Secondly we use observations arising from a global
satellite model [18] that provide hourly data at a spatial resolution of 7km × 7km and provide 48
hour forecasts. We train on both the LAQN and satellite observations from 19/02/2018-20/02/2018
and the satellite ones from 20/02/2018-21/02/2018. We then predict at the resolution of the LAQN
sensors in the latter date range. To calculate errors we predict for each LAQN sensor site, and find
the average and standard deviation across all sites.

We find that MR-DGP is able to substantially outperform both VBAGG-NORMAL, MR-GPRN and the
baselines, Table 2 (left), as it is learning the forward mapping between the low resolution satellite
observations and the high resolution LAQN sensors, while handling scaling biases. This is further
highlighted in the bottom of Fig. 4 where MR-DGP is able to retain high resolution structure based
only on satellite observations whereas VBAGG-NORMAL and CENTER-POINT over-smooth.

7 Conclusion

We offer a framework for evidence integration when observation processes can have varying inter-
and intra-task sampling resolutions, dependencies, and different signal to noise ratios. Our motivation
comes from a challenging and impactful problem of hyper-local air quality prediction in the city
of London, while the underlying multi-resolution multi-sensor problem is general and pervasive
across modern spatio-temporal settings and applications of machine learning. We proposed both
shallow mixtures and deep learning models that generalise and outperform the prior art, correct for
posterior contraction, and can handle biases in observation processes such as discrepancies in the
mean. Further directions now open up to robustify the multi-resolution framework against outliers
and against further model misspecification by exploiting ongoing advances in generalized variational
inference [12]. Finally an open challenge remains on developing continuous model constructions that
avoid domain discretization, as in [2, 37], for more complex settings.
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A MR-GPRN

In this section we provide the full derivation of the variational lower bound for MR-GPRN. Recall that
we have a multi-resolution data set across P tasks and we model each task as

Ya,p =
1

|Sa|

∫
Sa

Q∑
q=1

Wp,q(x)fq(x) dx +εa,p (12)

where εa,p ∼ N (0, σ2
a,pI). The joint density p(Y,W, f) is then proportional to

A∏
a=1

P∏
p=1

Na∏
n=1

N (Ya,p,n|
1

|Sa,n|

∫
Sa,n

Q∑
q=1

Wp,q(x)� fq(x) dx, σ2
aI)φ︸ ︷︷ ︸

MR-GPRN Composite Likelihood

P∏
p=1

Q∏
q=1

p(Wa,p)

Q∏
q=1

p(fq)︸ ︷︷ ︸
GPRN Prior

.

(13)

where fq ∼ N (0,Kq) are global functions across all tasks and Wp,q ∼ N (0,Kp,q) are task specific.
To allow for computationally efficient inference we introduce inducing points for all latent functions
[32]. For the latent basis functions, f , we have the inducing points u = {uq}Qq=1 where uq ∈ IRMq

at locations Z(f) = {Zq}Qq=1 for Zq ∈ IRMq,D. Similarly, for the latent weight functions, W, we
have v = {vp,q}P,Qp,q=1 where vp,q ∈ IRMp,q at locations Z(w) = {Zp,q}P,Qp,q=1 for Zp,q ∈ IRMp,q,D.
We assume that f and W are independent Gaussian processes, and furthermore that they factor across
components. We then then write the joint probability density including the inducing points as

p(Y,W, f ,u,v) ∝ p(Y|W, f)p(W, f |u,v)p(u,v)

= p(Y|W, f)p(f |u)p(W|v)p(u)p(v)

= p(Y|W, f)

P∏
p=1

Q∏
q=1

p(Wp,q|vp,q)p(vp,q)
Q∏
q=1

p(fq|uq)p(uq)
(14)

where p(fq|uq) = N (fq|µ′(u)
q ,Σ′(u)

q ) and p(Wp,q|vp,q) = N (Wp,q|µ′(v)
p,q ,Σ

′(v)
p,q ) have the standard

conditional Gaussian distributions with parameters

µ′(u)
q = K(u)

q (X,Zq)K
(u)
q (Zq,Zq)

−1uq

µ′(v)
p,q = K(v)

p,q(X,Zp,q)K
(v)
p,q(Zp,q,Zp,q)

−1vp,q

Σ′(·)·,· = K
(·)
·,· (X,X)−K

(·)
·,· (X,Z·,·)K

(·)
·,· (Z·,·,Z·,·)

−1K
(·)
·,· (Z·,·,X)

(15)

and p(uq) = N (uq|0,K(u)
q ) and p(vp,q) = N (vp,q|0,K(v)

p,q).

A.1 Approximate Posterior

Variational inference turns the Bayesian posterior inference problem into an optimisation problem
where the objective function is the evidence lower bound (ELBO). Following [10] we construct our
variational lower bound, keeping u and v explicit, allowing for stochastic variational inference. We
define our approximate posterior to have the factorisation

q(u,v, f ,W) = p(f ,W|u,v)q(u,v) (16)

where we have defined q(u,v) to be a free-form mixture of Gaussians

q(u,v) =

K∑
k=1

πk

Q∏
j=1

N (uj |m(u)
k,j ,S

(u)
k,j ) ·

P,Q∏
i,j=1

N (vi,j |m(v)
k,i,j ,S

(v)
k,i,j) (17)
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where each mean mk ∈ IRM and covariance factor Sk ∈ IRM×M . The marginal q(f ,W) is then
derived as

q(f ,W) =

∫
p(f ,W|u,v)q(u,v) du dv

=

K∑
k=1

πk

∫ Q∏
q=1

p(fq|uk,q)q(uk,q) duk,q ·
∫ P,Q∏

p,q=1

p(Wp,q|vk,p,q)q(vk,p,q) dvk,p,q

=

K∑
k=1

πk

Q∏
q=1

N (fq|µ(f)
k,q ,Σ

(f)
k,q) ·

P,Q∏
p,q=1

N (Wp,q|µ(W )
k,p,q,Σ

(W )
k,p,q)

(18)
where the moments of the variational distribution are given by

µ
(·)
k,·,· = K

(·)
· (X,Z·)K

(·)
· (Z·,Z·)

−1m
(·)
k,·

Σ
(·)
k,·,· = Σ

′(·)
k,·,· + K

(·)
· (X,Z·)K

(·)
· (Z·,Z·)

−1S
(·)
k,·,·K

(·)
· (Z·,Z·)

−1K
(·)
· (Z·,X)

(19)

A.2 Variational Lower Bound

Following [14] we derive the ELBO as:

LMR-GPRN = Eq
[
log

p(Y,W, f ,u,v)

q(W, f ,u,v))

]
= Eq

[
log

p(Y|W, f)p(f |u)p(u)p(W|v)p(v)

p(f |u)p(W|v)q(u,v))

]
= Eq(f ,W) [log p(Y|f ,W)]︸ ︷︷ ︸

ELL

+Eq(u,v)

[
log

p(u,v)

q(u,v)

]
︸ ︷︷ ︸

KL

(20)

The subsequent sections derive the closed-form expressions of both the expected log likelihood (ELL)
and the KL term.

A.3 MR-GPRN: KL Term

Following [14] the KL term is decomposed into two terms:

KL = Eq
[
log

p(u,v)

q(u,v)

]
= Eq [log p(u,v)]︸ ︷︷ ︸

cross

−Eq [log q(u,v)]︸ ︷︷ ︸
ent

(21)

where we deal with each term separately.

A.3.1 Cross Term

The cross term is calculated as

cross = Eq [log p(u,v)] =

K∑
k=1

πkEqk(u,v) [log p(u,v)]

=

K∑
k=1

πk

(
Q∑
q=1

Eq(uk,q) [log p(uq)] +

P∑
p=1

Q∑
q=1

Eq(vk,p,q) [log p(vp,q)]

) (22)

where each

Eq(uk,q) [log p(uq)] = Cu −
1

2
(m

(m)
k,q )TKu

q (Z(u)
q ,Z(u)

q )−1m
(u)
k,q −

1

2
Tr
[
Ku
q (Z(u)

q ,Z(u)
q )−1Suk,q

]
Eq(vk,p,q) [log p(vp,q)] = Cv −

1

2
(m

(v)
k,p,q)

TKv
p,q(Z

(v)
p,q ,Z

(v)
p,q)
−1m

(v)
k,p,q −

1

2
Tr
[
Kv
p,q(Z

(v)
p,q ,Z

(v)
p,q)
−1Svk,p,q

]
(23)
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and

Cu = −Mq

2
log(2π)− 1

2
log |K(u)

q (Z(u)
q ,Z(u)

q )|

Cv = −Mp,q

2
log(2π)− 1

2
log |K(v)

p,q(Z
(v)
p,q,Z

(v)
p,q)|

(24)

A.3.2 Entropy Term

Following [14] we lower bound the entropy term of the mixture of Gaussians as

ent = −
K∑
k=1

πkEqk(u,v) [log q(u,v)]

≥ −
K∑
k=1

πk log
(
Eqk(u,v) [q(u,v)]

)
= −

K∑
k=1

πk log

(
K∑
l=1

πlEqk(u)[ql(u)] · Eqk(v)[ql(v)]

)

= −
K∑
k=1

πk log

(
K∑
l=1

πlN (m
(u)
k |m

(u)
l ,S

(u)
k + S

(u)
l ) · N (m

(v)
k |m

(v)
l ,S

(v)
k + S

(v)
l )

)
.

(25)

A.4 MR-GPRN: Closed Form Expected Log Likelihood

We now derive the closed form expected log likelihood (ELL) in Eq. 20. The ELL is

ELL =

A∑
a=1

P∑
p=1

Na∑
n=1

K∑
k=1

πk Eqk(f ,W)

logN (Ya,p,n|
1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

Wp,q(x)fq(x), σ2
a)


︸ ︷︷ ︸

ELLa

(26)

where each of the components can now be dealt with separately. Dealing with component a

ELLa = Eqk(f ,W)

logN (Ya,p,n|
1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

Wp,q(x)fq(x), σ2
a)


= C1 + C2Eqk(f ,W)

[
(Ya,p,n − µy)T (Ya,p,n − µy)

]
= C1 + C2

(
Eqk(f ,W)

[
YT
a,p,nYa,p,n

]
− 2 · Eqk(f ,W) [Ya,p,nµy] + Eqk(f ,W)

[
µ2
y

])
(27)

where

µy =
1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

Wp,q(x)fq(x)

C1 = −Na
2

log(2πσ2
a,p)

C2 = − 1

2σ2
a,p

(28)

and we now deal with each of these expectations separately.

A.4.1 ELL: 1st Term

The first expectation does not contain f or W and so the expectations can be dropped

Eqk(f ,W)

[
Y2
a,p,n

]
= Y2

a,p,n (29)
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A.4.2 ELL: 2nd Term

For the second term the expectation is brought inside the sum, and then applied to each of f and W
separately

Eqk(f ,W) [µyYa,p,n] =

 1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

Eq [Wp,q(x)]Eq [fq(x)]

Ya,p,n

=

 1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

µ
(w)
k,p,q(x)µ

(f)
k,q(x)

Ya,p,n

(30)

where we have used the independence property, q(f ,W) = q(f)q(W).

A.4.3 ELL: 3rd Term

In the last expectation we have a product of sums, that is then expanded into a quadruple sum over q1,
q2. There will be two cases; the first is when q1 = q2 inside the sum f and W will appear in square
forms, and the second when the expectations can be treated as in Sec. A.4.2.

The final term obtained after expanding the quadratic in (27) is given by

Eqk(f ,W)

[
µ2
y

]
=

1

|Sa,n|2
Q∑

q1=1

Q∑
q2=1

Sa,n∑
x1

Sa,n∑
x2

Eqk(f ,W) [fq1(x1)Wp,q1(x1)Wp,q2(x2)fq2(x2)]

(31)
For the case where q1 = q2, then upon taking expectations we have

Eqk(f ,W)

[
(fq1(x1)Wp,q1(x1)Wp,q1(x2)fq1(x2)

]
=Eqk(f)

[
fq1(x1)

(
µ

(w)
k,p,q1

(x1)µ
(w)
k,p,q1

(x2) + Σ
(w)
k,p,q1

(x1,x2)
)

fq1(x2)
]

=Σ
(w)
k,p,q1

(x1,x2)Σ
(f)
k,q1

(x1,x2) + µ
(f)
k,q1

(x1)Σ
(w)
k,p,q1

(x1,x2)µ
(f)
k,q1

(x2)+

µ
(w)
k,p,q1

(x1)Σ
(f)
k,q1

(x1,x2)µ
(w)
k,p,q1

(x2) + µ
(f)
k,q1

(x1)µ
(w)
k,p,q1

(x1)µ
(w)
k,p,q1

(x2)µ
(f)
k,q1

(x2)
(32)

where we use the notation Σ··,·,·(x1,x2) to denote entry of the covariance matrix which agrees with

the enumeration of x1 and x2. And similarly µ
(w)
k,p,q1

(x1),µ
(·)
k,·(x1) denotes the entry of the mean

vector agreeing with the enumeration of x1.

When q1 6= q2 there will be no square terms and so the expectation will simply be

Eqk(f ,W) [fq1(x1)Wp,q1(x1)Wp,q2(x2)fq2(x2)] = µ
(f)
k,q1

(x1)µ
(w)
k,p,q1

(x1)µ
(w)
k,p,q1

(x2)µ
(f)
k,q1

(x2)
(33)

The complete third term can now be rewritten as

Eq
[
µ2
y

]
=

1

|Sa,n|2
Q∑

q1=1

Q∑
q2=1

Sa,n∑
x1

Sa,n∑
x2

µ
(f)
k,q1

(x1)µ
(w)
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(x1)µ
(w)
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(x2)+

1
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Sa,n∑
x2

Σ
(w)
k,p,q(x1,x2)Σ

(f)
k,q(x1,x2)

+ µ
(f)
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(f)
k,q(x2) + µ

(w)
k,p,q(x1)Σ

(f)
k,q(x1,x2)µ

(w)
k,p,q(x2)

(34)
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A.4.4 Full Term

Combining the derivations above we have

ELL =

A∑
a=1

K∑
k=1

πk
1

2σ2
a

[
Y2
a,p,n − 2

 1

|Sa,n|
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µ
(w)
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+
1

|Sa,n|2
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Q∑
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µ
(f)
k,q1

(x1)µ
(w)
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(w)
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(w)
k,p,q(x1,x2)Σ
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(f)
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(f)
k,q(x1,x2)µ
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− 1

2

A∑
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NaP log(2πσ2
a).

or

ELL =
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a=1

P∑
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Na∑
n=1

K∑
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πk logN

Ya,p,n | 1
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∑

x∈Sa,n

Q∑
q=1

µ
(w)
k,p,q(x)µ

(f)
k,q(x), σ2

a,p


−
A∑
a=1

P∑
p=1

Na∑
n=1

K∑
k=1

πk
2σ2

a,p

1
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Q∑
q=1

∑
x1,x2

Σ
(w)
k,p,q(x1,x2)Σ

(f)
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+ µ
(f)
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(f)
k,q(x2)µ
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(35)

A.5 MR-GPRN: Closed Form Expected Log Likelihood (W→ exp(W))

A.5.1 Moments of exponentiated Gaussian random variables

In this section we provide additional results needed for the calculations in this section using standard
properties of the moment generating function of a Gaussian random variable.

E[exp(t ·Wp,q)] =

∫
IR

N (Wp,q | µWp,q
,ΣWp,q

) exp(t ·Wp,q) dWp,q

= exp(tµWp,q
+
t2

2
ΣWp,q

)

(36)

where exp(·) is defined as element-wise function, for arbitrary t ∈ IR.

A.5.2 ELL with positive weights

If W is passed through an exponential function to enforce positive latent weights the expected
log-likelihood is

α

A∑
a=1

P∑
p=1

Na∑
n=1

K∑
k=1

πk Eqk(f ,W)

logN (Ya,p,n|
1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

exp(Wp,q(x))fq(x), σ2
a)


︸ ︷︷ ︸

ELLa

(37)

Each of the likelihood components can now be dealt with separately, and moreover has the same
form as Eq. 27 with

µy =
1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

exp(Wp,q(x))fq(x) (38)

As above, we now deal with the expectation of each term obtained after expanding the quadratic
separately, but using the results for the exponentiated moments in A.5.1.
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A.5.3 ELL: 1st Term

As in Sec. A.4.1 the expectation is constant:

Eqk(f ,W)

[
Y2
a,p,n

]
= Y2

a,p,n (39)

A.5.4 ELL: 2nd Term

As in Sec. A.4.2 the 2nd term the expectation is brought inside the sum and applied to f and W
separately. To evaluate the expectation of exp(W) we use the result from Eq. 36:

Eqk(f ,W) [µyYa,p,n] =

 1

|Sa,n|
∑

x∈Sa,n

Q∑
q=1

Eqk(f ,W) [exp(Wp,q(x))]Eqk(f ,W) [fq(x)]

Ya,p,n

=

 1
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Q∑
q=1
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(
µ

(w)
k,p,q(x) +

1

2
Σ

(w)
k,p,q(x,x)

)
µ

(f)
k,q(x)

Ya,p,n.

(40)

A.5.5 ELL: 3rd Term

This derivation closely follows that from Section A.4.3. The third term is given by

Eqk(f ,W)

[
µ2
y

]
=

1

|Sa,n|2
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(41)
For the case where q1 = q2

Eqk(f ,W)
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fq1(x1) exp (Wp,q1(x1)) exp (Wp,q1(x2)) fq1(x2)

]
=Eqk(f)
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(42)

where

µ̃
(w)
k,p,q(x1) = exp(µ

(w)
k,p,q(x1) +

1

2
Σ

(w)
k,p,q(x1,x1)),

and

Σ̃
(w)

k,p,q(x1,x2) = exp(2(µ
(w)
k,p,q + Σ

(w)
k,p,q(x1,x2))).

In all other cases there will be no square terms and so the expectation will simply be

Eqk(f ,W)[fq1(x1) exp(Wp,q1(x1)) exp(Wp,q2(x2))fq2(x2)]

= µ
(f)
k,q1(x1)µ̃

(w)
k,p,q1(x1)µ̃

(w)
k,p,q2(x2)µ

(f)
k,q2(x2)

(43)

A.6 Prediction

Although the full predictive distribution for MR-GPRN is not available analytically, we are able to
derive the first and second moments in closed form.
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A.6.1 Predictive Mean

To calculate the first moment we use the approximate variational posterior in place of the true posterior.
The predictive mean for task p is given as

E[y∗p | x∗,X,Y] =

∫
y∗p p(y

∗
p | X∗,X,Y) dy∗

≈
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∫
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(44)

A.6.2 Predictive Variance

The point wise second moment of task p is given by

V[y∗p] = E
[
(y∗p)

2
]
− E

[
y∗p
]
E
[
y∗p
]

(45)

We have already calculated the closed form mean in Eq. 44 and the square form is given by
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In the case when q1 = q2 the expectation is
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In all other cases there will be no square terms
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Combining both cases together we can write
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B Synthetic Examples

Apart from the variational experiments in Section 2 of the main paper, additional experiments using a
Markov Chain Monte Carlo (MCMC) approach are conducted in this section. We show that when the
dependency structure is lost through the product likelihood construction, the mean of the posterior
distribution for the latent function will also deviate from the true one. We also demonstrate the
posterior contraction and the effect of the different corrections.

B.1 Data Generating Process

We generate two synthetic observation processes from:

y
(1)
i = f(xi) + ε1

y
(2)
j =

1

2

2j∑
k=2j−1

y
(1)
k + ε2

(50)

Where y(1)
i , i = 1, ..., 2N is the observed value of f(xi) with noise ε1 ∼ N (0, σ2

1) and y(2)
j , j =

1, ..., N is the aggregate function of y(1) with noise ε2 ∼ N (0, σ2
2),σ1 = 1, σ2 = 0.1. We are using

a sin function to generate data f(xi) = 5 sin2(xi). The likelihood function with the observation
processes Y1 = {y(1)

i }2Ni=1 , Y2 = {y(2)
j }Nj=1 is given by:

L(Y1,Y2) = p(Y1|f(x), σ2
1)p(Y2|Y1, σ

2
2) (51)

When the data from Y1 has the same support as the observation process Y2, the evidence
from Y2 will not affect parameter estimation in the probability function p(Y1|f(x), σ1). How-
ever, when Y2 has different support from the observed Y1, the additional evidence should
impact parameter inference. As Y2 does not depend on the latent function, this evidence
will be hard to pass via the likelihood function in Eq. 51. One way to correct for this is to in-
troduce dependency between Y1 and Y2 through a non-parametric prior over the latent function f(x).

B.2 Gaussian Processes: Product Likelihood

Since the two observation processes follow the same underlying function sin2(x), we use a single
Gaussian process to model the latent function f(x). We assume:

f(x) ∼ GP(0, k(x, x′)) (52)

where k(x, x′) is the covariance function of f(x). We are using the squared exponential kernel:

k(x, x′) = A exp(− (x− x′)2

l
) (53)

where A is the amplitude parameter and l is the length scale for the kernel function. Thus, we can
write down the joint distribution of Y1 and Y2 as:

p(Y1,Y2, f(x)) = p(f(x)|θ)p(Y1|f(x), σ2
1)p(Y2|Y1, σ

2
2) (54)
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Where θ is the hyper-parameters for the Gaussian process. We can write down the distribution of Y1

and Y2 by marginalizing out the latent function:

p(Y1,Y2) =

∫
p(f(x)|θ)p(Y1|f(x), σ2

1)p(Y2|Y1, σ
2
2)df(x) (55)

As Y1 has all the information of f(x), this integral is tractable and we can write y(1) ∼
GP(0, k(x, x′) + σ1). But when the aggregation function Y2 has additional information about
the latent function, i.e. Y1 and Y2 only partially overlapping, bringing additional information from
Y2 requires the prediction of the missing values of the corresponding Y1 process. This can be done
in Markov Chain Monte Carlo(MCMC) setting by treating the unobserved value of Y1 as extra
parameters. However, this increase a lot of computational complexity for the MCMC sampler. One
option is to make an independence assumption for Y1 and Y2. Thus, the information in Y2 can
affect the latent function f directly.

B.3 Gaussian Processes: Composite Likelihood

Using the composite likelihoods, we assume each part of the likelihood is independent to each other.
For the joint probability of Y1 and Y2 , we have:

p(Y1,Y2) =

∫
p(f(x)|θ)p(Y1|f(x), σ2

1)p(Y2|f(x), σ2
2)df(x) (56)

Instead of assuming the conditional probability p(Y2|Y1, σ
2
2), we are now assuming the data depends

on the latent function f(x) directly. However, when Y1 and Y2 are different resolutions under the
same support, this likelihood misspecifies the correlation and will make the inference of f(x) contract
into the observed mean. While this contraction actually equals to an extra bias to the data in the
overlapping zone, the misspecified dependency structure will lead to an overfitting problem. This
overfitting problem of product likelihoods has been studied in the information theory [31, 34] and the
simplest way is to use an exponential weight to correct the inference:

L(Y1,Y2) =

∫
p(f(x)|θ)p(Y1|f(x), σ2

1)αp(Y2|f(x), σ2
2)αdf(x) (57)

where α ∈ IR>0 is composite weight for the likelihood. The problem of learning the latent function
becomes learning the parameters of the likelihood function and the composite weights.

B.4 Composite Weights

The composite log likelihood function can be written as:

`c(θ̂) =

k∑
i=1

f(θ̂i|Y) (58)

where f(θ̂i|Y ) is the likelihood function of i-th parameter θi and we assume each part of the
likelihood function is independent to each other. θ̂i is the estimated value of θi. With the observed
distribution of Y, p0(Y|θ0) and θ0 as the true parameter value, we have:

`′c(θ0) = `′c(θ̂) + (θ0 − θ̂)`′′c (θ̂) + o(n−1) (59)

θ̂ − θ0 → −
`′(θ0)

`′′(θ0)
(60)

Since we have `′(θ) = J(θ) and `′′(θ) = H(θ), the variance of θ will follow the sandwich variance
H−1(θ)J(θ)H−1(θ). Then, calculating the Taylor expansion for the likelihood, we have:

`c(θ0) = `c(θ̂) + (θ0 − θ̂)`′c(θ̂) +
1

2
(θ0 − θ̂)`′′c (θ̂)(θ0 − θ̂)T + o(n−1) (61)
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The expected variance from the composite likelihood model is :

Eθ[V ar(θ̂|Y)] = −H(θ̂|Y) (62)

Since θ̂ → θ, we need to set the variance of the estimated parameter to the asymptotic variance. Thus,
we have:

Eθ[αV ar(θ̂|Y)] = H−1(θ̂|Y)J(θ̂|Y)H−1(θ̂|Y) (63)
For a scalar variable, we can match the variance to the exact asymptotic vairance using a scalar
number. But if the estimating variable θ is high dimensional, it’s not easy to adjust the proper variance
using a single weight. We could use a matrix (C ∈ IRk×k) to adjust the covariance structure. In this
case we would have:

CH(θ̂|Y)CT = H−1(θ̂|Y)J(θ̂|Y)H−1(θ̂|Y) (64)
However, this increases the computational complexity substantially. One alternative way is to use a
scalar weight to match the identities of the covariance matrix. Lyddon et al. [17] and Ribatet [27]
developed two different ways to adjust the identities of the covariance matrix:

αRibatet =
|θ̂|

Tr[H(θ̂)−1J(θ̂)]
, αLyddon =

Tr[H(θ̂)J(θ̂)−1H(θ̂)]

Tr[H(θ̂)]
. (65)

Where αRibatet considers all the information in the covariance matrix and αLyddon only matches the
information in the diagonal elements.

B.5 MCMC Composite Likelihood Experiments

We now construct an MCMC experiment for the synthetic data using Eq. 50. Instead of sampling
directly from the intractable joint distribution of L(Y1,Y2), we sample from the joint probability
with the latent variable L(Y1,Y2, f(x)) via a Metropolis-Hastings within Gibbs sampler. We
perform three block updates: on θ0 for the Gaussian process prior, f(x) for the latent function
variables and σ2 = {σ2

1 , σ
2
2} for the noise parameter.

Algorithm 3 Block Metropolis-Hastings within Gibbs

Input: Observed datasets {(Xs,Ys)}Ss=1, initial parameters θ0,

for i-th iteration do
Update parameter block θi
function BLOCK (θi)

1. Sample proposed value of the Gaussian process prior θ′i ∼ N(θi−1,∆)

2. Calculate the conditional probability distribution p(θ′i|Y1, Y2, σ
2
i−1, f(x)i−1)

3. Calculate the acceptance rejection ratio:

π =
p(θ′i|Y1,Y2,σ

2
i−1,f(x)i−1)

p(θi−1|Y1,Y2,σ2
i−1,f(x)i−1)

4. Update the i-th value of θi via π

end function

Update the parameter block f(x)i via π =
p(f(x)′i|Y1,Y2,σ

2
i−1,θi)

p(f(x)i−1|Y1,Y2,σ2
i−1,θi)

Update the parameter block σi via π =
p(σ′2i |Y1,Y2,θi,f(x)i)

p(σ2
i−1|Y1,Y2,θi,f(x)i)

end for
returnθ, f(x), σ2
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Figure 5: Top Left: Comparing the posterior of the latent function f(x) under the product likelihood
assumption and a correctly specified likelihood. The product likelihood assumption causes extreme
posterior contraction which effects both the mean and variance. Bottom Left: Comparison of the true
posterior of σ1 noise to the posterior under the product likelihood and under the composite likelihood
with different weights. The composite likelihood is able to recover the true posterior. Top Right:
Comparing the posterior of the latent function f(x) under the composite likelihood assumption with
Lyddon correction and a correctly specified likelihood.Bottom Right: Comparing the posterior of
the latent function f(x) under the composite likelihood assumption with Ribatet correction and
a correctly specified likelihood. The two correction have the similar results for our experiments.
Although the mean of the function is not exactly match the true function, the variance of the latent
function is corrected close to the true function. The misspecified part is due to the imprefect match of
the asymptotic variance discussed in section B.4

B.6 Variational Composite Likelihood Experiments

In this section we provide further details to reproduce the variational composite likelihood experiments
in Sec. 2.2 and Fig. 2 of the main paper.

Data Generation We consider the case of having two dependent observation processes. We generate
one process Y1 = 5 · sin(X)2 + 0.1 · ε with ε ∼ N (0, 1) with 100 samples over the range [−2, 15].
For Y2 we aggregate Y1 into bins of size 3, S2 = 3, so that Y2 ∈ IR33 and X2 ∈ IR33×3. In Fig. 2
we only plot the range [3, 10].

Parameter Initialization For both MR-GP and VBAGG-NORMAL we use an SE kernels with length-
scale of 0.1 and variance 1.0. We initialize the likelihood noise to 0.1.

Additional Training Details For VBAGG-NORMAL we run for 5000 epochs. For MR-GP for we run
the MLE estimate for 5000 epochs, obtain αRibatet and then optimize the ELBO for 5000 epochs.
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C Multi-resolution Air Pollution Experiments

C.1 Inter-task Multi-resolution: PM10-PM25

In this section we provide additional details for reproducing the inter-task multi-resolution experiments
as described in the main paper.

Variational Parameter Initialization: For MR-DGP we initialize all likelihood noises to 0.01 and
we use a Matern32 kernel for all latent functions with a lengthscale of 0.01. For both MR-GPRN and
CENTER-POINT we initialize the likelihood noise to be 0.1 and use a squared exponential kernel for
all latent functions. We use Q = 1 and set the lengthscale of f to be 0.1 and the lengthscales of W to
be 3.0.

Training Details: We train MR-DGP for a total of 2000 iterations. We train both MR-GPRN and
CENTER-POINT for 2000 iterations each.

C.2 Intra-task Multi-resolution: Space-time NO2

In this section we provide additional details for reproducing the intra-task multi-resolution experi-
ments described in Sec. 4 of the main paper.

Data pre-processing: We extract spatial features based on the London road network (OS Highways)
2 and land use (UKMap) 3. OS Highways is a dataset of every road in London with information of
the length, road classification (A Road, B Road, etc). UKMap is a dataset of polygons where each
polygon represents a physical entity, e.g a building, a river, a park, etc. UKMap provides additional
information such as the height of the buildings and the area of the parks and rivers. For each input
location we construct a buffer of approximately 100m (a radius 0.001 degrees in SRID:4326). Within
the buffer zone we calculate the average length of the A-roads, the average ratio between the width of
the roads and height of buildings on the corresponding roads, and the total area of vegetation and
water. We convert all time stamps into unix epochs and we standardize all features before training. To
approximate the integral in the likelihood (Eq. 4 in main text) we discretize the area of each satellite
based observation input into a 10 by 10 uniform grid of lat-lon points.

MR-DGP Architecture: For MR-DGP we use the architecture described on the right subfigure of
Fig. 3 in the main paper where X2,Y2 corresponds to the LAQN dataset and X1,Y1 to the satellite
dataset. We give the initialization of the specific latent functions below.

Variational Parameter Initialization: For MR-GPRN and VBAGG-NORMAL we use 400 inducing
points for all latent functions. Both the inducing function values and the variances are randomly
initialized between 0 and 1. For MR-DGP the latent functions f2,2 and f1,1 we place 200 inducing
points and for f2 we use 100. For all models we initialize the inducing points locations with K-means.

Model Parameter Initialization: In all models and latent function withing, MR-GPRN, VBAGG-
NORMAL and MR-DGP we use SE kernels initialized with lengthscales of 0.1 and SE variance to 1.0.
We initialize the likelihood noise to be 0.1.

Additional Training Details: We train MR-DGP for a total of 9000 iterations. We train both MR-
GPRN, VBAGG-NORMAL and CENTER-POINT for 10000 iterations each.

D MR-DGP

In this section we provide the complete derivation of the variational lower bound for MR-DGP.

2https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/
products/os-mastermap-highways-network.html

3https://www.geoinformationgroup.co.uk/ukmap
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D.1 Specification of the prior

The full prior for MR-DGP is given by

p(F,M) =

(
P∏
p=2

p(fp |mp)p(mp | f1,p, {f (2)
a,p}Aa=2)

)(
P∏
p=1

p(f1,p)

A∏
a=2

p(f (2)
a,p | fa,p)p(fa,p)

)
(66)

We say that each of the GPs fa,p are base GPs and to simplify notation in subsequent sections we
use the function Pa(·) to denote the set of parent functions for each node. For example, Pa(m2) =

{f1,p} ∪ {f (2)
a,p}.

D.2 Likelihood

The likelihood for MR-DGP (as illustrated in in Fig. 3) is

p(Y | F) =

P∏
p=2

p(Y1,1 | fp)
P∏
p=1

p(Y1,p|fa,p)
A∏
a=2

p(Y1,p | f (2)
a,1)p(Ya,p|fa,p) (67)

where each likelihood component is a multi-resolution likelihood of the form

N

(
Ya,n

∣∣∣∣ 1

|Sa|

∫
Sa,n

f (k)
a (X) dX, σ2

a,kI

)
, (68)

again we discretise the integral with a uniform grid over Sa.

D.3 Augmented Prior

To allow for efficient inference we sparsify each GP by introducing inducing points:

p(F,M,U) =p(F,M|U)p(U)

=

(
P∏
p=2

p(fp|mp,up)p(mp|Pa(mp))

)
·

(
P∏
p=1

p(f1,p|u1,p)

A∏
a=2

p(f (2)
a,p |fa,p,u(2)

a,p)p(fa,p|ua,p)

)
·

(
P∏
p=2

p(up) ·
P∏
p=1

p(u1,1)

A∏
a=2

p(u(2)
a,p)p(ua,p)

)
(69)

where each p(u(·)
·,· ) = N (u

(·)
·,· | 0,K

(·)
·,· (Z

(·)
·,· ,Z

(·)
·,· )) for u

(·)
·,· ∈ IRM . The locations of the inducing

points for the base GPs are Za,p ∈ IRM×D and for the deep GPs Zp,Z
2
a,p ∈ IRM×D. For brevity we

have omited the conditional on the inducing locations Z in our notation.

D.4 Variational approximate Posterior

Following [28] we construct an approximate augmented posterior that maintains the dependency
structure between layers:

q(M,F,U) = p(M,F|U)q(U)

= p(M,F|U)
P∏
p=2

q(up) ·
P∏
p=1

q(u1,1)
A∏
a=1

q(u(2)
a,p)q(ua,p)

(70)

where each q(u(·)
·,· ) are standard free-form Gaussians N (u

(·)
·,· |m(·)

·,· ,S
(·)
·,· ). The conditional is of the

form
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p(fa,p|Pa(fa,p),ua,p) = N (fa,p | µ′a,p,Σ′a,p) (71)

with mean and variance given by the standard conditional equations

µ′a,p = αa,pKa,p(Za,p,Za,p)
−1ua,p,

Σ′a,p = Ka,p(Pa(fa,p),Pa(fa,p))− αa,pKa,p(Za,p,Za,p)
−1αTa,p.

(72)

where αa,p = Ka,p(Pa(fa,p),Za,p).

D.5 Marginalisation over inducing points

Firstly we can marginalise the inducing variables analytically

q({mp}Pp , {fa,p}
A,P
a,p=1) =

∫
q({mp}Pp , {fa,p,ua,p}

A,P
a,p=1) du1,1 · · · duA,P

=

P∏
p=1

p(mp|Pa(mp))

A∏
a=1

∫
p(fa,p|Pa(fa,p),ua,p)q(ua,p) dua,p

=

P∏
p=1

p(mp|Pa(mp))

A∏
a=1

q(fa,p|Pa(fa,p))

(73)

The integral can evaluated in closed form resulting in

q(fa,p|Pa(fa,p)) = N (fa,p | µa,p,Σa,p) (74)

where the mean and variance are given by

µa,p = αa,pKa,p(Za,p,Za,p)
−1ma,p,

Σa,p = Σ′a,p − αa,pKa,p(Za,p,Za,p)
−1Sa,pKa,p(Za,p,Za,p)

−1αTa,p
(75)

D.6 Mixture of Experts

We define p(mp|Pa(mp)) as a mixture of experts, that is a weighted combination of the local experts

p(mp|Pa(mp)) = N

(
mp

∣∣∣∣ A∑
a

wa,pµa,p,

A∑
a

wa,pΣa,pwa,p

)
. (76)

The weights wa,p are application specific and we provide specific examples in Section D.9.

D.7 Marginalisation over layers

We follow the doubly stochastic framework of [28] and marginalise through the layers using Monte
Carlo estimates. The first layer of GPs can be sampled from directly, these samples are then
propagated through all the subsequent layers:

q(fa,p) =

∫
q(fa,p|Pa(fa,p))

L−1∏
l=1

q(Pa(l)(fa,p)|Pa(l+1)(fa,p)) dPa(1)(fa,p) · · · dPa(L)(fa,p), (77)

where each q(fa,p|Pa(fa,p)) is a DGP of the form Eqn. 6.
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D.8 Variational Lower Bound

In this section we provide the derivation of the variational lower bound for MR-DGP. The evidence
lower bound (ELBO), which lower bounds the log marginal likelihood log p(Y|X), is

L = Eq(M,F,U)

[
log

p(Y,M,F,U)

q(M,F,U)

]
= Eq(M,F,U)

[
log

p(Y|F)p(M,F|U)p(U)

p(M,F|U)q(U)

]
(78)

Cancelling the relevant terms inside the logarithm we get

LMR-DGP = Eq(M,F,U) [log p(Y|F)]︸ ︷︷ ︸
ELL

+Eq(U)

[
log

P (U)

q(U)

]
︸ ︷︷ ︸

KL

.

Note that we have slightly abused notation to keep the derivation clear and now provide the full
expanded lower bound:

ELL =

P∑
p=2

Eq(fp) [log p(Y1,1|fp)] +

P∑
p=1

A∑
a

[
E
q(f

(2)
a,1)

[
p(Y1,p|f (2)

a,1)
]

+ Eq(fa,p) [p(Ya,p|fa,p)]
]

(79)

and

KL = Eq(U)

log

(∏P
p=2 p(up) ·

∏P
p=1 p(u1,1)

∏A
a=2 p(u

(2)
a,p)p(ua,p)

)
(∏P

p=2 q(up) ·
∏P
p=1 q(u1,1)

∏A
a=2 q(u

(2)
a,p)q(ua,p)

)
 . (80)

The KL term can be computed in closed form because it is just the sum of KL terms between two
Gaussians. The ELL term is approximated using the Monte Carlo estimates from marginalising
through the layers.

D.9 Mixture of Experts Weights

In this section we provide a specific and intuitive example of weights used when combining the
mixture of experts. We derive weights that naturally weigh the experts by the level of support
provided. We assume that this is defined by the resolution of the base layers, where higher resolutions
are ‘trusted’ more. We first derive the weights for two generic GPs f1 and f2 and will generalise and
apply the weights to the MR-GPRN after.

To find the support of an expert we utilise the differential entropy of the GP (see [13]):

H(p(f |D)) =
1

2
log(σ2

f |D) +
1

2
(log(2π) + 1). (81)

For our mixing weights we are not interested in the amount of information each GP has, just whether
there is any. So we drop the 2nd term on the rhs of Eq. 81, which we denote by I(p(f |D)), and
normalise the information to be between zero and one. One such function is simply:

Î(f) =
I(p(f |D))−min(I(p(f |D)))

max(I(p(f |D)))−min(I(p(f |D)))
(82)

This is not the only normalisation that can be done, one could also use a sigmoid function such as
tanh(·). Now we want a function that weighs f2 down when f1 has information, inherently capturing
that we trust f1 over f2. One such function is the normalised information of f2 minus the joint
information of f1 and f2:

Î(f1) + β2Î(f2) = Î(f1) + Î(f2)− Î(f1, f2). (83)

Because we have normalised the information to be within zero and one we approximate the the joint
information with a hadamard product (approximating an XOR function where the value is one if they
both have information else it is zero).
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β2Î(f2) = Î(f2)− Î(f1)Î(f2)

= (1− Î(f1)).
(84)

The function β2 now has maximum and minimum values in the range [0, 1] and so we can directly
use β2 as our mixing weights. To makes all the weights sum to one we define

β1 = 1− β2 = Î(f1). (85)

D.10 Combining arbitrary number of experts

We combine them in a hierarchical manner, in a similar way to [? ], and construct a computational
graph. Given P experts, the mixing weights are defined as

m = Î(f1)f1 + (1− Î(f1))(Î(f2)f2 + (1− Î(f2))(· · ·+ (1− Î(fP−1))fP )) (86)

E Relation to VBAgg

In this section we show that MR-GPRN can be seen as a generalisation of VBAGG-NORMAL [15] from
a single GP to a GPRN. In VBAgg each observation ya is the aggregate output of some bag of items
xa = {xai }

Na
i=1. The likelihood of each bag is ya|xa ∼ N (y|ηa, τa) where ηa =

∑Na

i=1 w
a
i µ(xai )

and µ is the mean of the latent process f . In MR-GPRN we are modelling the underlying process
with the sum of products of GPs. Rewriting MR-GPRN using the notation of [15]: µ = Wf and
each dataset {Xa,Ya}Aa=1 directly corresponds to the observations and bag of items defined in
VBAGG-NORMAL. Let Na = Sa, and τa = σ2

a and the composite weight α = 1. The composite
weight of value 1 is implicitly included in the model of VBAGG-NORMAL through the independence
assumption. We assume an simple aggregation of the bag of items, although we note that is not
necessary, so setting wai = 1

|Sa| we obtain ya ∼ N (
∑Na

i=1 w
a
i µ(xai ), τa) which is MR-GPRN in

the notation of [15]. VBAGG-NORMAL is then recovered when we use only one latent function
(by setting W to a constant value), by only considering the single task setting and by setting the
composite weight to one.

The VBAgg model is defined by

ya ∼ p(ya|ηa), ηa =

Na∑
i=1

wai η
a
i =

Na∑
i=1

wai Ψ(f(xai )) (87)

where ya is the independent aggregate observations, wai are fixed weights and f follows a Gaussian
process. For the unobserved latent variables yai , we assume:

yai ∼ p(yai |ηai ), ηai = Ψ(f(xai )) (88)

When the probabilities of ya ∼ p(ya|ηa) and yai ∼ p(yai |ηai ) are Gaussian, the model is equivalent
to VBAGG-NORMAL. We firstly consider the special case, when Ψ(f(xai )) = f(xai ). As f(xai ) ∼
GP(0,K(xai , ·)), we could say that yai ∼ N(f(xai ), σai ) still follows a Gaussian process and wiyai ∼
GP(0, w2

iK(xai , ·)) with fixed weight wi. Thus, due to the additive property of Gaussian processes,
the aggregation function ya ∼ GP(0,

∑
i

∑
. wiw.K(xai , ·)). The covariance of different aggregated
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observations is:

Cov(ya, yb) = Cov

Na∑
i=1

wai y
a
i ,

Nb∑
j=1

wbjy
b
j


= E

Na∑
i=1

Nb∑
j=1

wai y
a
i w

b
jy
b
j

− E

[
Na∑
i=1

wai y
a
i

]
E

 Nb∑
j=1

wbjy
b
j


= E

Na∑
i=1

Nb∑
j=1

wai y
a
i w

b
jy
b
j


=

Na∑
i=1

Nb∑
j=1

wai w
b
jK(xai , x

b
j)

= K̃(xa,xb)

(89)

Also, the covariance between y∗i = f(x∗i ) and ya is given:

Cov(y∗i , y
a) = Cov

y∗i , Na∑
j=1

waj y
a
j


=

Na∑
j=1

wajK(x∗i , x
a
j )

= K̃∗(x∗i ,x
a)

(90)

Thus, the problem of learning f(·) function becomes a standard Gaussian process regression problem
and we have: [

y
y∗i

]
∼ N

(
0,

[
K̃(x,x) + σ2

yI K̃∗(x∗i ,x)

K̃∗(x, x∗i ) K(x∗i , x
∗
i )

])
(91)

where y = {y1, ..., ya, ..., yn} and the predictive posterior is given by:

y∗i |y,x, x∗i ∼ N(µ∗, σ∗)

µ∗ = K̃∗(x∗i ,x)[K̃(x,x) + σ2
yI]−1y

σ∗ = K(x∗i , x
∗
i )− K̃∗(x∗i ,x)[K̃(x,x) + σ2

yI]−1K̃∗(x, x∗i ))

(92)

For a given generalized linear function Ψ(f(xai )), we have Ψ(f(xa)) = Wa
Ψf(xa), where Wa

Ψ is
a Na × Na weighting matrix. When f(xa) ∼ GP(0,K(xai , x

a
j )), then Ψ(f(xa)) = Wa

Ψf(xa) ∼
GP(0,Wa

ΨK(xai , x
a
j )(Wa

Ψ)T )) Thus, we have:

ya = wa[Ψ(f(xa))]T

= wa[Wa
Ψf(xa)]T ∼ GP(0,wa[Wa

ΨK(xa,xa)(Wa
Ψ)T ](wa)T )

(93)

Following the Eq. 89, the covariance is given by:

Cov(ya, yb) = Cov(wa[Wa
Ψf(xa)]T ,wb[Wb

Ψf(xb)]T ) ∼ GP(0,wa[Wa
ΨK(xa,xb)(Wb

Ψ)T ](wb)T )
(94)

When the function Ψ(·) is a fixed function and WΨ are constants we recover the VBAGG-NORMAL
model. When the function Ψ(·) is a random function and WΨ are Gaussian processes, then Ψ(f(xa)
is a GPRN and the aggregation function ya follows the MR-GPRN model without composite likelihood
corrections.
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